Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
1 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • CA

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Yousef N. Dabwan; Esmail M. A. Mokheimer;

    Abstract This paper presents the results of a thermo-economic analysis of integrating solar tower (ST) with heat and power cogeneration plants that is progressively being installed to produce heat and electricity to operate absorption refrigeration systems or steam for industrial processes. The annual performance of an integrated solar-tower gas-turbine-cogeneration power plant (ISTGCPP) with different sizes of gas turbine and solar collector's area have been examined and presented. Thermoflex + PEACE software's were used to thermodynamically and economically assess different integration configurations of the ISTGCPP. The optimal integrated solar field size has been identified and the pertinent reduction in CO2 emissions due to integrating the ST system is estimated. For the considered cogeneration plant (that is required to produce 81.44 kg/s of steam at 394 °C and 45.88 bars), the study revealed that (ISTGCPP) with gas turbine of electric power generation capacity less than 50 MWe capacities have more economic feasibility for integrating solar energy. The levelized electricity cost (LEC) for the (ISTGCPP) varied between $0.067 and $0.069/kWh for gas turbine of electric power generation capacity less than 50 MWe. Moreover, the study demonstrated that (ISTGCPP) has more economic feasibility than a stand-alone ST power plant; the LEC for ISTGCPP is reduced by 50–60% relative to the stand-alone ST power plant. Moreover, a conceptual procedure to identify the optimal configuration of the ISTGCPP has been developed and presented in this paper.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Energy Re...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Energy Resources Technology
    Article . 2018 . Peer-reviewed
    License: ASME Site License Agreemen
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    15
    citations15
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Energy Re...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Energy Resources Technology
      Article . 2018 . Peer-reviewed
      License: ASME Site License Agreemen
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
1 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Yousef N. Dabwan; Esmail M. A. Mokheimer;

    Abstract This paper presents the results of a thermo-economic analysis of integrating solar tower (ST) with heat and power cogeneration plants that is progressively being installed to produce heat and electricity to operate absorption refrigeration systems or steam for industrial processes. The annual performance of an integrated solar-tower gas-turbine-cogeneration power plant (ISTGCPP) with different sizes of gas turbine and solar collector's area have been examined and presented. Thermoflex + PEACE software's were used to thermodynamically and economically assess different integration configurations of the ISTGCPP. The optimal integrated solar field size has been identified and the pertinent reduction in CO2 emissions due to integrating the ST system is estimated. For the considered cogeneration plant (that is required to produce 81.44 kg/s of steam at 394 °C and 45.88 bars), the study revealed that (ISTGCPP) with gas turbine of electric power generation capacity less than 50 MWe capacities have more economic feasibility for integrating solar energy. The levelized electricity cost (LEC) for the (ISTGCPP) varied between $0.067 and $0.069/kWh for gas turbine of electric power generation capacity less than 50 MWe. Moreover, the study demonstrated that (ISTGCPP) has more economic feasibility than a stand-alone ST power plant; the LEC for ISTGCPP is reduced by 50–60% relative to the stand-alone ST power plant. Moreover, a conceptual procedure to identify the optimal configuration of the ISTGCPP has been developed and presented in this paper.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Energy Re...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Energy Resources Technology
    Article . 2018 . Peer-reviewed
    License: ASME Site License Agreemen
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    15
    citations15
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Energy Re...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Energy Resources Technology
      Article . 2018 . Peer-reviewed
      License: ASME Site License Agreemen
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph