- home
- Advanced Search
- Energy Research
- Open Access
- Restricted
- Open Source
- 7. Clean energy
- CA
- Energy Research
- Open Access
- Restricted
- Open Source
- 7. Clean energy
- CA
description Publicationkeyboard_double_arrow_right Article , Journal 2019 CanadaPublisher:Elsevier BV Authors:Hassan Z. Al Garni;
Hassan Z. Al Garni; David Wright;Hassan Z. Al Garni
Hassan Z. Al Garni in OpenAIREAnjali Awasthi;
Anjali Awasthi
Anjali Awasthi in OpenAIREAbstract This paper uses research-quality, ground measurements of irradiance and temperature that are accurate to ±2% to estimate the electric energy yield of fixed solar modules for utility-scale solar power plants at 18 sites in Saudi Arabia. The calculation is performed for a range of tilt and azimuth angles and the orientation that gives the optimum annual energy yield is determined. A detailed analysis is presented for Riyadh including the impact of non-optimal tilt and azimuth angles on annual energy yield. It is also found that energy yield in March and October are higher than in April and September, due to milder operating temperatures of the modules. A similar optimization of tilt and azimuth is performed each month separately. Adjusting the orientation each month increases energy yield by 4.01% compared to the annual optimum, but requires considerable labour cost. Further analysis shows that an increase in energy yield of 3.63% can be obtained by adjusting the orientation at five selected times during the year, thus significantly reducing the labour requirement. The optimal orientation and corresponding energy yield for all 18 sites is combined with a site suitability analysis taking into account climate, topography and proximity to roads, transmission lines and protected areas. Six sites are selected as having high suitability and high energy yield: Albaha, Arar, Hail, Riyadh, Tabuk and Taif. For these cities the optimal tilt is only slightly higher than the latitude, however the optimum azimuth is from 20° to 53° west of south due to an asymmetrical daily irradiance profile.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.10.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 89 citations 89 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.10.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors:Arthur J. Ragauskas;
Arthur J. Ragauskas; Chengrong Qin;Arthur J. Ragauskas
Arthur J. Ragauskas in OpenAIREAjoy Kanti Mondal;
+4 AuthorsAjoy Kanti Mondal
Ajoy Kanti Mondal in OpenAIREArthur J. Ragauskas;
Arthur J. Ragauskas; Chengrong Qin;Arthur J. Ragauskas
Arthur J. Ragauskas in OpenAIREAjoy Kanti Mondal;
Ajoy Kanti Mondal;Ajoy Kanti Mondal
Ajoy Kanti Mondal in OpenAIREFang Huang;
Fang Huang
Fang Huang in OpenAIREYonghao Ni;
Yonghao Ni;Yonghao Ni
Yonghao Ni in OpenAIREAbstract In the present study, Loblolly pine biomass residue was converted to bio-oil in a two-step process, consisting of 1) fast pyrolysis in the presence of zeolite ZSM-5 as a catalyst to produce pyrolysis oil, 2) hydrogenation of pyrolysis oil using formic acid as the hydrogen source in presence of Ru/activated carbon catalyst. Pyrolysis oils were analyzed by 13C, 31P and HSQC-NMR and the results revealed that the zeolite-induced catalytic fast pyrolysis process led to effective demethoxylation, producing more catechol and p-hydroxy-phenyl hydroxyl groups in the bio-oils, resulting in a decrease in the methoxyl group content by about 85 % and rich aromatic structures in the pyrolysis oils. The properties of pyrolysis oil with and without zeolite were in the bio-oil range. Hydrogenated pyrolysis oil showed that 79 % of the aromatic protons are eliminated and 87 % of protons are aliphatic in nature, with no oxygen attached to the α-carbon.
Industrial Crops and... arrow_drop_down Industrial Crops and ProductsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.indcrop.2020.112318&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Industrial Crops and... arrow_drop_down Industrial Crops and ProductsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.indcrop.2020.112318&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 France, France, France, United Kingdom, France, Netherlands, Russian Federation, France, France, France, France, France, FrancePublisher:Elsevier BV Publicly fundedFunded by:RSF | Large-scale digital soil ..., ARC | Dynamic soil landscape ca...RSF| Large-scale digital soil mapping based on remote sensing data ,ARC| Dynamic soil landscape carbon modellingAuthors:Minasny, Budiman;
Malone, Brendan P.;Minasny, Budiman
Minasny, Budiman in OpenAIREMcbratney, Alex B.;
Angers, Denis A.; +30 AuthorsMcbratney, Alex B.
Mcbratney, Alex B. in OpenAIREMinasny, Budiman;
Malone, Brendan P.;Minasny, Budiman
Minasny, Budiman in OpenAIREMcbratney, Alex B.;
Angers, Denis A.;Mcbratney, Alex B.
Mcbratney, Alex B. in OpenAIREArrouays, Dominique;
Chambers, Adam;Arrouays, Dominique
Arrouays, Dominique in OpenAIREChaplot, Vincent;
Chen, Zueng-Sang;Chaplot, Vincent
Chaplot, Vincent in OpenAIRECheng, Kun;
Cheng, Kun
Cheng, Kun in OpenAIREDas, Bhabani S.;
Das, Bhabani S.
Das, Bhabani S. in OpenAIREField, Damien J.;
Gimona, Alessandro;Field, Damien J.
Field, Damien J. in OpenAIREHedley, Carolyn B.;
Hong, Suk Young; Mandal, Biswapati;Hedley, Carolyn B.
Hedley, Carolyn B. in OpenAIREMarchant, Ben P.;
Marchant, Ben P.
Marchant, Ben P. in OpenAIREMartin, Manuel;
Mcconkey, Brian G.;Martin, Manuel
Martin, Manuel in OpenAIREMulder, Vera Leatitia;
Mulder, Vera Leatitia
Mulder, Vera Leatitia in OpenAIREO'Rourke, Sharon;
O'Rourke, Sharon
O'Rourke, Sharon in OpenAIRERicher-De-Forges, Anne C;
Odeh, Inakwu;Richer-De-Forges, Anne C
Richer-De-Forges, Anne C in OpenAIREPadarian, José;
Paustian, Keith; Pan, Genxing;Padarian, José
Padarian, José in OpenAIREPoggio, Laura;
Poggio, Laura
Poggio, Laura in OpenAIRESavin, Igor;
Stolbovoy, Vladimir;Savin, Igor
Savin, Igor in OpenAIREStockmann, Uta;
Stockmann, Uta
Stockmann, Uta in OpenAIRESulaeman, Yiyi;
Tsui, Chun-Chih;Sulaeman, Yiyi
Sulaeman, Yiyi in OpenAIREVågen, Tor-Gunnar;
Vågen, Tor-Gunnar
Vågen, Tor-Gunnar in OpenAIREvan Wesemael, Bas;
Winowiecki, Leigh;van Wesemael, Bas
van Wesemael, Bas in OpenAIREThe ‘4 per mille Soils for Food Security and Climate’ was launched at the COP21 with an aspiration to increase global soil organic matter stocks by 4 per 1000 (or 0.4 %) per year as a compensation for the global emissions of greenhouse gases by anthropogenic sources. This paper surveyed the soil organic carbon (SOC) stock estimates and sequestration potentials from 20 regions in the world (New Zealand, Chile, South Africa, Australia, Tanzania, Indonesia, Kenya, Nigeria, India, China Taiwan, South Korea, China Mainland, United States of America, France, Canada, Belgium, England & Wales, Ireland, Scotland, and Russia). We asked whether the 4 per mille initiative is feasible for the region. The outcomes highlight region specific efforts and scopes for soil carbon sequestration. Reported soil C sequestration rates globally show that under best management practices, 4 per mille or even higher sequestration rates can be accomplished. High C sequestration rates (up to 10 per mille) can be achieved for soils with low initial SOC stock (topsoil less than 30 t C ha− 1), and at the first twenty years after implementation of best management practices. In addition, areas which have reached equilibrium will not be able to further increase their sequestration. We found that most studies on SOC sequestration only consider topsoil (up to 0.3 m depth), as it is considered to be most affected by management techniques. The 4 per mille number was based on a blanket calculation of the whole global soil profile C stock, however the potential to increase SOC is mostly on managed agricultural lands. If we consider 4 per mille in the top 1m of global agricultural soils, SOC sequestration is between 2-3 Gt C year− 1, which effectively offset 20–35% of global anthropogenic greenhouse gas emissions. As a strategy for climate change mitigation, soil carbon sequestration buys time over the next ten to twenty years while other effective sequestration and low carbon technologies become viable. The challenge for cropping farmers is to find disruptive technologies that will further improve soil condition and deliver increased soil carbon. Progress in 4 per mille requires collaboration and communication between scientists, farmers, policy makers, and marketeers.
NERC Open Research A... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverWageningen Staff PublicationsArticle . 2017License: CC BY NC NDData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2017License: CC BY NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.geoderma.2017.01.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2K citations 1,540 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverWageningen Staff PublicationsArticle . 2017License: CC BY NC NDData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2017License: CC BY NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.geoderma.2017.01.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012Publisher:MDPI AG Authors:Temitope O. Olomola;
Temitope O. Olomola
Temitope O. Olomola in OpenAIREPeter A. Ajibade;
Peter A. Ajibade
Peter A. Ajibade in OpenAIREAdewale O. Adeloye;
Akinbulu I. Adebayo;Adewale O. Adeloye
Adewale O. Adeloye in OpenAIREIn our continued efforts in the synthesis of ruthenium(II) polypyridine complexes as potential dyes for use in varied applications, such as the dye-sensitized solar cells (DSSCs), this work particularly describes the synthesis, absorption spectrum, redox behavior and luminescence properties of a new homoleptic ruthenium(II) complex bearing a simple trans-2-methyl-2-butenoic acid functionality as the anchoring ligand on terpyridine moiety. The functionalized terpyridine ligand: 4’-(trans-2-methyl-2-butenoic acid)-terpyridyl (L1) was synthesized by aryl bromide substitution on terpyridine in a basic reaction condition under palladium carbide catalysis. In particular, the photophysical and redox properties of the complex formulated as: bis-4’-(trans-2-methyl-2-butenoic acid)-terpyridyl ruthenium(II) bis-hexafluorophosphate [Ru(L1)2(PF6)2] are significantly better compared to those of [Ru(tpy)2]2+ and compare well with those of the best emitters of Ru(II) polypyridine family containing tridentate ligands. Reasons for the improved photophysical and redox properties of the complex may be attributed partly to the presence of a substituted α,β-unsaturated carboxylic acid moiety leading to increase in the length of π-conjugation bond thereby enhancing the MLCT-MC (Metal-to-ligand-charge transfer-metal centred) energy gap, and to the reduced difference between the minima of the excited and ground states potential energy surfaces.
International Journa... arrow_drop_down International Journal of Molecular SciencesOther literature type . 2012License: CC BYFull-Text: http://www.mdpi.com/1422-0067/13/3/3511/pdfData sources: Multidisciplinary Digital Publishing InstituteInternational Journal of Molecular SciencesArticle . 2012 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ijms13033511&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Molecular SciencesOther literature type . 2012License: CC BYFull-Text: http://www.mdpi.com/1422-0067/13/3/3511/pdfData sources: Multidisciplinary Digital Publishing InstituteInternational Journal of Molecular SciencesArticle . 2012 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ijms13033511&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 CanadaPublisher:Wiley Authors:Qi Li;
Hejuan Liu;Zhengmeng Hou;
Zhengmeng Hou; +3 AuthorsZhengmeng Hou
Zhengmeng Hou in OpenAIREQi Li;
Hejuan Liu;Zhengmeng Hou;
Zhengmeng Hou; Patrick Were;Zhengmeng Hou
Zhengmeng Hou in OpenAIREYang Gou;
Yang Gou;Yang Gou
Yang Gou in OpenAIREdoi: 10.1155/2017/6126505
Carbon capture, utilization, and storage (CCUS) is a gas injection technology that enables the storage of CO2 underground. The aims are twofold, on one hand to reduce the emissions of CO2 into the atmosphere and on the other hand to increase oil/gas/heat recovery. Different types of CCUS technologies and related engineering projects have a long history of research and operation in the USA. However, in China they have a short development period ca. 10 years. Unlike CO2 capture and CO2-EOR technologies that are already operating on a commercial scale in China, research into other CCUS technologies is still in its infancy or at the pilot-scale. This paper first reviews the status and development of the different types of CCUS technologies and related engineering projects worldwide. Then it focuses on their developments in China in the last decade. The main research projects, international cooperation, and pilot-scale engineering projects in China are summarized and compared. Finally, the paper examines the challenges and prospects to be experienced through the industrialization of CCUS engineering projects in China. It can be concluded that the CCUS technologies have still large potential in China. It can only be unlocked by overcoming the technical and social challenges.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2017/6126505&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 79 citations 79 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2017/6126505&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1987 GermanyPublisher:Elsevier BV Authors: Kim, H.C.; Bishnoi, P.R.; Heidemann, R.A.;Rizvi, S.S.H.;
Rizvi, S.S.H.
Rizvi, S.S.H. in OpenAIREAbstract The kinetics of methane hydrate decomposition was studied using a semibatch stirred-tank reactor. The decomposition was accomplished by reducing the pressure on a hydrate slurry in water to a value below the three-phase equilibrium pressure at the reactor temperature. The data were obtained at temperatures from 274 to 283 K and pressures from 0.17 to 6.97 MPa. The stirring rates were high enough to eliminate mass-transfer effects. Analysis of the data indicated that the decomposition rate was proportional to the particle surface area and to the difference in the fugacity of methane at the equilibrium pressure and the decomposition pressure. The proportionality constant showed an Arrhenius temperature dependence. An estimate of the hydrate particle diameters in the experiments permitted the development of an intrinsic model for the kinetics of hydrate decomposition.
OceanRep arrow_drop_down OceanRepArticle . 1987 . Peer-reviewedFull-Text: http://oceanrep.geomar.de/54292/1/Kim.pdfData sources: OceanRepChemical Engineering ScienceArticle . 1987 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0009-2509(87)80169-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu868 citations 868 popularity Top 0.1% influence Top 0.1% impulse Top 1% Powered by BIP!
more_vert OceanRep arrow_drop_down OceanRepArticle . 1987 . Peer-reviewedFull-Text: http://oceanrep.geomar.de/54292/1/Kim.pdfData sources: OceanRepChemical Engineering ScienceArticle . 1987 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0009-2509(87)80169-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Other literature type , Journal 2020Embargo end date: 01 Jan 2019 France, Netherlands, South Africa, United Kingdom, Italy, Poland, Italy, United Kingdom, Italy, Netherlands, Turkey, Italy, Spain, Portugal, Italy, Belarus, Netherlands, Norway, United Kingdom, Italy, Sweden, Germany, Italy, Spain, Germany, Turkey, Italy, Belarus, Netherlands, Czech Republic, China (People's Republic of), Italy, Italy, Italy, Italy, Chile, Czech Republic, Germany, Netherlands, China (People's Republic of), Spain, South Africa, Turkey, Norway, Germany, United Kingdom, China (People's Republic of), Italy, Australia, Denmark, Turkey, Australia, Australia, Italy, Italy, United States, TurkeyPublisher:Springer Science and Business Media LLC Funded by:EC | PROBIST, GSRIEC| PROBIST ,GSRIAuthors:Aad, Georges;
Abbott, Brad; Abreu, Henso;Aad, Georges
Aad, Georges in OpenAIREAraujo Ferraz, Victor;
+196 AuthorsAraujo Ferraz, Victor
Araujo Ferraz, Victor in OpenAIREAad, Georges;
Abbott, Brad; Abreu, Henso;Aad, Georges
Aad, Georges in OpenAIREAraujo Ferraz, Victor;
Guth, Manuel; Gutierrez, Phillip;Araujo Ferraz, Victor
Araujo Ferraz, Victor in OpenAIREGutschow, Christian;
Guyot, Claude;Gutschow, Christian
Gutschow, Christian in OpenAIREGwenlan, Claire;
Gwenlan, Claire
Gwenlan, Claire in OpenAIREGwilliam, Carl;
Haas, Andy; Haber, Carl;Gwilliam, Carl
Gwilliam, Carl in OpenAIREHadavand, Haleh Khani;
Haddad, Nacim; Araujo Pereira, Rodrigo;Hadavand, Haleh Khani
Hadavand, Haleh Khani in OpenAIREHadef, Asma;
Hageboeck, Stephan; Haleem, Mahsana;Hadef, Asma
Hadef, Asma in OpenAIREHaley, Joseph;
Haley, Joseph
Haley, Joseph in OpenAIREHalladjian, Garabed;
Hallewell, Gregory David; Hamacher, Klaus;Halladjian, Garabed
Halladjian, Garabed in OpenAIREHamal, Petr;
Hamano, Kenji; Hamdaoui, Hassane; Arcangeletti, Chiara; Hamity, Guillermo Nicolas;Hamal, Petr
Hamal, Petr in OpenAIREHan, Kunlin;
Han, Liang; Han, Shuo; Han, Yi Fei;Han, Kunlin
Han, Kunlin in OpenAIREHanagaki, Kazunori;
Hance, Michael;Hanagaki, Kazunori
Hanagaki, Kazunori in OpenAIREHandl, David Michael;
Handl, David Michael
Handl, David Michael in OpenAIREHaney, Bijan;
Hankache, Robert; Arce, Ayana;Haney, Bijan
Haney, Bijan in OpenAIREHansen, Eva;
Hansen, Jorgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina;Hansen, Eva
Hansen, Eva in OpenAIREHansen, Peter Henrik;
Hanson, Emily Claire; Hara, Kazuhiko; Harenberg, Torsten; Harkusha, Siarhei; Harrison, Paul Fraser; Arduh, Francisco Anuar; Hartmann, Nikolai Marcel; Hasegawa, Yoji; Hasib, Ahmed;Hansen, Peter Henrik
Hansen, Peter Henrik in OpenAIREHassani, Samira;
Hassani, Samira
Hassani, Samira in OpenAIREHaug, Sigve;
Hauser, Reiner; Havener, Laura Brittany; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard;Haug, Sigve
Haug, Sigve in OpenAIREArguin, Jean-Francois;
Hayden, Daniel;Arguin, Jean-Francois
Arguin, Jean-Francois in OpenAIREHayes, Christopher;
Hayes, Robin Leigh;Hayes, Christopher
Hayes, Christopher in OpenAIREHays, Chris;
Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; He, Fudong;Hays, Chris
Hays, Chris in OpenAIREHeath, Matthew Peter;
Hedberg, Vincent;Heath, Matthew Peter
Heath, Matthew Peter in OpenAIREArgyropoulos, Spyridon;
Argyropoulos, Spyridon
Argyropoulos, Spyridon in OpenAIREHeelan, Louise;
Heer, Sebastian; Heidegger, Kim Katrin; Heidorn, William Dale; Heilman, Jesse;Heelan, Louise
Heelan, Louise in OpenAIREHeim, Sarah;
Heim, Timon Frank-thomas; Heinemann, Beate;Heim, Sarah
Heim, Sarah in OpenAIREHeinrich, Jochen Jens;
Heinrich, Jochen Jens
Heinrich, Jochen Jens in OpenAIREHeinrich, Lukas;
Heinrich, Lukas
Heinrich, Lukas in OpenAIREArling, Jan-Hendrik;
Heinz, Christian; Hejbal, Jiri; Helary, Louis;Arling, Jan-Hendrik
Arling, Jan-Hendrik in OpenAIREHeld, Alexander;
Hellesund, Simen; Helling, Cole Michael; Hellman, Sten; Helsens, Clement; Henderson, Robert; Heng, Yang; Armbruster, Aaron James; Henkelmann, Steffen; Henriques Correia, Ana Maria; Herbert, Geoffrey Henry;Held, Alexander
Held, Alexander in OpenAIREHerde, Hannah;
Herget, Verena; Hernandez Jimenez, Yesenia; Herr, Holger; Herrmann, Maximilian Georg; Herrmann, Tim;Herde, Hannah
Herde, Hannah in OpenAIREHerten, Gregor;
Armstrong, Alexander III; Hertenberger, Ralf; Hervas, Luis; Herwig, Theodor Christian; Hesketh, Gavin Grant; Hessey, Nigel; Higashida, Akihiro; Higashino, Satoshi; Higon-Rodriguez, Emilio; Hildebrand, Kevin;Herten, Gregor
Herten, Gregor in OpenAIREHill, Ewan;
Abulaiti, Yiming;Hill, Ewan
Hill, Ewan in OpenAIREArnaez, Olivier;
Hill, John; Hill, Kurt Keys; Hiller, Karl Heinz;Arnaez, Olivier
Arnaez, Olivier in OpenAIREHillier, Stephen;
Hillier, Stephen
Hillier, Stephen in OpenAIREHils, Maximilian;
Hinchliffe, Ian; Hinterkeuser, Florian; Hirose, Minoru;Hils, Maximilian
Hils, Maximilian in OpenAIREHirose, Shigeki;
Hirschbuehl, Dominic; Arnold, Hannah; Hiti, Bojan; Hladik, Ondrej; Hlaluku, Dingane Reward; Hoad, Xanthe; Hobbs, John;Hirose, Shigeki
Hirose, Shigeki in OpenAIREHod, Noam;
Hodgkinson, Mark; Hoecker, Andreas; Hoenig, Friedrich; Hohn, David; Arrubarrena Tame, Zulit Paola; Hohov, Dmytro;Hod, Noam
Hod, Noam in OpenAIREHolmes, Tova Ray;
Holzbock, Michael; Hommels, Bart;Holmes, Tova Ray
Holmes, Tova Ray in OpenAIREHonda, Shunsuke;
Hong, Tae Min; Honig, Jan Cedric; Honle, Andreas; Hooberman, Benjamin Henry;Honda, Shunsuke
Honda, Shunsuke in OpenAIREHopkins, Walter Howard;
Artamonov, Andrei; Horii, Yasuyuki;Hopkins, Walter Howard
Hopkins, Walter Howard in OpenAIREHorn, Philipp;
Horn, Philipp
Horn, Philipp in OpenAIREHoryn, Lesya Anna;
Hou, Suen; Hoummada, Abdeslam; Howarth, James;Horyn, Lesya Anna
Horyn, Lesya Anna in OpenAIREHoya, Joaquin;
Hrabovsky, Miroslav; Hrdinka, Julia; Hristova, Ivana;Hoya, Joaquin
Hoya, Joaquin in OpenAIREArtoni, Giacomo;
Hrivnac, Julius;Artoni, Giacomo
Artoni, Giacomo in OpenAIREHrynevich, Aliaksei;
Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Qipeng; Hu, Shuyang; Hu, Yi Fan; Huang, Dan Ping; Huang, Yicong; Artz, Sebastian; Huang, Yanping;Hrynevich, Aliaksei
Hrynevich, Aliaksei in OpenAIREHubacek, Zdenek;
Hubacek, Zdenek
Hubacek, Zdenek in OpenAIREHubaut, Fabrice;
Huebner, Michael; Huegging, Fabian; Huffman, Todd Brian; Huhtinen, Mika;Hubaut, Fabrice
Hubaut, Fabrice in OpenAIREHunter, Robert Francis;
Huo, Peng; Hupe, Andre Marc; Asai, Shoji; Huseynov, Nazim; Huston, Joey; Huth, John; Hyneman, Rachel; Hyrych, Sofiia;Hunter, Robert Francis
Hunter, Robert Francis in OpenAIREIacobucci, Giuseppe;
Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Idrissi, Zineb; Asbah, Nedaa; Iengo, Paolo; Ignazzi, Rosanna; Igonkina, Olga; Iguchi, Ryunosuke; Iizawa, Tomoya; Ikegami, Yoichi; Ikeno, Masahiro;Iacobucci, Giuseppe
Iacobucci, Giuseppe in OpenAIREIliadis, Dimitrios;
Iliadis, Dimitrios
Iliadis, Dimitrios in OpenAIREdoi: 10.1007/jhep03(2020)179 , 10.3204/pubdb-2020-02525 , 10.48550/arxiv.1912.09866 , 10.17863/cam.66468 , 10.17863/cam.53552 , 10.17863/cam.69498
handle: 2066/218361 , https://repository.ubn.ru.nl/handle/2066/218361 , 11588/884357 , 11245.1/18bc9ce6-7e36-4673-bd77-df314f6020ed , 20.500.11851/9303 , 10852/83588 , 11250/2756168 , 10261/232887 , 10316/106311 , 10486/708879 , 10481/61851 , 20.500.11770/304198 , 11572/317931 , 11390/1182228 , 2108/275731 , 11590/388554 , 11573/1493191 , 11367/95123 , 11567/1103136 , 11568/1076219 , 11587/427313 , 11585/790275 , 1959.3/463676 , 11571/1370394 , 11343/252034 , 10210/463537 , 11411/2003
doi: 10.1007/jhep03(2020)179 , 10.3204/pubdb-2020-02525 , 10.48550/arxiv.1912.09866 , 10.17863/cam.66468 , 10.17863/cam.53552 , 10.17863/cam.69498
handle: 2066/218361 , https://repository.ubn.ru.nl/handle/2066/218361 , 11588/884357 , 11245.1/18bc9ce6-7e36-4673-bd77-df314f6020ed , 20.500.11851/9303 , 10852/83588 , 11250/2756168 , 10261/232887 , 10316/106311 , 10486/708879 , 10481/61851 , 20.500.11770/304198 , 11572/317931 , 11390/1182228 , 2108/275731 , 11590/388554 , 11573/1493191 , 11367/95123 , 11567/1103136 , 11568/1076219 , 11587/427313 , 11585/790275 , 1959.3/463676 , 11571/1370394 , 11343/252034 , 10210/463537 , 11411/2003
Abstract The dynamics of isolated-photon plus two-jet production in pp collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset corresponding to an integrated luminosity of 36.1 fb−1. Cross sections are measured as functions of a variety of observables, including angular correlations and invariant masses of the objects in the final state, γ + jet + jet. Measurements are also performed in phase-space regions enriched in each of the two underlying physical mechanisms, namely direct and fragmentation processes. The measurements cover the range of photon (jet) transverse momenta from 150 GeV (100 GeV) to 2 TeV. The tree-level plus parton-shower predictions from Sherpa and Pythia as well as the next-to-leading-order QCD predictions from Sherpa are compared with the measurements. The next-to-leading-order QCD predictions describe the data adequately in shape and normalisation except for regions of phase space such as those with high values of the invariant mass or rapidity separation of the two jets, where the predictions overestimate the data.
CORE arrow_drop_down Archivio istituzionale della ricerca - Università degli Studi di UdineArticle . 2020License: CC BY NC NDArchivio della Ricerca - Università di Roma Tor vergataArticle . 2020License: CC BYData sources: Archivio della Ricerca - Università di Roma Tor vergataUniversity of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/11250/2756168Data sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2020License: CC BYFull-Text: http://hdl.handle.net/10852/83588Data sources: Bielefeld Academic Search Engine (BASE)Belarusian State University: Electronic Library BSUArticle . 2020License: CC BYFull-Text: https://elib.bsu.by/handle/123456789/288766Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/11343/252034Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/7ph7j97rData sources: Bielefeld Academic Search Engine (BASE)Istanbul Bilgi University: Open Access RepositoryArticle . 2020Full-Text: https://hdl.handle.net/11411/2003Data sources: Bielefeld Academic Search Engine (BASE)Archivio della Ricerca - Università di Roma Tor vergataArticle . 2020Full-Text: http://hdl.handle.net/2108/275731Data sources: Bielefeld Academic Search Engine (BASE)Journal of High Energy PhysicsArticle . 2020Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTA2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAJournal of High Energy PhysicsArticle . 2020License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryCopenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemRepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesGiresun University Institutional RepositoryArticle . 2020Data sources: Giresun University Institutional RepositoryPublikationer från Uppsala UniversitetArticle . 2020 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedBergen Open Research Archive - UiBArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBJournal of High Energy PhysicsArticle . 2020 . Peer-reviewedData sources: European Union Open Data PortalUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)King's College, London: Research PortalArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Archivio Istituzionale dell'Università della CalabriaArticle . 2020Data sources: Archivio Istituzionale dell'Università della CalabriaArchivio della Ricerca - Università degli Studi Roma TreArticle . 2020Data sources: Archivio della Ricerca - Università degli Studi Roma TreArchivio della Ricerca - Università di PisaArticle . 2020Data sources: Archivio della Ricerca - Università di PisaRepositorio Institucional Universidad de GranadaArticle . 2020License: CC BYData sources: Repositorio Institucional Universidad de GranadaPublikationenserver der Georg-August-Universität GöttingenArticle . 2020Göttingen Research Online PublicationsArticle . 2020Data sources: Göttingen Research Online PublicationseScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaUniversité Savoie Mont Blanc: HALArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Swinburne University of Technology: Swinburne Research BankArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)The University of Johannesburg: UJContentArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Pontificia Universidad Católica de Chile: Repositorio UCArticle . 2025Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/jhep03(2020)179&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 45visibility views 45 download downloads 50 Powered bymore_vert CORE arrow_drop_down Archivio istituzionale della ricerca - Università degli Studi di UdineArticle . 2020License: CC BY NC NDArchivio della Ricerca - Università di Roma Tor vergataArticle . 2020License: CC BYData sources: Archivio della Ricerca - Università di Roma Tor vergataUniversity of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/11250/2756168Data sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2020License: CC BYFull-Text: http://hdl.handle.net/10852/83588Data sources: Bielefeld Academic Search Engine (BASE)Belarusian State University: Electronic Library BSUArticle . 2020License: CC BYFull-Text: https://elib.bsu.by/handle/123456789/288766Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/11343/252034Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/7ph7j97rData sources: Bielefeld Academic Search Engine (BASE)Istanbul Bilgi University: Open Access RepositoryArticle . 2020Full-Text: https://hdl.handle.net/11411/2003Data sources: Bielefeld Academic Search Engine (BASE)Archivio della Ricerca - Università di Roma Tor vergataArticle . 2020Full-Text: http://hdl.handle.net/2108/275731Data sources: Bielefeld Academic Search Engine (BASE)Journal of High Energy PhysicsArticle . 2020Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTA2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAJournal of High Energy PhysicsArticle . 2020License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryCopenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemRepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesGiresun University Institutional RepositoryArticle . 2020Data sources: Giresun University Institutional RepositoryPublikationer från Uppsala UniversitetArticle . 2020 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedBergen Open Research Archive - UiBArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBJournal of High Energy PhysicsArticle . 2020 . Peer-reviewedData sources: European Union Open Data PortalUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)King's College, London: Research PortalArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Archivio Istituzionale dell'Università della CalabriaArticle . 2020Data sources: Archivio Istituzionale dell'Università della CalabriaArchivio della Ricerca - Università degli Studi Roma TreArticle . 2020Data sources: Archivio della Ricerca - Università degli Studi Roma TreArchivio della Ricerca - Università di PisaArticle . 2020Data sources: Archivio della Ricerca - Università di PisaRepositorio Institucional Universidad de GranadaArticle . 2020License: CC BYData sources: Repositorio Institucional Universidad de GranadaPublikationenserver der Georg-August-Universität GöttingenArticle . 2020Göttingen Research Online PublicationsArticle . 2020Data sources: Göttingen Research Online PublicationseScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaUniversité Savoie Mont Blanc: HALArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Swinburne University of Technology: Swinburne Research BankArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)The University of Johannesburg: UJContentArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Pontificia Universidad Católica de Chile: Repositorio UCArticle . 2025Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/jhep03(2020)179&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:Ubiquity Press, Ltd. Authors:Jonathan Salter;
Jonathan Salter
Jonathan Salter in OpenAIREYuhao Lu;
Yuhao Lu
Yuhao Lu in OpenAIREJu Chan Kim;
Ju Chan Kim
Ju Chan Kim in OpenAIRERonald Kellett;
+3 AuthorsRonald Kellett
Ronald Kellett in OpenAIREJonathan Salter;
Jonathan Salter
Jonathan Salter in OpenAIREYuhao Lu;
Yuhao Lu
Yuhao Lu in OpenAIREJu Chan Kim;
Ju Chan Kim
Ju Chan Kim in OpenAIRERonald Kellett;
Ronald Kellett
Ronald Kellett in OpenAIRECynthia Girling;
Cynthia Girling
Cynthia Girling in OpenAIREFausto Inomata;
Fausto Inomata
Fausto Inomata in OpenAIREAlix Krahn;
Alix Krahn
Alix Krahn in OpenAIREdoi: 10.5334/bc.51
As efforts to address climate change shift to action at local scales, municipalities are called upon to develop locally specific action plans. Many municipalities lack the resources to develop energy and emissions-reducing policy interventions appropriate to their characteristics. This research synthesises urban form, scenario analysis and energy simulation into a cohesive workflow for evaluating energy and emissions policy interventions across a range of urban forms. A geospatial and census analysis of six cities across British Columbia, Canada, led to the development of seven urban neighborhood patterns. These represent neighborhood forms and densities found in cities of various sizes, densities, forms and climates. To test the approach of an urban built environment model (UBEM), retrofit and infill redevelopment ‘what-if’ scenarios were applied iteratively to two sample patterns comparing the relative efficacy of building technology-improvement policies versus land-use intensification policies. The future ‘what-if’ policy scenarios were spatially tested and validated using relevant policy. The simplified UBEM methods applied to typical patterns and development demonstrates a step towards an accessible and flexible modeling approach. Small and medium-sized municipalities can use this approach to assess and compare potential energy and emissions policy options and outcomes at building and neighborhood scales. 'Practice relevance' A new, simple method has been created for municipalities to understand multiple ‘what-if’ scenarios for reducing energy demand and emissions from buildings. This is based on profiles from census data, geospatial analysis and energy data that characterise urban neighborhood patterns. The approach integrates building-scale and neighborhood-scale energy and greenhouse gas simulations. It can simulate a variety of policy scenarios and strategy interventions in order to show the interactions between and among urban form and retrofit options. This enables planners and decision-makers to compare the relative magnitudes of different interventions at the neighborhood or city level for energy and emissions performance. The model was developed for use by a variety of communities in British Columbia, Canada. There is potential for adapting this method for use in other locations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5334/bc.51&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5334/bc.51&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Canada, France, CanadaPublisher:Elsevier BV Authors:Boukenoui, Rachid;
Boukenoui, Rachid
Boukenoui, Rachid in OpenAIREGhanes, Malek;
Ghanes, Malek
Ghanes, Malek in OpenAIREBarbot, Jean-Pierre;
Barbot, Jean-Pierre
Barbot, Jean-Pierre in OpenAIREBradai, Rafik;
+2 AuthorsBradai, Rafik
Bradai, Rafik in OpenAIREBoukenoui, Rachid;
Boukenoui, Rachid
Boukenoui, Rachid in OpenAIREGhanes, Malek;
Ghanes, Malek
Ghanes, Malek in OpenAIREBarbot, Jean-Pierre;
Barbot, Jean-Pierre
Barbot, Jean-Pierre in OpenAIREBradai, Rafik;
Bradai, Rafik
Bradai, Rafik in OpenAIREMellit, Adel;
Salhi, Hassen;Mellit, Adel
Mellit, Adel in OpenAIREThis paper presents different Maximum Power Point Tracking (MPPT) methods belonging to different classes as well as two overviews. The first was about the procedures used in the test and evaluation of MPPTs. The second is an overview of Fuzzy Logic Controller (FLC) MPPTs and improved MPPTs. Conventional MPPTs such as Perturb and Observe (P&O), Hill Climbing (HC) and Incremental Conductance (InCond); Improved MPPTs (are the modified versions of conventional MPPTs) such as Improved Incremental Conductance (Improved-InCond) and intelligent MPPTs such as FLC have been implemented and tested under two different levels of irradiance and temperature. A detailed description about the hardware and software implementation platforms (designed and built in our laboratory) is provided. Based on measured data, the MPPTs under consideration have been evaluated and compared in terms of different criteria, showing the advantages and disadvantages of each one. The comparison results showed that Improved-InCond gives a fast convergence to the MPP(Maximum Power Point). Whereas, FLC is able to adapt to the variation of irradiance and temperature levels. Thereby, a good performance is obtained wherein the MPP is reached in a short time as well as the power ripples are very small.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverUniversité de Nantes: HAL-UNIV-NANTESArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.05.087&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverUniversité de Nantes: HAL-UNIV-NANTESArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.05.087&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Authors:Ali Awada;
Ali Awada
Ali Awada in OpenAIRERafic Younes;
Rafic Younes
Rafic Younes in OpenAIREAdrian Ilinca;
Adrian Ilinca
Adrian Ilinca in OpenAIREdoi: 10.3390/en14113058
The installation of wind energy increased in the last twenty years, as its cost decreased, and it contributes to reducing GHG emissions. A race toward gigantism characterizes wind turbine development, primarily driven by offshore projects. The larger wind turbines are facing higher loads, and the imperatives of mass reduction make them more flexible. Size increase of wind turbines results in higher structural vibrations that reduce the lifetime of the components (blades, main shaft, bearings, generator, gearbox, etc.) and might lead to failure or destruction. This paper aims to present in detail the problems associated with wind turbine vibration and a thorough literature review of the different mitigation solutions. We explore the advantages, drawbacks, and challenges of the existing vibration control systems for wind turbines. These systems belong to six main categories, according to the physical principles used and how they operate to mitigate the vibrations. This paper offers a multi-criteria analysis of a vast number of systems in different phases of development, going from full-scale testing to prototype stage, experiments, research, and ideas.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14113058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 51 citations 51 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14113058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu