- home
- Advanced Search
Filters
Clear AllYear range
-chevron_right GOField of Science
Funder
Source
Organization
- Energy Research
- CA
- Energy Research
- CA
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Embargo end date: 01 Jan 2020 United States, Chile, Switzerland, Ireland, Germany, ChilePublisher:Wiley Publicly fundedFunded by:NSF | Collaborative Research: T..., ARC | Discovery Projects - Gran..., University College Dublin +8 projectsNSF| Collaborative Research: The Role of Iron Redox Dynamics in Carbon Losses from Tropical Forest Soils ,ARC| Discovery Projects - Grant ID: DP170102766 ,University College Dublin ,ARC| Woodland response to elevated CO2 in free air carbon dioxide enrichment: does phosphorus limit the sink for Carbon? ,SNSF| ICOS-CH Phase 2 ,NSF| Collaborative Research: ABI Development: The PEcAn Project: A Community Platform for Ecological Forecasting ,SNSF| Towards the rational design of molecular glue degraders ,SNSF| Functional diversity and cell-cell communication in biocontrol fluorescent Pseudomonas spp. associated with natural disease- suppressiveness of soils ,ARC| Discovery Projects - Grant ID: DP160102452 ,NSF| Collaborative Research: Effects of Species on Forest Carbon Balances in Lowland Costa Rica ,NSF| Collaborative Research: Tree Species Effects on Ecosystem Processes in Lowland Costa RicaMirco Migliavacca; Christoph S. Vogel; Thomas Wutzler; Russell L. Scott; Mioko Ataka; Jason P. Kaye; Järvi Järveoja; Kadmiel Maseyk; Ben Bond-Lamberty; K. C. Mathes; Joseph Verfaillie; Catriona A. Macdonald; Kentaro Takagi; Jennifer Goedhart Nietz; Eric A. Davidson; Susan E. Trumbore; Melanie A. Mayes; Elise Pendall; Carolyn Monika Görres; Christine S. O’Connell; Christine S. O’Connell; Masahito Ueyama; Cecilio Oyonarte; Mats Nilsson; Christopher M. Gough; Jorge F. Perez-Quezada; Mariah S. Carbone; Ruth K. Varner; Omar Gutiérrez del Arroyo; Junliang Zou; Alexandre A. Renchon; Nina Buchmann; Shih-Chieh Chang; Anya M. Hopple; Anya M. Hopple; Munemasa Teramoto; Stephanie C. Pennington; Jin-Sheng He; Yuji Kominami; Jillian W. Gregg; Enrique P. Sánchez-Cañete; James W. Raich; Greg Winston; Juying Wu; Ulli Seibt; Marguerite Mauritz; Zhuo Pang; Hamidreza Norouzi; Peter S. Curtis; Ankur R. Desai; Rodrigo Vargas; Bruce Osborne; Jinsong Wang; Scott T. Miller; Avni Malhotra; Asko Noormets; Whendee L. Silver; Mark G. Tjoelker; Tana E. Wood; T. A. Black; Michael Gavazzi; Haiming Kan; Matthias Peichl; Tarek S. El-Madany; Nadine K. Ruehr; Steve McNulty; H. Hughes; Jiye Zeng; Daphne Szutu; Richard P. Phillips; Claire L. Phillips; Wu Sun; Rachhpal S. Jassal; Patrick M. Crill; Amir AghaKouchak; Quan Zhang; Matthew Saunders; D. S. Christianson; Masahiro Takagi; Kathleen Savage; Jinshi Jian; Chelcy Ford Miniat; John E. Drake; Guofang Miao; Samaneh Ashraf; Naishen Liang; Tianshan Zha; Michael L. Goulden; Marion Schrumpf; Takashi Hirano; Debjani Sihi; Juan J. Armesto; David A. Lipson; M. Altaf Arain; Dennis D. Baldocchi; Hassan Anjileli;doi: 10.1111/gcb.15353 , 10.60692/ejg8a-yd340 , 10.5445/ir/1000125998 , 10.3929/ethz-b-000446726 , 10.60692/wvgem-qyh85
pmid: 33026137
pmc: PMC7756728
handle: 10197/12610 , 1959.7/uws:57686
doi: 10.1111/gcb.15353 , 10.60692/ejg8a-yd340 , 10.5445/ir/1000125998 , 10.3929/ethz-b-000446726 , 10.60692/wvgem-qyh85
pmid: 33026137
pmc: PMC7756728
handle: 10197/12610 , 1959.7/uws:57686
AbstractGlobally, soils store two to three times as much carbon as currently resides in the atmosphere, and it is critical to understand how soil greenhouse gas (GHG) emissions and uptake will respond to ongoing climate change. In particular, the soil‐to‐atmosphere CO2 flux, commonly though imprecisely termed soil respiration (RS), is one of the largest carbon fluxes in the Earth system. An increasing number of high‐frequency RS measurements (typically, from an automated system with hourly sampling) have been made over the last two decades; an increasing number of methane measurements are being made with such systems as well. Such high frequency data are an invaluable resource for understanding GHG fluxes, but lack a central database or repository. Here we describe the lightweight, open‐source COSORE (COntinuous SOil REspiration) database and software, that focuses on automated, continuous and long‐term GHG flux datasets, and is intended to serve as a community resource for earth sciences, climate change syntheses and model evaluation. Contributed datasets are mapped to a single, consistent standard, with metadata on contributors, geographic location, measurement conditions and ancillary data. The design emphasizes the importance of reproducibility, scientific transparency and open access to data. While being oriented towards continuously measured RS, the database design accommodates other soil‐atmosphere measurements (e.g. ecosystem respiration, chamber‐measured net ecosystem exchange, methane fluxes) as well as experimental treatments (heterotrophic only, etc.). We give brief examples of the types of analyses possible using this new community resource and describe its accompanying R software package.
CORE arrow_drop_down University College Dublin: Research Repository UCDArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10197/12610Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Universidad de Chile: Repositorio académicoArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Pontificia Universidad Católica de Chile: Repositorio UCArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15353&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 52 citations 52 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
download 11download downloads 11 Powered bymore_vert CORE arrow_drop_down University College Dublin: Research Repository UCDArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10197/12610Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Universidad de Chile: Repositorio académicoArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Pontificia Universidad Católica de Chile: Repositorio UCArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15353&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Wiley Funded by:NSERCNSERCChristine R. Rollinson; Rock Ouimet; Richard P. Phillips; Daniel Kneeshaw; Colin M. Beier; Shawn Fraver; François Girard; Louis Duchesne; Daniel Houle; Neil Pederson; Daniel L. Druckenbrod; Joshua M. Halman; Justin L. Hart; Henrik Hartmann; Loïc D'Orangeville; Loïc D'Orangeville; David C. LeBlanc; Daniel A. Bishop; Travis Logan; Stefano Manzoni; Margot W. Kaye; Dominique Arseneault; Christopher F. Hansen; Justin T. Maxwell; Shelly A. Rayback;doi: 10.1111/gcb.14096
pmid: 29460369
AbstractProjected changes in temperature and drought regime are likely to reduce carbon (C) storage in forests, thereby amplifying rates of climate change. While such reductions are often presumed to be greatest in semi‐arid forests that experience widespread tree mortality, the consequences of drought may also be important in temperate mesic forests of Eastern North America (ENA) if tree growth is significantly curtailed by drought. Investigations of the environmental conditions that determine drought sensitivity are critically needed to accurately predict ecosystem feedbacks to climate change. We matched site factors with the growth responses to drought of 10,753 trees across mesic forests ofENA, representing 24 species and 346 stands, to determine the broad‐scale drivers of drought sensitivity for the dominant trees inENA. Here we show that two factors—the timing of drought, and the atmospheric demand for water (i.e., local potential evapotranspiration;PET)—are stronger drivers of drought sensitivity than soil and stand characteristics. Drought‐induced reductions in tree growth were greatest when the droughts occurred during early‐season peaks in radial growth, especially for trees growing in the warmest, driest regions (i.e., highestPET). Further, mean species trait values (rooting depth and ψ50) were poor predictors of drought sensitivity, as intraspecific variation in sensitivity was equal to or greater than interspecific variation in 17 of 24 species. From a general circulation model ensemble, we find that future increases in early‐seasonPETmay exacerbate these effects, and potentially offset gains in C uptake and storage inENAowing to other global change factors.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14096&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 194 citations 194 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14096&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014 United Kingdom, Brazil, Germany, Australia, United States, Brazil, India, France, IndiaPublisher:Copernicus GmbH Funded by:EC | ROBIN, ANR | TULIP, EC | T-FORCES +1 projectsEC| ROBIN ,ANR| TULIP ,EC| T-FORCES ,NSF| Dimensions IRCN: Diversity and Forest Change: Characterizing functional, phylogenetic and genetic contributions to diversity gradients and dynamics in tree communitiesJess K. Zimmerman; Nur Supardi Md. Noor; Zhanqing Hao; Jonathan S. Schurman; Christopher J. Nytch; Juan Sebastian Barreto-Silva; Min Cao; R. Salim; James A. Lutz; Matteo Detto; Jérôme Chave; Richard P. Phillips; H. S. Dattaraja; Jyh-Min Chiang; George B. Chuyong; Alexandre Adalardo de Oliveira; Sarayudh Bunyavejchewin; Charles E. Zartman; Maxime Réjou-Méchain; Jill Thompson; Warren Y. Brockelman; Nantachai Pongpattananurak; Andrew J. Larson; Dairon Cárdenas; David Kenfack; Stuart J. Davies; Toby R. Marthews; Alvaro Duque; Bruno Hérault; Udomlux Suwanvecho; María Uriarte; Raman Sukumar; Stephen P. Hubbell; Stephen P. Hubbell; Sean C. Thomas; Zuoqiang Yuan; Anuttara Nathalang; Norman A. Bourg; Alberto Vicentini; S.S. Saatchi; Luxiang Lin; Helene C. Muller-Landau; R. H. S. Fernando; H. S. Suresh; Yadvinder Malhi; T. Le Toan; Sean M. McMahon; Keith Clay; Kyle E. Harms; Robert W. Howe; Christine Fletcher; Ryan W. McEwan; Shameema Esufali; Renato Valencia; I. A. U. N. Gunatilleke; Terese B. Hart; Amy Wolf; Duncan W. Thomas; Ruwan Punchi-Manage; Jean-Remy Makana; William J. McShea; Nathalie Butt; Nathalie Butt; Robert Muscarella; Daniel J. Johnson; Yiching Lin; Corneille E. N. Ewango; Sandra L. Yap; Richard Condit;Abstract. Advances in forest carbon mapping have the potential to greatly reduce uncertainties in the global carbon budget and to facilitate effective emissions mitigation strategies such as REDD+ (Reducing Emissions from Deforestation and Forest Degradation). Though broad-scale mapping is based primarily on remote sensing data, the accuracy of resulting forest carbon stock estimates depends critically on the quality of field measurements and calibration procedures. The mismatch in spatial scales between field inventory plots and larger pixels of current and planned remote sensing products for forest biomass mapping is of particular concern, as it has the potential to introduce errors, especially if forest biomass shows strong local spatial variation. Here, we used 30 large (8–50 ha) globally distributed permanent forest plots to quantify the spatial variability in aboveground biomass density (AGBD in Mg ha–1) at spatial scales ranging from 5 to 250 m (0.025–6.25 ha), and to evaluate the implications of this variability for calibrating remote sensing products using simulated remote sensing footprints. We found that local spatial variability in AGBD is large for standard plot sizes, averaging 46.3% for replicate 0.1 ha subplots within a single large plot, and 16.6% for 1 ha subplots. AGBD showed weak spatial autocorrelation at distances of 20–400 m, with autocorrelation higher in sites with higher topographic variability and statistically significant in half of the sites. We further show that when field calibration plots are smaller than the remote sensing pixels, the high local spatial variability in AGBD leads to a substantial "dilution" bias in calibration parameters, a bias that cannot be removed with standard statistical methods. Our results suggest that topography should be explicitly accounted for in future sampling strategies and that much care must be taken in designing calibration schemes if remote sensing of forest carbon is to achieve its promise.
Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2014License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Repositório do INPAArticle . 2014License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/bgd-11...Article . 2014 . Peer-reviewedLicense: CC BYData sources: CrossrefPublikationenserver der Georg-August-Universität GöttingenArticle . 2014 . Peer-reviewedLicense: CC BYThe University of Queensland: UQ eSpaceArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-11-6827-2014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 123 citations 123 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 2visibility views 2 download downloads 23 Powered bymore_vert Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2014License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Repositório do INPAArticle . 2014License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/bgd-11...Article . 2014 . Peer-reviewedLicense: CC BYData sources: CrossrefPublikationenserver der Georg-August-Universität GöttingenArticle . 2014 . Peer-reviewedLicense: CC BYThe University of Queensland: UQ eSpaceArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-11-6827-2014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 09 Jul 2020 Norway, Australia, Czech Republic, Switzerland, Australia, Australia, Denmark, Australia, Italy, Australia, Czech Republic, Germany, Netherlands, Germany, Australia, Germany, Sweden, Russian Federation, Australia, Australia, Italy, Italy, France, ItalyPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:UKRI | RootDetect: Remote Detect...UKRI| RootDetect: Remote Detection and Precision Management of Root HealthAndreas Ibrom; Bruno De Cinti; Jean Marc Ourcival; Vincenzo Magliulo; Onil Bergeron; M. Altaf Arain; Andrew Feitz; Zulia Mayari Sanchez-Mejia; Christof Ammann; Yann Nouvellon; Siyan Ma; Brian D. Amiro; Kim Pilegaard; Eddy Moors; Michele Tomassucci; Asko Noormets; Shawn Urbanski; Damiano Gianelle; Anatoly A. Gitelson; E. Canfora; You Wei Cheah; Ko van Huissteden; Shicheng Jiang; Hans Peter Schmid; Albin Hammerle; Brent E. Ewers; Virginie Moreaux; Housen Chu; Anne Griebel; Timothy J. Arkebauer; Peter Cale; Barbara Marcolla; Alan G. Barr; Alan G. Barr; Scott D. Miller; Lutz Merbold; Ivan Schroder; Joseph Verfaillie; Stefan K. Arndt; Scott R. Saleska; Nicolas Delpierre; Catharine van Ingen; Christine Moureaux; Annalea Lohila; Annalea Lohila; Gabriela Posse; Bernard Heinesch; Pierpaolo Duce; Raimundo Cosme de Oliveira; Kenneth J. Davis; Markus Hehn; Torben R. Christensen; Tilden P. Meyers; Werner L. Kutsch; Lindsay B. Hutley; Üllar Rannik; W.W.P. Jans; Riccardo Valentini; Myroslava Khomik; Myroslava Khomik; Pierre Cellier; Ayumi Kotani; Xiaoqin Dai; Marta Galvagno; Frans-Jan W. Parmentier; Frans-Jan W. Parmentier; Eric Dufrêne; Marius Schmidt; Birger Ulf Hansen; Alessio Collalti; Alessio Collalti; Ivan Shironya; Christian Brümmer; Russell L. Scott; Serge Rambal; Jonas Ardö; Natalia Restrepo-Coupe; Donatella Zona; Elizabeth A. Walter-Shea; Russell K. Monson; Silvano Fares; Sean P. Burns; Sean P. Burns; Mauro Cavagna; Guoyi Zhou; Suzanne M. Prober; Juha Pekka Tuovinen; Georgia R. Koerber; Yuelin Li; Alexander Knohl; Mikhail Mastepanov; Mikhail Mastepanov; Yanhong Tang; Johan Neirynck; Matthew Northwood; Pauline Buysse; Thomas Grünwald; Sabina Dore; N. Pirk; N. Pirk; Hiroki Ikawa; Craig Macfarlane; Jean-Marc Limousin; Carlos Marcelo Di Bella; Leiming Zhang; Juha Hatakka; Margaret S. Torn; Mika Aurela; Bert Gielen; Jiquan Chen; Regine Maier; Karl Schneider; Christian Wille; Nina Buchmann; Daniel Berveiller; Peter D. Blanken; Wayne S. Meyer; Dennis D. Baldocchi; Benjamin Loubet; Giovanni Manca; Hatim Abdalla M. ElKhidir; James Cleverly; Harry McCaughey; Agnès de Grandcourt; Matthias Peichl; Adam J. Liska; Jonathan E. Thom; Christian Bernhofer; Jean Marc Bonnefond; Alexander Graf; Roser Matamala; M. Goeckede; Marian Pavelka; Hank A. Margolis; Eugénie Paul-Limoges; Andrew S. Kowalski; Taro Nakai; Taro Nakai; Marcelo D. Nosetto; Tomomichi Kato; Ray Leuning; Beniamino Gioli; Marc Aubinet; Tuomas Laurila; Andrej Varlagin; Ignacio Goded; David R. Bowling; Nigel J. Tapper; Ana López-Ballesteros; Denis Loustau; Iris Feigenwinter; Uta Moderow; Edoardo Cremonese; Gianluca Filippa; Domenico Vitale; Abdelrahman Elbashandy; Gilberto Pastorello; Ettore D'Andrea; Gil Bohrer; Thomas L. Powell; Serena Marras; Daniela Famulari; Christopher M. Gough; Enrique P. Sánchez-Cañete; Satoru Takanashi; Michael J. Liddell; Jason Brodeur; Marc Fischer; Zoran Nesic; William J. Massman; Janina Klatt; Samuli Launiainen; Anne De Ligne; Leonardo Montagnani; Sebastian Wolf; Rainer Steinbrecher; Yingnian Li; Donatella Spano; A. Ribeca; Rosvel Bracho; Walter C. Oechel; B.R. Reverter; Jiří Dušek; Sebastian Westermann; Rachhpal S. Jassal; Derek Eamus; Claudia Consalvo; Claudia Consalvo; Marty Humphrey; Timo Vesala; Cristina Poindexter; Jeffrey P. Walker; Humberto Ribeiro da Rocha; Paul V. Bolstad; Elise Pendall; Diego Polidori; Peter S. Curtis; Chad Hanson; Francisco Domingo; Jason Beringer;pmc: PMC7347557
AbstractThe FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.
CORE arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-03778635Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/10568/108878Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-03778635Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.science/hal-03778635Data sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2020License: CC BYFull-Text: http://urn.nb.no/URN:NBN:no-84551Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2020Full-Text: http://hdl.handle.net/10449/64207Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/11343/244534Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2020Full-Text: https://ro.ecu.edu.au/ecuworkspost2013/9096Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/2440/129213Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2020Full-Text: https://doi.org/10.1038/s41597-020-0534-3Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff PublicationsWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsUniversity of Western Sydney (UWS): Research DirectArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-020-0534-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 791 citations 791 popularity Top 0.01% influence Top 1% impulse Top 0.01% Powered by BIP!
visibility 23visibility views 23 download downloads 33 Powered bymore_vert CORE arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-03778635Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/10568/108878Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-03778635Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.science/hal-03778635Data sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2020License: CC BYFull-Text: http://urn.nb.no/URN:NBN:no-84551Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2020Full-Text: http://hdl.handle.net/10449/64207Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/11343/244534Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2020Full-Text: https://ro.ecu.edu.au/ecuworkspost2013/9096Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/2440/129213Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2020Full-Text: https://doi.org/10.1038/s41597-020-0534-3Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff PublicationsWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsUniversity of Western Sydney (UWS): Research DirectArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-020-0534-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Wiley Funded by:EC | FIBER, EC | IMBALANCE-PEC| FIBER ,EC| IMBALANCE-PPeter B. Reich; Peter B. Reich; Benjamin D. Stocker; César Terrer; Richard P. Phillips; Sara Vicca; I. Colin Prentice; Adrien C. Finzi; Bruce A. Hungate;Contents Summary 507 I. Introduction 507 II. The return on investment approach 508 III. CO2 response spectrum 510 IV. Discussion 516 Acknowledgements 518 References 518 SummaryLand ecosystems sequester on average about a quarter of anthropogenic CO2 emissions. It has been proposed that nitrogen (N) availability will exert an increasingly limiting effect on plants’ ability to store additional carbon (C) under rising CO2, but these mechanisms are not well understood. Here, we review findings from elevated CO2 experiments using a plant economics framework, highlighting how ecosystem responses to elevated CO2 may depend on the costs and benefits of plant interactions with mycorrhizal fungi and symbiotic N‐fixing microbes. We found that N‐acquisition efficiency is positively correlated with leaf‐level photosynthetic capacity and plant growth, and negatively with soil C storage. Plants that associate with ectomycorrhizal fungi and N‐fixers may acquire N at a lower cost than plants associated with arbuscular mycorrhizal fungi. However, the additional growth in ectomycorrhizal plants is partly offset by decreases in soil C pools via priming. Collectively, our results indicate that predictive models aimed at quantifying C cycle feedbacks to global change may be improved by treating N as a resource that can be acquired by plants in exchange for energy, with different costs depending on plant interactions with microbial symbionts.
New Phytologist arrow_drop_down New PhytologistArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.14872&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 150 citations 150 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 51visibility views 51 download downloads 166 Powered bymore_vert New Phytologist arrow_drop_down New PhytologistArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.14872&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Wiley Funded by:NSF | Collaborative Research: M..., NSERCNSF| Collaborative Research: MRA: Elucidating Plant and Mycorrhizal Fungal Relationships and Consequences across Space and Time ,NSERCT. J. Muratore; M. A. Knorr; M. J. Simpson; R. B. Stephens; R. P. Phillips; S. D. Frey;doi: 10.1111/gcb.17530
pmid: 39435521
ABSTRACTRoots contribute a large fraction of CO2 efflux from soils, yet the extent to which global change factors affect root‐derived fluxes is poorly understood. We investigated how red maple (Acer rubrum) and red oak (Quercus rubra) root biomass and respiration respond to long‐term (15 years) soil warming, nitrogen addition, or their combination in a temperate forest. We found that ecosystem root respiration was decreased by 40% under both single‐factor treatments (nitrogen addition or warming) but not under their combination (heated × nitrogen). This response was driven by the reduction of mass‐specific root respiration under warming and a reduction in maple root biomass in both single‐factor treatments. Mass‐specific root respiration rates for both species acclimated to soil warming, resulting in a 43% reduction, but were not affected by N addition or the combined heated × N treatment. Notably, the addition of nitrogen to warmed soils alleviated thermal acclimation and returned mass‐specific respiration rates to control levels. Oak roots contributed disproportionately to ecosystem root respiration despite the decrease in respiration rates as their biomass was maintained or enhanced under warming and nitrogen addition. In contrast, maple root respiration rates were consistently higher than oak, and this difference became critical in the heated × nitrogen treatment, where maple root biomass increased, contributing significantly more CO2 relative to single‐factor treatments. Our findings highlight the importance of accounting for the root component of respiration when assessing soil carbon loss in response to global change and demonstrate that combining warming and N addition produces effects that cannot be predicted by studying these factors in isolation.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17530&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17530&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Springer Science and Business Media LLC Yves Bergeron; Yves Bergeron; Louis Duchesne; Daniel Houle; Richard P. Phillips; Daniel Kneeshaw; Loïc D'Orangeville; Loïc D'Orangeville;AbstractPredicted increases in temperature and aridity across the boreal forest region have the potential to alter timber supply and carbon sequestration. Given the widely-observed variation in species sensitivity to climate, there is an urgent need to develop species-specific predictive models that can account for local conditions. Here, we matched the growth of 270,000 trees across a 761,100 km2 region with detailed site-level data to quantify the growth responses of the seven most common boreal tree species in Eastern Canada to changes in climate. Accounting for spatially-explicit species-specific responses, we find that while 2 °C of warming may increase overall forest productivity by 13 ± 3% (mean ± SE) in the absence of disturbance, additional warming could reverse this trend and lead to substantial declines exacerbated by reductions in water availability. Our results confirm the transitory nature of warming-induced growth benefits in the boreal forest and highlight the vulnerability of the ecosystem to excess warming and drying.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-018-05705-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 174 citations 174 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-018-05705-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Proceedings of the National Academy of Sciences Jiawen Hou; M. Luke McCormack; Peter B. Reich; Tao Sun; Richard P. Phillips; Hans Lambers; Han Y. H. Chen; Yiyang Ding; Louise H. Comas; Oscar J. Valverde-Barrantes; Emily F. Solly; Gregoire T. Freschet;Fine root lifespan is a critical trait associated with contrasting root strategies of resource acquisition and protection. Yet, its position within the multidimensional “root economics space” synthesizing global root economics strategies is largely uncertain, and it is rarely represented in frameworks integrating plant trait variations. Here, we compiled the most comprehensive dataset of absorptive median root lifespan (MRL) data including 98 observations from 79 woody species using (mini-)rhizotrons across 40 sites and linked MRL to other plant traits to address questions of the regulators of MRL at large spatial scales. We demonstrate that MRL not only decreases with plant investment in root nitrogen (associated with more metabolically active tissues) but also increases with construction of larger diameter roots which is often associated with greater plant reliance on mycorrhizal symbionts. Although theories linking organ structure and function suggest that root traits should play a role in modulating MRL, we found no correlation between root traits associated with structural defense (root tissue density and specific root length) and MRL. Moreover, fine root and leaf lifespan were globally unrelated, except among evergreen species, suggesting contrasting evolutionary selection between leaves and roots facing contrasting environmental influences above vs. belowground. At large geographic scales, MRL was typically longer at sites with lower mean annual temperature and higher mean annual precipitation. Overall, this synthesis uncovered several key ecophysiological covariates and environmental drivers of MRL, highlighting broad avenues for accurate parametrization of global biogeochemical models and the understanding of ecosystem response to global climate change.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2320623121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2320623121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United Kingdom, Singapore, Brazil, BrazilPublisher:Wiley Funded by:NSF | Dimensions IRCN: Diversit..., NSF | Integrating functional, p...NSF| Dimensions IRCN: Diversity and Forest Change: Characterizing functional, phylogenetic and genetic contributions to diversity gradients and dynamics in tree communities ,NSF| Integrating functional, phylogenetic and genetic components of diversity for an improved understanding of forest structure, dynamics, and changeAuthors: Geoffrey G. Parker; Kristina J. Anderson-Teixeira; Michael D. Morecroft; Perry S. Ong; +95 AuthorsGeoffrey G. Parker; Kristina J. Anderson-Teixeira; Michael D. Morecroft; Perry S. Ong; I-Fang Sun; George B. Chuyong; Sarayudh Bunyavejchewin; Keith Clay; Takuo Yamakura; George D. Weiblen; Tucker J. Furniss; Ana Andrade; Vojtech Novotny; James A. Freund; Christine Fletcher; María Uriarte; Kuo-Jung Chao; Richard P. Phillips; Wei-Chun Chao; Alfonso Alonso; Mark E. Swanson; Norman A. Bourg; Norman A. Bourg; Gunter A. Fischer; Jean-Remy Makana; Jonathan Myers; Rajit Patankar; David A. Orwig; Jennifer L. Baltzer; Stephen P. Hubbell; Paul M. Musili; Xiangcheng Mi; Sean M. McMahon; Ke Cao; Terese B. Hart; Lawren Sack; Sandra L. Yap; David Kenfack; Yadvinder Malhi; Sara J. Germain; Jill Thompson; David Janík; Andy Hector; Min Cao; James A. Lutz; Sylvester Tan; Kendall M. L. Becker; Erika M. Blomdahl; C. Alina Cansler; Billy C.H. Hau; Jyh-Min Chiang; Sheng-Hsin Su; Guo-Zhang Michael Song; Fangliang He; H. S. Dattaraja; Raman Sukumar; Duncan W. Thomas; Hebbalalu S. Suresh; Dairon Cárdenas; Stuart J. Davies; Gregory S. Gilbert; Alvaro Duque; Chengjin Chu; Alberto Vicentini; Yide Li; Kamil Král; William J. McShea; Chang-Fu Hsieh; Yiching Lin; Corneille E. N. Ewango; Daniel J. Johnson; Andrew J. Larson; Tomáš Vrška; Susan Cordell; Renato Valencia; Xugao Wang; Lisa Korte; Zhanqing Hao; Abdul Rahman Kassim; Yue-Hua Hu; Shu-Hui Wu; Richard Condit; Jess K. Zimmerman; Alexandre Adalardo de Oliveira; Faith Inman-Narahari; Glen Reynolds; Amy Wolf; Christian P. Giardina; David F. R. P. Burslem; Robert W. Howe; Shawn K. Y. Lum; Shirong Liu; David Allen; Han Xu; Keping Ma; Rebecca Ostertag; Li-Wan Chang; Hervé Memiaghe; Akira Itoh;doi: 10.1111/geb.12747
handle: 10356/140605
AbstractAimTo examine the contribution of large‐diameter trees to biomass, stand structure, and species richness across forest biomes.LocationGlobal.Time periodEarly 21st century.Major taxa studiedWoody plants.MethodsWe examined the contribution of large trees to forest density, richness and biomass using a global network of 48 large (from 2 to 60 ha) forest plots representing 5,601,473 stems across 9,298 species and 210 plant families. This contribution was assessed using three metrics: the largest 1% of trees ≥ 1 cm diameter at breast height (DBH), all trees ≥ 60 cm DBH, and those rank‐ordered largest trees that cumulatively comprise 50% of forest biomass.ResultsAveraged across these 48 forest plots, the largest 1% of trees ≥ 1 cm DBH comprised 50% of aboveground live biomass, with hectare‐scale standard deviation of 26%. Trees ≥ 60 cm DBH comprised 41% of aboveground live tree biomass. The size of the largest trees correlated with total forest biomass (r2 = .62,p < .001). Large‐diameter trees in high biomass forests represented far fewer species relative to overall forest richness (r2 = .45,p < .001). Forests with more diverse large‐diameter tree communities were comprised of smaller trees (r2 = .33,p < .001). Lower large‐diameter richness was associated with large‐diameter trees being individuals of more common species (r2 = .17,p = .002). The concentration of biomass in the largest 1% of trees declined with increasing absolute latitude (r2 = .46,p < .001), as did forest density (r2 = .31,p < .001). Forest structural complexity increased with increasing absolute latitude (r2 = .26,p < .001).Main conclusionsBecause large‐diameter trees constitute roughly half of the mature forest biomass worldwide, their dynamics and sensitivities to environmental change represent potentially large controls on global forest carbon cycling. We recommend managing forests for conservation of existing large‐diameter trees or those that can soon reach large diameters as a simple way to conserve and potentially enhance ecosystem services.
Global Ecology and B... arrow_drop_down Global Ecology and BiogeographyArticleLicense: publisher-specific, author manuscriptData sources: UnpayWallGlobal Ecology and BiogeographyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.12747&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 364 citations 364 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 8visibility views 8 download downloads 188 Powered bymore_vert Global Ecology and B... arrow_drop_down Global Ecology and BiogeographyArticleLicense: publisher-specific, author manuscriptData sources: UnpayWallGlobal Ecology and BiogeographyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.12747&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Brazil, Brazil, India, India, China (People's Republic of), China (People's Republic of), Australia, United KingdomPublisher:Wiley Authors: Alexandre Adalardo de Oliveira; Xihua Wang; Jonathan Myers; Geoffrey G. Parker; +116 AuthorsAlexandre Adalardo de Oliveira; Xihua Wang; Jonathan Myers; Geoffrey G. Parker; Norman A. Bourg; Jill Thompson; Margaret F. Kinnaird; Keith Clay; Xiaojun Du; Dairon Cárdenas; Vojtech Novotny; Jitendra Kumar; Christine Fletcher; Raman Sukumar; George B. Chuyong; Billy C.H. Hau; Patrick A. Jansen; Patrick A. Jansen; Nathalie Butt; Nathalie Butt; Sarayudh Bunyavejchewin; Han Xu; Stuart J. Davies; Stuart J. Davies; Keping Ma; Rebecca Ostertag; Xiaobao Deng; Yide Li; William W. Hargrove; George D. Weiblen; Gregory S. Gilbert; Gregory S. Gilbert; Christian P. Giardina; Rafizah Mat Serudin; Takashi Mizuno; Michael D. Morecroft; Gunter A. Fischer; Jean-Remy Makana; Stephen P. Hubbell; Stephen P. Hubbell; Faith Inman-Narahari; Moses N. Sainge; Yves Basset; Xiangcheng Mi; Daniel J. Johnson; Richard P. Phillips; Fangliang He; David F. R. P. Burslem; Mingxi Jiang; H. S. Suresh; Matteo Detto; Witchaphart Sungpalee; Yadvinder Malhi; Xugao Wang; Min Cao; Robert W. Howe; Sean M. McMahon; Sean M. McMahon; Shawn K. Y. Lum; David Kenfack; David Kenfack; James A. Lutz; Amy Wolf; Kamariah Abu Salim; Warren Y. Brockelman; Perry S. Ong; H. S. Dattaraja; Tomáš Vrška; David L. Erikson; Corneille E. N. Ewango; I-Fang Sun; Lisa Korte; S. Joseph Wright; Susan Cordell; Jan den Ouden; Lawren Sack; Andrew J. Larson; Sandra L. Yap; Benjamin L. Turner; Jess K. Zimmerman; Abdul Rahman Kassim; Amy C. Bennett; Sylvester Tan; Angelica M. Almeyda Zambrano; Angelica M. Almeyda Zambrano; Angelica M. Almeyda Zambrano; Shirong Liu; Staline Kibet; Helene C. Muller-Landau; María Uriarte; Renato Valencia; Nimal Gunatilleke; Alfonso Alonso; Savitri Gunatilleke; Marta I. Vallejo; Duncan W. Thomas; Kristina J. Anderson-Teixeira; Kristina J. Anderson-Teixeira; Zhanqing Hao; Robin B. Foster; Erika Gonzalez-Akre; Kriangsak Sri-ngernyuang; Eben N. Broadbent; Eben N. Broadbent; Eben N. Broadbent; Weiguo Sang; Hervé Memiaghe; Forrest M. Hoffman; Terese B. Hart; Alvaro Duque; Sean C. Thomas; Alberto Vicentini; Mamoru Kanzaki; Xiankun Li; David A. Orwig; Jennifer L. Baltzer; Toby R. Marthews; Damian M. Maddalena; Kamil Král; William J. McShea;AbstractGlobal change is impacting forests worldwide, threatening biodiversity and ecosystem services including climate regulation. Understanding how forests respond is critical to forest conservation and climate protection. This review describes an international network of 59 long‐term forest dynamics research sites (CTFS‐ForestGEO) useful for characterizing forest responses to global change. Within very large plots (median size 25 ha), all stems ≥1 cm diameter are identified to species, mapped, and regularly recensused according to standardized protocols. CTFS‐ForestGEO spans 25°S–61°N latitude, is generally representative of the range of bioclimatic, edaphic, and topographic conditions experienced by forests worldwide, and is the only forest monitoring network that applies a standardized protocol to each of the world's major forest biomes. Supplementary standardized measurements at subsets of the sites provide additional information on plants, animals, and ecosystem and environmental variables. CTFS‐ForestGEO sites are experiencing multifaceted anthropogenic global change pressures including warming (average 0.61 °C), changes in precipitation (up to ±30% change), atmospheric deposition of nitrogen and sulfur compounds (up to 3.8 g N m−2 yr−1 and 3.1 g S m−2 yr−1), and forest fragmentation in the surrounding landscape (up to 88% reduced tree cover within 5 km). The broad suite of measurements made at CTFS‐ForestGEO sites makes it possible to investigate the complex ways in which global change is impacting forest dynamics. Ongoing research across the CTFS‐ForestGEO network is yielding insights into how and why the forests are changing, and continued monitoring will provide vital contributions to understanding worldwide forest diversity and dynamics in an era of global change.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)University of Hong Kong: HKU Scholars HubArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12712&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 491 citations 491 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)University of Hong Kong: HKU Scholars HubArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12712&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Embargo end date: 01 Jan 2020 United States, Chile, Switzerland, Ireland, Germany, ChilePublisher:Wiley Publicly fundedFunded by:NSF | Collaborative Research: T..., ARC | Discovery Projects - Gran..., University College Dublin +8 projectsNSF| Collaborative Research: The Role of Iron Redox Dynamics in Carbon Losses from Tropical Forest Soils ,ARC| Discovery Projects - Grant ID: DP170102766 ,University College Dublin ,ARC| Woodland response to elevated CO2 in free air carbon dioxide enrichment: does phosphorus limit the sink for Carbon? ,SNSF| ICOS-CH Phase 2 ,NSF| Collaborative Research: ABI Development: The PEcAn Project: A Community Platform for Ecological Forecasting ,SNSF| Towards the rational design of molecular glue degraders ,SNSF| Functional diversity and cell-cell communication in biocontrol fluorescent Pseudomonas spp. associated with natural disease- suppressiveness of soils ,ARC| Discovery Projects - Grant ID: DP160102452 ,NSF| Collaborative Research: Effects of Species on Forest Carbon Balances in Lowland Costa Rica ,NSF| Collaborative Research: Tree Species Effects on Ecosystem Processes in Lowland Costa RicaMirco Migliavacca; Christoph S. Vogel; Thomas Wutzler; Russell L. Scott; Mioko Ataka; Jason P. Kaye; Järvi Järveoja; Kadmiel Maseyk; Ben Bond-Lamberty; K. C. Mathes; Joseph Verfaillie; Catriona A. Macdonald; Kentaro Takagi; Jennifer Goedhart Nietz; Eric A. Davidson; Susan E. Trumbore; Melanie A. Mayes; Elise Pendall; Carolyn Monika Görres; Christine S. O’Connell; Christine S. O’Connell; Masahito Ueyama; Cecilio Oyonarte; Mats Nilsson; Christopher M. Gough; Jorge F. Perez-Quezada; Mariah S. Carbone; Ruth K. Varner; Omar Gutiérrez del Arroyo; Junliang Zou; Alexandre A. Renchon; Nina Buchmann; Shih-Chieh Chang; Anya M. Hopple; Anya M. Hopple; Munemasa Teramoto; Stephanie C. Pennington; Jin-Sheng He; Yuji Kominami; Jillian W. Gregg; Enrique P. Sánchez-Cañete; James W. Raich; Greg Winston; Juying Wu; Ulli Seibt; Marguerite Mauritz; Zhuo Pang; Hamidreza Norouzi; Peter S. Curtis; Ankur R. Desai; Rodrigo Vargas; Bruce Osborne; Jinsong Wang; Scott T. Miller; Avni Malhotra; Asko Noormets; Whendee L. Silver; Mark G. Tjoelker; Tana E. Wood; T. A. Black; Michael Gavazzi; Haiming Kan; Matthias Peichl; Tarek S. El-Madany; Nadine K. Ruehr; Steve McNulty; H. Hughes; Jiye Zeng; Daphne Szutu; Richard P. Phillips; Claire L. Phillips; Wu Sun; Rachhpal S. Jassal; Patrick M. Crill; Amir AghaKouchak; Quan Zhang; Matthew Saunders; D. S. Christianson; Masahiro Takagi; Kathleen Savage; Jinshi Jian; Chelcy Ford Miniat; John E. Drake; Guofang Miao; Samaneh Ashraf; Naishen Liang; Tianshan Zha; Michael L. Goulden; Marion Schrumpf; Takashi Hirano; Debjani Sihi; Juan J. Armesto; David A. Lipson; M. Altaf Arain; Dennis D. Baldocchi; Hassan Anjileli;doi: 10.1111/gcb.15353 , 10.60692/ejg8a-yd340 , 10.5445/ir/1000125998 , 10.3929/ethz-b-000446726 , 10.60692/wvgem-qyh85
pmid: 33026137
pmc: PMC7756728
handle: 10197/12610 , 1959.7/uws:57686
doi: 10.1111/gcb.15353 , 10.60692/ejg8a-yd340 , 10.5445/ir/1000125998 , 10.3929/ethz-b-000446726 , 10.60692/wvgem-qyh85
pmid: 33026137
pmc: PMC7756728
handle: 10197/12610 , 1959.7/uws:57686
AbstractGlobally, soils store two to three times as much carbon as currently resides in the atmosphere, and it is critical to understand how soil greenhouse gas (GHG) emissions and uptake will respond to ongoing climate change. In particular, the soil‐to‐atmosphere CO2 flux, commonly though imprecisely termed soil respiration (RS), is one of the largest carbon fluxes in the Earth system. An increasing number of high‐frequency RS measurements (typically, from an automated system with hourly sampling) have been made over the last two decades; an increasing number of methane measurements are being made with such systems as well. Such high frequency data are an invaluable resource for understanding GHG fluxes, but lack a central database or repository. Here we describe the lightweight, open‐source COSORE (COntinuous SOil REspiration) database and software, that focuses on automated, continuous and long‐term GHG flux datasets, and is intended to serve as a community resource for earth sciences, climate change syntheses and model evaluation. Contributed datasets are mapped to a single, consistent standard, with metadata on contributors, geographic location, measurement conditions and ancillary data. The design emphasizes the importance of reproducibility, scientific transparency and open access to data. While being oriented towards continuously measured RS, the database design accommodates other soil‐atmosphere measurements (e.g. ecosystem respiration, chamber‐measured net ecosystem exchange, methane fluxes) as well as experimental treatments (heterotrophic only, etc.). We give brief examples of the types of analyses possible using this new community resource and describe its accompanying R software package.
CORE arrow_drop_down University College Dublin: Research Repository UCDArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10197/12610Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Universidad de Chile: Repositorio académicoArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Pontificia Universidad Católica de Chile: Repositorio UCArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15353&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 52 citations 52 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
download 11download downloads 11 Powered bymore_vert CORE arrow_drop_down University College Dublin: Research Repository UCDArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10197/12610Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Universidad de Chile: Repositorio académicoArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Pontificia Universidad Católica de Chile: Repositorio UCArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15353&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Wiley Funded by:NSERCNSERCChristine R. Rollinson; Rock Ouimet; Richard P. Phillips; Daniel Kneeshaw; Colin M. Beier; Shawn Fraver; François Girard; Louis Duchesne; Daniel Houle; Neil Pederson; Daniel L. Druckenbrod; Joshua M. Halman; Justin L. Hart; Henrik Hartmann; Loïc D'Orangeville; Loïc D'Orangeville; David C. LeBlanc; Daniel A. Bishop; Travis Logan; Stefano Manzoni; Margot W. Kaye; Dominique Arseneault; Christopher F. Hansen; Justin T. Maxwell; Shelly A. Rayback;doi: 10.1111/gcb.14096
pmid: 29460369
AbstractProjected changes in temperature and drought regime are likely to reduce carbon (C) storage in forests, thereby amplifying rates of climate change. While such reductions are often presumed to be greatest in semi‐arid forests that experience widespread tree mortality, the consequences of drought may also be important in temperate mesic forests of Eastern North America (ENA) if tree growth is significantly curtailed by drought. Investigations of the environmental conditions that determine drought sensitivity are critically needed to accurately predict ecosystem feedbacks to climate change. We matched site factors with the growth responses to drought of 10,753 trees across mesic forests ofENA, representing 24 species and 346 stands, to determine the broad‐scale drivers of drought sensitivity for the dominant trees inENA. Here we show that two factors—the timing of drought, and the atmospheric demand for water (i.e., local potential evapotranspiration;PET)—are stronger drivers of drought sensitivity than soil and stand characteristics. Drought‐induced reductions in tree growth were greatest when the droughts occurred during early‐season peaks in radial growth, especially for trees growing in the warmest, driest regions (i.e., highestPET). Further, mean species trait values (rooting depth and ψ50) were poor predictors of drought sensitivity, as intraspecific variation in sensitivity was equal to or greater than interspecific variation in 17 of 24 species. From a general circulation model ensemble, we find that future increases in early‐seasonPETmay exacerbate these effects, and potentially offset gains in C uptake and storage inENAowing to other global change factors.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14096&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 194 citations 194 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14096&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014 United Kingdom, Brazil, Germany, Australia, United States, Brazil, India, France, IndiaPublisher:Copernicus GmbH Funded by:EC | ROBIN, ANR | TULIP, EC | T-FORCES +1 projectsEC| ROBIN ,ANR| TULIP ,EC| T-FORCES ,NSF| Dimensions IRCN: Diversity and Forest Change: Characterizing functional, phylogenetic and genetic contributions to diversity gradients and dynamics in tree communitiesJess K. Zimmerman; Nur Supardi Md. Noor; Zhanqing Hao; Jonathan S. Schurman; Christopher J. Nytch; Juan Sebastian Barreto-Silva; Min Cao; R. Salim; James A. Lutz; Matteo Detto; Jérôme Chave; Richard P. Phillips; H. S. Dattaraja; Jyh-Min Chiang; George B. Chuyong; Alexandre Adalardo de Oliveira; Sarayudh Bunyavejchewin; Charles E. Zartman; Maxime Réjou-Méchain; Jill Thompson; Warren Y. Brockelman; Nantachai Pongpattananurak; Andrew J. Larson; Dairon Cárdenas; David Kenfack; Stuart J. Davies; Toby R. Marthews; Alvaro Duque; Bruno Hérault; Udomlux Suwanvecho; María Uriarte; Raman Sukumar; Stephen P. Hubbell; Stephen P. Hubbell; Sean C. Thomas; Zuoqiang Yuan; Anuttara Nathalang; Norman A. Bourg; Alberto Vicentini; S.S. Saatchi; Luxiang Lin; Helene C. Muller-Landau; R. H. S. Fernando; H. S. Suresh; Yadvinder Malhi; T. Le Toan; Sean M. McMahon; Keith Clay; Kyle E. Harms; Robert W. Howe; Christine Fletcher; Ryan W. McEwan; Shameema Esufali; Renato Valencia; I. A. U. N. Gunatilleke; Terese B. Hart; Amy Wolf; Duncan W. Thomas; Ruwan Punchi-Manage; Jean-Remy Makana; William J. McShea; Nathalie Butt; Nathalie Butt; Robert Muscarella; Daniel J. Johnson; Yiching Lin; Corneille E. N. Ewango; Sandra L. Yap; Richard Condit;Abstract. Advances in forest carbon mapping have the potential to greatly reduce uncertainties in the global carbon budget and to facilitate effective emissions mitigation strategies such as REDD+ (Reducing Emissions from Deforestation and Forest Degradation). Though broad-scale mapping is based primarily on remote sensing data, the accuracy of resulting forest carbon stock estimates depends critically on the quality of field measurements and calibration procedures. The mismatch in spatial scales between field inventory plots and larger pixels of current and planned remote sensing products for forest biomass mapping is of particular concern, as it has the potential to introduce errors, especially if forest biomass shows strong local spatial variation. Here, we used 30 large (8–50 ha) globally distributed permanent forest plots to quantify the spatial variability in aboveground biomass density (AGBD in Mg ha–1) at spatial scales ranging from 5 to 250 m (0.025–6.25 ha), and to evaluate the implications of this variability for calibrating remote sensing products using simulated remote sensing footprints. We found that local spatial variability in AGBD is large for standard plot sizes, averaging 46.3% for replicate 0.1 ha subplots within a single large plot, and 16.6% for 1 ha subplots. AGBD showed weak spatial autocorrelation at distances of 20–400 m, with autocorrelation higher in sites with higher topographic variability and statistically significant in half of the sites. We further show that when field calibration plots are smaller than the remote sensing pixels, the high local spatial variability in AGBD leads to a substantial "dilution" bias in calibration parameters, a bias that cannot be removed with standard statistical methods. Our results suggest that topography should be explicitly accounted for in future sampling strategies and that much care must be taken in designing calibration schemes if remote sensing of forest carbon is to achieve its promise.
Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2014License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Repositório do INPAArticle . 2014License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/bgd-11...Article . 2014 . Peer-reviewedLicense: CC BYData sources: CrossrefPublikationenserver der Georg-August-Universität GöttingenArticle . 2014 . Peer-reviewedLicense: CC BYThe University of Queensland: UQ eSpaceArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-11-6827-2014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 123 citations 123 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 2visibility views 2 download downloads 23 Powered bymore_vert Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2014License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Repositório do INPAArticle . 2014License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/bgd-11...Article . 2014 . Peer-reviewedLicense: CC BYData sources: CrossrefPublikationenserver der Georg-August-Universität GöttingenArticle . 2014 . Peer-reviewedLicense: CC BYThe University of Queensland: UQ eSpaceArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-11-6827-2014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 09 Jul 2020 Norway, Australia, Czech Republic, Switzerland, Australia, Australia, Denmark, Australia, Italy, Australia, Czech Republic, Germany, Netherlands, Germany, Australia, Germany, Sweden, Russian Federation, Australia, Australia, Italy, Italy, France, ItalyPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:UKRI | RootDetect: Remote Detect...UKRI| RootDetect: Remote Detection and Precision Management of Root HealthAndreas Ibrom; Bruno De Cinti; Jean Marc Ourcival; Vincenzo Magliulo; Onil Bergeron; M. Altaf Arain; Andrew Feitz; Zulia Mayari Sanchez-Mejia; Christof Ammann; Yann Nouvellon; Siyan Ma; Brian D. Amiro; Kim Pilegaard; Eddy Moors; Michele Tomassucci; Asko Noormets; Shawn Urbanski; Damiano Gianelle; Anatoly A. Gitelson; E. Canfora; You Wei Cheah; Ko van Huissteden; Shicheng Jiang; Hans Peter Schmid; Albin Hammerle; Brent E. Ewers; Virginie Moreaux; Housen Chu; Anne Griebel; Timothy J. Arkebauer; Peter Cale; Barbara Marcolla; Alan G. Barr; Alan G. Barr; Scott D. Miller; Lutz Merbold; Ivan Schroder; Joseph Verfaillie; Stefan K. Arndt; Scott R. Saleska; Nicolas Delpierre; Catharine van Ingen; Christine Moureaux; Annalea Lohila; Annalea Lohila; Gabriela Posse; Bernard Heinesch; Pierpaolo Duce; Raimundo Cosme de Oliveira; Kenneth J. Davis; Markus Hehn; Torben R. Christensen; Tilden P. Meyers; Werner L. Kutsch; Lindsay B. Hutley; Üllar Rannik; W.W.P. Jans; Riccardo Valentini; Myroslava Khomik; Myroslava Khomik; Pierre Cellier; Ayumi Kotani; Xiaoqin Dai; Marta Galvagno; Frans-Jan W. Parmentier; Frans-Jan W. Parmentier; Eric Dufrêne; Marius Schmidt; Birger Ulf Hansen; Alessio Collalti; Alessio Collalti; Ivan Shironya; Christian Brümmer; Russell L. Scott; Serge Rambal; Jonas Ardö; Natalia Restrepo-Coupe; Donatella Zona; Elizabeth A. Walter-Shea; Russell K. Monson; Silvano Fares; Sean P. Burns; Sean P. Burns; Mauro Cavagna; Guoyi Zhou; Suzanne M. Prober; Juha Pekka Tuovinen; Georgia R. Koerber; Yuelin Li; Alexander Knohl; Mikhail Mastepanov; Mikhail Mastepanov; Yanhong Tang; Johan Neirynck; Matthew Northwood; Pauline Buysse; Thomas Grünwald; Sabina Dore; N. Pirk; N. Pirk; Hiroki Ikawa; Craig Macfarlane; Jean-Marc Limousin; Carlos Marcelo Di Bella; Leiming Zhang; Juha Hatakka; Margaret S. Torn; Mika Aurela; Bert Gielen; Jiquan Chen; Regine Maier; Karl Schneider; Christian Wille; Nina Buchmann; Daniel Berveiller; Peter D. Blanken; Wayne S. Meyer; Dennis D. Baldocchi; Benjamin Loubet; Giovanni Manca; Hatim Abdalla M. ElKhidir; James Cleverly; Harry McCaughey; Agnès de Grandcourt; Matthias Peichl; Adam J. Liska; Jonathan E. Thom; Christian Bernhofer; Jean Marc Bonnefond; Alexander Graf; Roser Matamala; M. Goeckede; Marian Pavelka; Hank A. Margolis; Eugénie Paul-Limoges; Andrew S. Kowalski; Taro Nakai; Taro Nakai; Marcelo D. Nosetto; Tomomichi Kato; Ray Leuning; Beniamino Gioli; Marc Aubinet; Tuomas Laurila; Andrej Varlagin; Ignacio Goded; David R. Bowling; Nigel J. Tapper; Ana López-Ballesteros; Denis Loustau; Iris Feigenwinter; Uta Moderow; Edoardo Cremonese; Gianluca Filippa; Domenico Vitale; Abdelrahman Elbashandy; Gilberto Pastorello; Ettore D'Andrea; Gil Bohrer; Thomas L. Powell; Serena Marras; Daniela Famulari; Christopher M. Gough; Enrique P. Sánchez-Cañete; Satoru Takanashi; Michael J. Liddell; Jason Brodeur; Marc Fischer; Zoran Nesic; William J. Massman; Janina Klatt; Samuli Launiainen; Anne De Ligne; Leonardo Montagnani; Sebastian Wolf; Rainer Steinbrecher; Yingnian Li; Donatella Spano; A. Ribeca; Rosvel Bracho; Walter C. Oechel; B.R. Reverter; Jiří Dušek; Sebastian Westermann; Rachhpal S. Jassal; Derek Eamus; Claudia Consalvo; Claudia Consalvo; Marty Humphrey; Timo Vesala; Cristina Poindexter; Jeffrey P. Walker; Humberto Ribeiro da Rocha; Paul V. Bolstad; Elise Pendall; Diego Polidori; Peter S. Curtis; Chad Hanson; Francisco Domingo; Jason Beringer;pmc: PMC7347557
AbstractThe FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.
CORE arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-03778635Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/10568/108878Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-03778635Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.science/hal-03778635Data sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2020License: CC BYFull-Text: http://urn.nb.no/URN:NBN:no-84551Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2020Full-Text: http://hdl.handle.net/10449/64207Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/11343/244534Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2020Full-Text: https://ro.ecu.edu.au/ecuworkspost2013/9096Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/2440/129213Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2020Full-Text: https://doi.org/10.1038/s41597-020-0534-3Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff PublicationsWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsUniversity of Western Sydney (UWS): Research DirectArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-020-0534-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 791 citations 791 popularity Top 0.01% influence Top 1% impulse Top 0.01% Powered by BIP!
visibility 23visibility views 23 download downloads 33 Powered bymore_vert CORE arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-03778635Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/10568/108878Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-03778635Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.science/hal-03778635Data sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2020License: CC BYFull-Text: http://urn.nb.no/URN:NBN:no-84551Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2020Full-Text: http://hdl.handle.net/10449/64207Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/11343/244534Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2020Full-Text: https://ro.ecu.edu.au/ecuworkspost2013/9096Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/2440/129213Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2020Full-Text: https://doi.org/10.1038/s41597-020-0534-3Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff PublicationsWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsUniversity of Western Sydney (UWS): Research DirectArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-020-0534-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Wiley Funded by:EC | FIBER, EC | IMBALANCE-PEC| FIBER ,EC| IMBALANCE-PPeter B. Reich; Peter B. Reich; Benjamin D. Stocker; César Terrer; Richard P. Phillips; Sara Vicca; I. Colin Prentice; Adrien C. Finzi; Bruce A. Hungate;Contents Summary 507 I. Introduction 507 II. The return on investment approach 508 III. CO2 response spectrum 510 IV. Discussion 516 Acknowledgements 518 References 518 SummaryLand ecosystems sequester on average about a quarter of anthropogenic CO2 emissions. It has been proposed that nitrogen (N) availability will exert an increasingly limiting effect on plants’ ability to store additional carbon (C) under rising CO2, but these mechanisms are not well understood. Here, we review findings from elevated CO2 experiments using a plant economics framework, highlighting how ecosystem responses to elevated CO2 may depend on the costs and benefits of plant interactions with mycorrhizal fungi and symbiotic N‐fixing microbes. We found that N‐acquisition efficiency is positively correlated with leaf‐level photosynthetic capacity and plant growth, and negatively with soil C storage. Plants that associate with ectomycorrhizal fungi and N‐fixers may acquire N at a lower cost than plants associated with arbuscular mycorrhizal fungi. However, the additional growth in ectomycorrhizal plants is partly offset by decreases in soil C pools via priming. Collectively, our results indicate that predictive models aimed at quantifying C cycle feedbacks to global change may be improved by treating N as a resource that can be acquired by plants in exchange for energy, with different costs depending on plant interactions with microbial symbionts.
New Phytologist arrow_drop_down New PhytologistArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.14872&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 150 citations 150 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 51visibility views 51 download downloads 166 Powered bymore_vert New Phytologist arrow_drop_down New PhytologistArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.14872&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Wiley Funded by:NSF | Collaborative Research: M..., NSERCNSF| Collaborative Research: MRA: Elucidating Plant and Mycorrhizal Fungal Relationships and Consequences across Space and Time ,NSERCT. J. Muratore; M. A. Knorr; M. J. Simpson; R. B. Stephens; R. P. Phillips; S. D. Frey;doi: 10.1111/gcb.17530
pmid: 39435521
ABSTRACTRoots contribute a large fraction of CO2 efflux from soils, yet the extent to which global change factors affect root‐derived fluxes is poorly understood. We investigated how red maple (Acer rubrum) and red oak (Quercus rubra) root biomass and respiration respond to long‐term (15 years) soil warming, nitrogen addition, or their combination in a temperate forest. We found that ecosystem root respiration was decreased by 40% under both single‐factor treatments (nitrogen addition or warming) but not under their combination (heated × nitrogen). This response was driven by the reduction of mass‐specific root respiration under warming and a reduction in maple root biomass in both single‐factor treatments. Mass‐specific root respiration rates for both species acclimated to soil warming, resulting in a 43% reduction, but were not affected by N addition or the combined heated × N treatment. Notably, the addition of nitrogen to warmed soils alleviated thermal acclimation and returned mass‐specific respiration rates to control levels. Oak roots contributed disproportionately to ecosystem root respiration despite the decrease in respiration rates as their biomass was maintained or enhanced under warming and nitrogen addition. In contrast, maple root respiration rates were consistently higher than oak, and this difference became critical in the heated × nitrogen treatment, where maple root biomass increased, contributing significantly more CO2 relative to single‐factor treatments. Our findings highlight the importance of accounting for the root component of respiration when assessing soil carbon loss in response to global change and demonstrate that combining warming and N addition produces effects that cannot be predicted by studying these factors in isolation.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17530&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17530&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Springer Science and Business Media LLC Yves Bergeron; Yves Bergeron; Louis Duchesne; Daniel Houle; Richard P. Phillips; Daniel Kneeshaw; Loïc D'Orangeville; Loïc D'Orangeville;AbstractPredicted increases in temperature and aridity across the boreal forest region have the potential to alter timber supply and carbon sequestration. Given the widely-observed variation in species sensitivity to climate, there is an urgent need to develop species-specific predictive models that can account for local conditions. Here, we matched the growth of 270,000 trees across a 761,100 km2 region with detailed site-level data to quantify the growth responses of the seven most common boreal tree species in Eastern Canada to changes in climate. Accounting for spatially-explicit species-specific responses, we find that while 2 °C of warming may increase overall forest productivity by 13 ± 3% (mean ± SE) in the absence of disturbance, additional warming could reverse this trend and lead to substantial declines exacerbated by reductions in water availability. Our results confirm the transitory nature of warming-induced growth benefits in the boreal forest and highlight the vulnerability of the ecosystem to excess warming and drying.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-018-05705-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 174 citations 174 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-018-05705-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Proceedings of the National Academy of Sciences Jiawen Hou; M. Luke McCormack; Peter B. Reich; Tao Sun; Richard P. Phillips; Hans Lambers; Han Y. H. Chen; Yiyang Ding; Louise H. Comas; Oscar J. Valverde-Barrantes; Emily F. Solly; Gregoire T. Freschet;Fine root lifespan is a critical trait associated with contrasting root strategies of resource acquisition and protection. Yet, its position within the multidimensional “root economics space” synthesizing global root economics strategies is largely uncertain, and it is rarely represented in frameworks integrating plant trait variations. Here, we compiled the most comprehensive dataset of absorptive median root lifespan (MRL) data including 98 observations from 79 woody species using (mini-)rhizotrons across 40 sites and linked MRL to other plant traits to address questions of the regulators of MRL at large spatial scales. We demonstrate that MRL not only decreases with plant investment in root nitrogen (associated with more metabolically active tissues) but also increases with construction of larger diameter roots which is often associated with greater plant reliance on mycorrhizal symbionts. Although theories linking organ structure and function suggest that root traits should play a role in modulating MRL, we found no correlation between root traits associated with structural defense (root tissue density and specific root length) and MRL. Moreover, fine root and leaf lifespan were globally unrelated, except among evergreen species, suggesting contrasting evolutionary selection between leaves and roots facing contrasting environmental influences above vs. belowground. At large geographic scales, MRL was typically longer at sites with lower mean annual temperature and higher mean annual precipitation. Overall, this synthesis uncovered several key ecophysiological covariates and environmental drivers of MRL, highlighting broad avenues for accurate parametrization of global biogeochemical models and the understanding of ecosystem response to global climate change.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2320623121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2320623121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United Kingdom, Singapore, Brazil, BrazilPublisher:Wiley Funded by:NSF | Dimensions IRCN: Diversit..., NSF | Integrating functional, p...NSF| Dimensions IRCN: Diversity and Forest Change: Characterizing functional, phylogenetic and genetic contributions to diversity gradients and dynamics in tree communities ,NSF| Integrating functional, phylogenetic and genetic components of diversity for an improved understanding of forest structure, dynamics, and changeAuthors: Geoffrey G. Parker; Kristina J. Anderson-Teixeira; Michael D. Morecroft; Perry S. Ong; +95 AuthorsGeoffrey G. Parker; Kristina J. Anderson-Teixeira; Michael D. Morecroft; Perry S. Ong; I-Fang Sun; George B. Chuyong; Sarayudh Bunyavejchewin; Keith Clay; Takuo Yamakura; George D. Weiblen; Tucker J. Furniss; Ana Andrade; Vojtech Novotny; James A. Freund; Christine Fletcher; María Uriarte; Kuo-Jung Chao; Richard P. Phillips; Wei-Chun Chao; Alfonso Alonso; Mark E. Swanson; Norman A. Bourg; Norman A. Bourg; Gunter A. Fischer; Jean-Remy Makana; Jonathan Myers; Rajit Patankar; David A. Orwig; Jennifer L. Baltzer; Stephen P. Hubbell; Paul M. Musili; Xiangcheng Mi; Sean M. McMahon; Ke Cao; Terese B. Hart; Lawren Sack; Sandra L. Yap; David Kenfack; Yadvinder Malhi; Sara J. Germain; Jill Thompson; David Janík; Andy Hector; Min Cao; James A. Lutz; Sylvester Tan; Kendall M. L. Becker; Erika M. Blomdahl; C. Alina Cansler; Billy C.H. Hau; Jyh-Min Chiang; Sheng-Hsin Su; Guo-Zhang Michael Song; Fangliang He; H. S. Dattaraja; Raman Sukumar; Duncan W. Thomas; Hebbalalu S. Suresh; Dairon Cárdenas; Stuart J. Davies; Gregory S. Gilbert; Alvaro Duque; Chengjin Chu; Alberto Vicentini; Yide Li; Kamil Král; William J. McShea; Chang-Fu Hsieh; Yiching Lin; Corneille E. N. Ewango; Daniel J. Johnson; Andrew J. Larson; Tomáš Vrška; Susan Cordell; Renato Valencia; Xugao Wang; Lisa Korte; Zhanqing Hao; Abdul Rahman Kassim; Yue-Hua Hu; Shu-Hui Wu; Richard Condit; Jess K. Zimmerman; Alexandre Adalardo de Oliveira; Faith Inman-Narahari; Glen Reynolds; Amy Wolf; Christian P. Giardina; David F. R. P. Burslem; Robert W. Howe; Shawn K. Y. Lum; Shirong Liu; David Allen; Han Xu; Keping Ma; Rebecca Ostertag; Li-Wan Chang; Hervé Memiaghe; Akira Itoh;doi: 10.1111/geb.12747
handle: 10356/140605
AbstractAimTo examine the contribution of large‐diameter trees to biomass, stand structure, and species richness across forest biomes.LocationGlobal.Time periodEarly 21st century.Major taxa studiedWoody plants.MethodsWe examined the contribution of large trees to forest density, richness and biomass using a global network of 48 large (from 2 to 60 ha) forest plots representing 5,601,473 stems across 9,298 species and 210 plant families. This contribution was assessed using three metrics: the largest 1% of trees ≥ 1 cm diameter at breast height (DBH), all trees ≥ 60 cm DBH, and those rank‐ordered largest trees that cumulatively comprise 50% of forest biomass.ResultsAveraged across these 48 forest plots, the largest 1% of trees ≥ 1 cm DBH comprised 50% of aboveground live biomass, with hectare‐scale standard deviation of 26%. Trees ≥ 60 cm DBH comprised 41% of aboveground live tree biomass. The size of the largest trees correlated with total forest biomass (r2 = .62,p < .001). Large‐diameter trees in high biomass forests represented far fewer species relative to overall forest richness (r2 = .45,p < .001). Forests with more diverse large‐diameter tree communities were comprised of smaller trees (r2 = .33,p < .001). Lower large‐diameter richness was associated with large‐diameter trees being individuals of more common species (r2 = .17,p = .002). The concentration of biomass in the largest 1% of trees declined with increasing absolute latitude (r2 = .46,p < .001), as did forest density (r2 = .31,p < .001). Forest structural complexity increased with increasing absolute latitude (r2 = .26,p < .001).Main conclusionsBecause large‐diameter trees constitute roughly half of the mature forest biomass worldwide, their dynamics and sensitivities to environmental change represent potentially large controls on global forest carbon cycling. We recommend managing forests for conservation of existing large‐diameter trees or those that can soon reach large diameters as a simple way to conserve and potentially enhance ecosystem services.
Global Ecology and B... arrow_drop_down Global Ecology and BiogeographyArticleLicense: publisher-specific, author manuscriptData sources: UnpayWallGlobal Ecology and BiogeographyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.12747&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 364 citations 364 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 8visibility views 8 download downloads 188 Powered bymore_vert Global Ecology and B... arrow_drop_down Global Ecology and BiogeographyArticleLicense: publisher-specific, author manuscriptData sources: UnpayWallGlobal Ecology and BiogeographyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.12747&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Brazil, Brazil, India, India, China (People's Republic of), China (People's Republic of), Australia, United KingdomPublisher:Wiley Authors: Alexandre Adalardo de Oliveira; Xihua Wang; Jonathan Myers; Geoffrey G. Parker; +116 AuthorsAlexandre Adalardo de Oliveira; Xihua Wang; Jonathan Myers; Geoffrey G. Parker; Norman A. Bourg; Jill Thompson; Margaret F. Kinnaird; Keith Clay; Xiaojun Du; Dairon Cárdenas; Vojtech Novotny; Jitendra Kumar; Christine Fletcher; Raman Sukumar; George B. Chuyong; Billy C.H. Hau; Patrick A. Jansen; Patrick A. Jansen; Nathalie Butt; Nathalie Butt; Sarayudh Bunyavejchewin; Han Xu; Stuart J. Davies; Stuart J. Davies; Keping Ma; Rebecca Ostertag; Xiaobao Deng; Yide Li; William W. Hargrove; George D. Weiblen; Gregory S. Gilbert; Gregory S. Gilbert; Christian P. Giardina; Rafizah Mat Serudin; Takashi Mizuno; Michael D. Morecroft; Gunter A. Fischer; Jean-Remy Makana; Stephen P. Hubbell; Stephen P. Hubbell; Faith Inman-Narahari; Moses N. Sainge; Yves Basset; Xiangcheng Mi; Daniel J. Johnson; Richard P. Phillips; Fangliang He; David F. R. P. Burslem; Mingxi Jiang; H. S. Suresh; Matteo Detto; Witchaphart Sungpalee; Yadvinder Malhi; Xugao Wang; Min Cao; Robert W. Howe; Sean M. McMahon; Sean M. McMahon; Shawn K. Y. Lum; David Kenfack; David Kenfack; James A. Lutz; Amy Wolf; Kamariah Abu Salim; Warren Y. Brockelman; Perry S. Ong; H. S. Dattaraja; Tomáš Vrška; David L. Erikson; Corneille E. N. Ewango; I-Fang Sun; Lisa Korte; S. Joseph Wright; Susan Cordell; Jan den Ouden; Lawren Sack; Andrew J. Larson; Sandra L. Yap; Benjamin L. Turner; Jess K. Zimmerman; Abdul Rahman Kassim; Amy C. Bennett; Sylvester Tan; Angelica M. Almeyda Zambrano; Angelica M. Almeyda Zambrano; Angelica M. Almeyda Zambrano; Shirong Liu; Staline Kibet; Helene C. Muller-Landau; María Uriarte; Renato Valencia; Nimal Gunatilleke; Alfonso Alonso; Savitri Gunatilleke; Marta I. Vallejo; Duncan W. Thomas; Kristina J. Anderson-Teixeira; Kristina J. Anderson-Teixeira; Zhanqing Hao; Robin B. Foster; Erika Gonzalez-Akre; Kriangsak Sri-ngernyuang; Eben N. Broadbent; Eben N. Broadbent; Eben N. Broadbent; Weiguo Sang; Hervé Memiaghe; Forrest M. Hoffman; Terese B. Hart; Alvaro Duque; Sean C. Thomas; Alberto Vicentini; Mamoru Kanzaki; Xiankun Li; David A. Orwig; Jennifer L. Baltzer; Toby R. Marthews; Damian M. Maddalena; Kamil Král; William J. McShea;AbstractGlobal change is impacting forests worldwide, threatening biodiversity and ecosystem services including climate regulation. Understanding how forests respond is critical to forest conservation and climate protection. This review describes an international network of 59 long‐term forest dynamics research sites (CTFS‐ForestGEO) useful for characterizing forest responses to global change. Within very large plots (median size 25 ha), all stems ≥1 cm diameter are identified to species, mapped, and regularly recensused according to standardized protocols. CTFS‐ForestGEO spans 25°S–61°N latitude, is generally representative of the range of bioclimatic, edaphic, and topographic conditions experienced by forests worldwide, and is the only forest monitoring network that applies a standardized protocol to each of the world's major forest biomes. Supplementary standardized measurements at subsets of the sites provide additional information on plants, animals, and ecosystem and environmental variables. CTFS‐ForestGEO sites are experiencing multifaceted anthropogenic global change pressures including warming (average 0.61 °C), changes in precipitation (up to ±30% change), atmospheric deposition of nitrogen and sulfur compounds (up to 3.8 g N m−2 yr−1 and 3.1 g S m−2 yr−1), and forest fragmentation in the surrounding landscape (up to 88% reduced tree cover within 5 km). The broad suite of measurements made at CTFS‐ForestGEO sites makes it possible to investigate the complex ways in which global change is impacting forest dynamics. Ongoing research across the CTFS‐ForestGEO network is yielding insights into how and why the forests are changing, and continued monitoring will provide vital contributions to understanding worldwide forest diversity and dynamics in an era of global change.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)University of Hong Kong: HKU Scholars HubArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12712&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 491 citations 491 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)University of Hong Kong: HKU Scholars HubArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12712&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu