Advanced search in Research products
Research products
arrow_drop_down
unfold_less Compact
1and
Any field
arrow_drop_down
includes
arrow_drop_down
or
  • Access
    Clear
  • Type
  • Year range
  • Field of Science
  • Funder
  • Country
    Clear
  • Language
  • Source
  • Research community
  • Subcommunity
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
4,890 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Restricted
  • Embargo
  • IT
  • CA

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Francesco Saverio Marra; Massimo Urciuolo; Chin-Hsiang Cheng;

    Environment preservation, energy, and the growing economy are becoming strongly interconnected themes requiring new solutions to be exploited. An example of this interconnection is the demand for the development of almost zero-energy buildings, i.e. buildings capable to be almost autonomous from external energy supply or at least not dependent on the energy supply from utilities. The actual conception of a zero energy building is a very complex system formed by several subsystems, with the consequence that costs are very high and reliability relatively low. The aim of this research program is to deepen the possibility to employ the Stirling engine and cooler technology to lower the number of components required in a near zero-energy building, increase the efficiency, and contemporary raise the reliability of the overall system. Stirling cooler could be used to convert mechanical work into heating and cooling effects and produce the temperature difference by the expanding and compressing the working fluid. A similar concept of the Stirling cooler could also be adopted to develop a heat pump. Compared to the traditional vaporcompression refrigeration systems, the Stirling coolers are of higher efficiency and with no components like compressor, expansion valve, evaporator, or condensers. Therefore, they are considered to be clean cooling devices. On the other hand, the Stirling engine is an external combustion engine, which is compatible with a variety of thermal sources, such as solar radiation, waste heat, geothermal energy, combustion, and so on. With the heat input to the hot end of the engine, the Stirling engine could be operated to produce mechanical work/electricity at high thermal efficiency. In principle, the Stirling machines are capable to provide all the forms of energy (heat, cool, and electricity) that form the almost total energy load of a building.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Report . 2019
    Data sources: CNR ExploRA
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Report . 2019
      Data sources: CNR ExploRA
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Paolo Foggi;
    Paolo Foggi
    ORCID
    Harvested from ORCID Public Data File

    Paolo Foggi in OpenAIRE
    Paolo Foggi; orcid Stefano Cicchi;
    Stefano Cicchi
    ORCID
    Harvested from ORCID Public Data File

    Stefano Cicchi in OpenAIRE
    orcid Chiara Botta;
    Chiara Botta
    ORCID
    Harvested from ORCID Public Data File

    Chiara Botta in OpenAIRE
    +3 Authors

    AbstractDendronic antennae systems containing pyrene units as energy donors and a styrylpyridinium derivative as energy acceptor show efficient energy transfer from the green‐emitting pyrene excimer to the red‐emitting acceptor. For the third dendron generation the effective screening of the pyrene units on the acceptor provides thin films showing bright red emission. Single‐layer light‐emitting diodes prepared by properly balancing the dendrons and donor units concentration in polyvinylcarbazole show electroluminescence from the blue, green and red components of the monomeric donor, the donor excimer and the acceptor when excitons are generated in the polymer and subsequently transferred to the molecules by resonant energy transfer.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS Cnrarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Article . 2010
    Data sources: CNR ExploRA
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ChemPhysChem
    Article . 2010 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ChemPhysChem
    Article . 2010
    addClaim
    6
    citations6
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS Cnrarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Article . 2010
      Data sources: CNR ExploRA
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ChemPhysChem
      Article . 2010 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ChemPhysChem
      Article . 2010
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Davide Tiranti;
    Davide Tiranti
    ORCID
    Harvested from ORCID Public Data File

    Davide Tiranti in OpenAIRE
    Christian Huggel; orcid Markus Stoffel;
    Markus Stoffel
    ORCID
    Harvested from ORCID Public Data File

    Markus Stoffel in OpenAIRE
    Markus Stoffel;

    This paper addresses the current knowledge on climate change impacts on mass movement activity in mountain environments by illustrating characteristic cases of debris flows, rock slope failures and landslides from the French, Italian, and Swiss Alps. It is expected that events are likely to occur less frequently during summer, whereas the anticipated increase of rainfall in spring and fall could likely alter debris-flow activity during the shoulder seasons (March, April, November, and December). The magnitude of debris flows could become larger due to larger amounts of sediment delivered to the channels and as a result of the predicted increase in heavy precipitation events. At the same time, however, debris-flow volumes in high-mountain areas will depend chiefly on the stability and/or movement rates of permafrost bodies, and destabilized rock glaciers could lead to debris flows without historic precedents in the future. The frequency of rock slope failures is likely to increase, as excessively warm air temperatures, glacier shrinkage, as well as permafrost warming and thawing will affect and reduce rock slope stability in the direction that adversely affects rock slope stability. Changes in landslide activity in the French and Western Italian Alps will likely depend on differences in elevation. Above 1500 m asl, the projected decrease in snow season duration in future winters and springs will likely affect the frequency, number and seasonality of landslide reactivations. In Piemonte, for instance, 21st century landslides have been demonstrated to occur more frequently in early spring and to be triggered by moderate rainfalls, but also to occur in smaller numbers. On the contrary, and in line with recent observations, events in autumn, characterized by a large spatial density of landslide occurrences might become more scarce in the Piemonte region.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archive ouverte UNIG...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    The Science of The Total Environment
    Article . 2014 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://dx.doi.org/10.5167/uzh...
    Other literature type . 2014
    Data sources: Datacite
    addClaim
    223
    citations223
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archive ouverte UNIG...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      The Science of The Total Environment
      Article . 2014 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://dx.doi.org/10.5167/uzh...
      Other literature type . 2014
      Data sources: Datacite
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Fistola R;
    Fistola R
    ORCID
    Harvested from ORCID Public Data File

    Fistola R in OpenAIRE
    Gallo M; La Rocca R A;

    Starting from an interpretation of “sustainable mobility”, this study describes a possible taxonomy of the modalities of urban travels related to sustainability and it suggests an inclusive approach to implement urban policies for “soft mobility” inside the urban contexts. These policies aim at improving the levels of urban liveability, reducing the polluting emissions and promoting the recovery of a sober moral behaviour in acting and reacting inside the city. The underway photovoltaic bikesharing project “Bene Bike” in Benevento shows how the bike station plays an innovative role. It represents a multifunctional element able of managing material and immaterial “flows of urban travels” (people, energy, information).

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio della ricer...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: David B. Neale; Giorgio Binelli; orcid bw Duccio Rocchini;
    Duccio Rocchini
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Duccio Rocchini in OpenAIRE
    orcid Elena Mosca;
    Elena Mosca
    ORCID
    Harvested from ORCID Public Data File

    Elena Mosca in OpenAIRE
    +3 Authors

    Forest trees dominate many Alpine landscapes that are currently exposed to changing climate. Norway spruce is one of the most important conifer species of the Italian Alps, and natural populations are found across steep environmental gradients with large differences in temperature and moisture availability. This study seeks to determine and quantify patterns of genetic diversity in natural populations toward understanding adaptive responses to changing climate. Across the Italian species range, 24 natural stands were sampled with a major focus on the Eastern Italian Alps. Sampled trees were genotyped for 384 selected single nucleotide polymorphisms (SNPs) from 285 genes. A wide array of potential candidate genes was tested for correlation with climatic parameters. To minimize false-positive association between genotype and climate, population structure was investigated. Pairwise F ST estimates between sampled populations ranged between 0.000 and 0.075, with the highest values involving the two disjoint populations, Valdieri, on the western Italian Alps, and Campolino, the most southern population on the Apennines. Despite considerable genetic admixture among populations, both Bayesian and multivariate approach identified four genetic clusters. Selection scans revealed five F ST outliers, and the environmental association analysis detected ten SNPs associated to one or more climatic variables. Overall, 13 potentially adaptive loci were identified, three of which have been reported in a previous study on the same species conducted on a broader geographical scale. In our study, precipitation, more than temperature, was often associated with genotype; therefore, it appears as the most important environmental variable associated with the high sensitivity of Norway spruce to soil water supply. These findings provide relevant information for understanding and quantifying climate change effects on this species and its ability to genetically adapt.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS - Institutional...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Tree Genetics & Genomes
    Article . 2016 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    29
    citations29
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Neale, David Bryan; orcid Mosca, Elena;
    Mosca, Elena
    ORCID
    Harvested from ORCID Public Data File

    Mosca, Elena in OpenAIRE
    orcid Di Pierro, Erica Adele;
    Di Pierro, Erica Adele
    ORCID
    Harvested from ORCID Public Data File

    Di Pierro, Erica Adele in OpenAIRE

    The Alpine Forest Genomics Network was formed in 2011 and held its first annual meeting on June 24–26, 2012, in the Natural Park Adamello Brenta in Trentino Region, Italy. The meeting was attended by 30 researchers from the alpine region of Europe and had two primary goals: (1) for researchers to introduce each other to current and planned research activities in forest landscape genomics and (2) to develop a strategic vision for the network. A steering committee was elected and will develop a white paper over the next year. The next annual meeting will be held in Austria in June 2013.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio istituziona...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Tree Genetics & Genomes
    Article . 2013 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Juan J. Aucar;
    Juan J. Aucar
    ORCID
    Harvested from ORCID Public Data File

    Juan J. Aucar in OpenAIRE
    orcid Alessandro Stroppa;
    Alessandro Stroppa
    ORCID
    Harvested from ORCID Public Data File

    Alessandro Stroppa in OpenAIRE
    orcid Gustavo A. Aucar;
    Gustavo A. Aucar
    ORCID
    Harvested from ORCID Public Data File

    Gustavo A. Aucar in OpenAIRE

    When the weak forces producing parity-violating effects are taken into account, there is a tiny energy difference between the total electronic energies of two enantiomers (ΔEPV), which might be the key to understanding the evolution of the biological homochirality. We focus on the electronic chirality measure (ECM), a powerful descriptor based on the electronic charge density, for quantifying the chirality degree of a molecule, in a representative set of chiral molecules, together with their EPV energies. Our results show a novel, strong, and positive correlation between ΔEPV and ECM, supporting a subtle interplay between the weak forces acting within the nuclei of a given molecule and its chirality. These findings suggest that experimental investigations for molecular parity violation detection should consider molecules with ECM values as large as possible and may support that a chiral signature is imprinted on life by fundamental physics via the parity-violating weak interactions.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS Cnrarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CONICET Digital
    Article . 2023
    License: CC BY NC ND
    Data sources: CONICET Digital
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    The Journal of Physical Chemistry Letters
    Article . 2023 . Peer-reviewed
    License: STM Policy #29
    Data sources: Crossref
    addClaim
    7
    citations7
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS Cnrarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CONICET Digital
      Article . 2023
      License: CC BY NC ND
      Data sources: CONICET Digital
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      The Journal of Physical Chemistry Letters
      Article . 2023 . Peer-reviewed
      License: STM Policy #29
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Araos, Malcolm; orcid Berrang-Ford, Lea;
    Berrang-Ford, Lea
    ORCID
    Harvested from ORCID Public Data File

    Berrang-Ford, Lea in OpenAIRE
    orcid Ford, James D.;
    Ford, James D.
    ORCID
    Harvested from ORCID Public Data File

    Ford, James D. in OpenAIRE
    Austin, Stephanie E.; +2 Authors

    Abstract Cities globally face significant risks from climate change, and are taking an increasingly active role in formulating and implementing climate change adaptation policy. However, there are few, if any, global assessments of adaptation taking place across cities. This study develops and applies a framework to track urban climate change adaptation policy using municipal adaptation reporting. From 401 local governments globally in urban areas with >1 m people, we find that only 61 cities (15%) report any adaptation initiatives, and 73 cities (18%) report on planning towards adaptation policy. We classified cities based on their adaptation reporting as extensive adaptors, moderate adaptors, early stage adaptors, and non-reporting. With few exceptions, extensive adaptors are large cities located in high-income countries in North America, Europe, and Oceania, and are adapting to a variety of expected impacts. Moderate adaptors usually address general disaster risk reduction rather than specific impacts, and are located in a mix of developed and developing countries. Early stage adaptors exhibit evidence of planning for adaptation, but do not report any initiatives. Our findings suggest that urban adaptation is in the early stages, but there are still substantive examples of governments taking leadership regardless of wealth levels and institutional barriers.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Research@WURarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Research@WUR
    Article . 2016
    Data sources: Research@WUR
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Science & Policy
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    312
    citations312
    popularityTop 0.1%
    influenceTop 1%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Research@WURarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Research@WUR
      Article . 2016
      Data sources: Research@WUR
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Science & Policy
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid R. CARAPELLUCCI;
    R. CARAPELLUCCI
    ORCID
    Harvested from ORCID Public Data File

    R. CARAPELLUCCI in OpenAIRE
    orcid MILAZZO, ADRIANO;
    MILAZZO, ADRIANO
    ORCID
    Harvested from ORCID Public Data File

    MILAZZO, ADRIANO in OpenAIRE

    Abstract The feasibility of integrating a commercially available reheat gas turbine with a methane steam reformer is analyzed. A slight modification to the original reheat design is proposed to improve the methane conversion rate in the reforming process and, consequently, the efficiency in recovering waste exhaust heat from the gas turbine. Two solutions are proposed for the heat recovery scheme: a first reformer has a single pressure level while the second has two in order to match the different pressures of the combustors. While the single pressure scheme gives good performance with respect to the stand alone gas turbine, the dual pressure reformer can give a further benefit, as far as an accurate optimization of the steam management is performed.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Flore (Florence Rese...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Conversion and Management
    Article . 2005 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    38
    citations38
    popularityTop 10%
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Davis, Victoria L.;
    Davis, Victoria L.
    ORCID
    Harvested from ORCID Public Data File

    Davis, Victoria L. in OpenAIRE
    orcid Quaranta, Simone;
    Quaranta, Simone
    ORCID
    Harvested from ORCID Public Data File

    Quaranta, Simone in OpenAIRE
    orcid CAVALLO, CARMEN;
    CAVALLO, CARMEN
    ORCID
    Harvested from ORCID Public Data File

    CAVALLO, CARMEN in OpenAIRE
    orcid bw LATINI, ALESSANDRO;
    LATINI, ALESSANDRO
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    LATINI, ALESSANDRO in OpenAIRE
    +1 Authors

    Abstract Dye-sensitized solar cells (DSSCs) with photoanodes composed of chirality selected single-wall carbon nanotubes (SWNTs) have been fabricated and tested for first time. Single chirality SWCNTs separation (93% purity) have been achieved by modifying standard size exclusion gel chromatography. Chirality selection has allowed for “tuning” of the energy barrier at the TiO2/SWNT/FTO interface, electronic conductivity enhancement, and reduced SWCNTs-ruthenium dye competition for light absorption resulting in a 81% energy conversion efficiency improvement compared to mixed chirality cells. Unfortunately, energy conversion efficiency has been limited by cells’ low shunt resistance. Additionally, SWCNTs electron transfer properties have been exploited to prepare mixed and chirality specific CNTs based DSSCs’ counter electrodes.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio della ricer...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Solar Energy Materials and Solar Cells
    Article . 2017 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    20
    citations20
    popularityAverage
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph
We use cookies
This website uses essential cookies to ensure its proper operation and tracking cookies to understand how you interact with it. The latter will be set only upon approval.

Read more about our Cookies policy.