Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
673 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • 2021-2025
  • FI
  • EU
  • University of Helsinki

  • Authors: O’Gorman, E.J.; Warner, E.; Marteinsdóttir, B.; Helmutsdóttir, V.F.; +2 Authors

    Herbivory assessments were made at the plant community and species levels. We focused on three plant species with a widespread occurrence across the temperature gradient: cuckooflower (Cardamine pratensis, Linnaeus), common mouse-ear (Cerastium fontanum, Baumgerten), and marsh violet (Viola palustris, Linnaeus). For assessments of invertebrate herbivory at the species level, thirty individuals per species of C. pratensis, C. fontanum, and V. palustris were marked in each of ten plots, using a stratified random sampling method where individuals were randomly selected, but the full range of within-plot soil temperatures was represented. For assessments of invertebrate herbivory at the community level, five 50 × 50 cm quadrats were marked at random points in eight of the plots that best captured the full temperature gradient. The community-level herbivory assessment was conducted on 19th June. The number of damaged plants was recorded out of 100 random individuals, selected using a 10 × 10 grid within each 50 × 50 cm quadrat. For the species-level herbivory assessment, individual marked plants were surveyed for signs of invertebrate herbivory every two weeks from 30th May to 2nd July, generating three time-points per species. At each survey, all marked individuals for each species were assessed within a 48-hour period. Plants were recorded as damaged or not damaged by invertebrate herbivores at each time-point. Further details of how phenological stage of development, vegetation community composition, soil temperature, moisture, pH, nitrate, ammonium, and phosphate were recorded are provided in the supporting documentation. This is a dataset of environmental data, vegetation cover, and community- and species-level invertebrate herbivory, sampled at 14 experimental soil plots in the Hengill geothermal valley, Iceland, from May to July 2017. The plots span a temperature gradient of 5-35 °C on average over the sampling period, yet they occur within 1 km of each other and have similar soil moisture, pH, nitrate, ammonium, and phosphate.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Opito, Emmanuel A.; Alanko, Timo; Kalbitzer, Urs; Nummelin, Matti; +3 Authors

    Data from: 30 Years Brings Changes to the Arthropod Community of Kibale National Park, Uganda by Opito, E.A., T. Alanko, U. Kalbitzer, M. Nummelin, P. Omeja, A. Valtonen, and Colin A. Chapman. 2023, Biotropica, Article DOI: 10.1111/btp.13206

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.17617/3....
    Dataset . 2023
    License: CC BY SA
    Data sources: Datacite
    B2FIND
    Dataset . 2023
    Data sources: B2FIND
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.17617/3....
      Dataset . 2023
      License: CC BY SA
      Data sources: Datacite
      B2FIND
      Dataset . 2023
      Data sources: B2FIND
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

    Data and GrADS scripts needed to reproduce the figures in the article "Probabilistic forecasts of near-term climate change: verification for temperature and precipitation changes from years 1971-2000 to 2011-2020", submitted for publication in Climate Dynamics. Please see the file README for further details.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility43
    visibilityviews43
    downloaddownloads25
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Virtanen, E. A.; Lappalainen, J.; Nurmi, M.; Viitasalo, M; +6 Authors

    Dataset related to the article: Virtanen, E.A., Lappalainen, J., Nurmi, M., Viitasalo, M., Tikanmäki, M., Heinonen, J., Atlaskin, E., Kallasvuo, M., Tikkanen, H., Moilanen, A. (2022) Balancing profitability of energy production, societal impacts and biodiversity in offshore wind farm design. Renewable and Sustainable Energy Reviews 158, 112087. Dataset includes suitability maps for offshore windfarms, where priority values are scaled between 0-1 (note the reversed value scale): analysis solution (A) economy, (B) society, (C) biodiversity, (D) restrictions, (E) A+B+C without restrictions and (F) A+B+C with restrictions. Dataset includes also the conflict map (and R script), where each three main solutions (A, B, C) are mapped onto an RGB color composite map. Additional details can be found from the published article: https://doi.org/10.1016/j.rser.2022.112087

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2022
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2022
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2022
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2022
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2022
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2022
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Abotaleb Salehnasab; Harold E. Burkhart; Mahmoud Bayat; Bagher Khaleghi; +2 Authors

    The Hyrcanian forests of Iran are mainly managed with the single-selection silvicultural technique. Despite significant ecological benefits associated with selection cutting, this type of forest management leads towards more challenging situations where it is difficult to maintain and practice successful forestry than in even-aged systems. Therefore, this study provides relevant management tools in the form of models to estimate low growth levels in Hyrcanian forests. In the present study, estimation of the population growth rate and then the allowable cut rate of these forests using a matrix model have been calculated in the Gorazbon district. For this purpose, the data of 256 permanent sample plots measured during the years between 2003 and 2012, as well as the data recorded about the trees harvested according to the forestry plan, have been used. As a first step, the most frequently occurring tree species were divided into four groups (beech, hornbeam, chestnut-leaved oak, and other species). Compartments of the district were divided into two groups of logged and unlogged compartments. The purpose of this division was to estimate the allowable cut and compare its volume with the volumes of observed and predicted allowable cuts obtained from forestry plans. The results showed that the total operated allowable cut (OAC) in logged compartments was more than the estimated allowable cut (EAC). In unlogged compartments, the total predicted allowable cut (PAC) was more than EAC. A comparison of EAC and OAC showed that hornbeam has been harvested more than its potential. However, chestnut-leaved oak and other species group have depicted opposite trends. Our models provide important advancements for estimating allowable cut that can enhance the goal of practicing sustainable forestry.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article . 2022 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article . 2022
    Data sources: DOAJ
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    VTechWorks
    Other literature type . 2022
    License: CC BY
    Data sources: VTechWorks
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    gold
    3
    citations3
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article . 2022 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article . 2022
      Data sources: DOAJ
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      VTechWorks
      Other literature type . 2022
      License: CC BY
      Data sources: VTechWorks
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Limoges, Audrey; Ribeiro, Sofia; Van Nieuwenhove, Nicolas; Jackson, Rebecca; +3 Authors

    A Calypso Square gravity core AMD15-Casq1 (543 cm) and corresponding box core (40 cm) were collected in 2015 from the central north NOW (77°15.035’ N, 74°25.500’ W, 692 m water depth) (Figure 1) during the ArcticNet Leg 4a, onboard the Canadian Coast Guard Ship Amundsen. Core chronology: The core chronology is based on 11 accelerator mass spectrometry (AMS) dates on mollusc shells from the Calypso core, and 210Pb and 137Cs measurements on 20 samples from the box core (see Jackson et al. (2021) for more details). Here, all radiocarbon dates were calibrated using the latest marine calibration curve (Marine20; Heaton et al., 2020; Table S1). In Jackson et al. (2021), and using the Marine13 calibration curve, a local reservoir correction of 140 ± 60 years was applied based on measurements from a live marine mollusc specimen collected from the NOW before the mid-1950’s (McNeely & Brennan, 2005). Using the Marine20 calibration curve, this specimen now yields a reservoir offset of –4 ± 60 years. In line with this reduced reservoir offset for the Marine 20 (vs. Marine13) calibration curve, and owing to the lack of a regional ΔR term for the polynya (Pieńkowski et al., 2023), no additional reservoir age correction (i.e., ΔR=0) was applied. A mixed age-depth model was constructed using the bacon-package in R (Blaauw & Christen, 2011). Accordingly, the composite core covers the last ca. 3800 cal years BP. We note that the new calibration only resulted in negligible changes compared to the age model presented in Jackson et al. (2021). Diatom analyses: Sediment samples for diatom analysis were prepared following the protocol described in Crosta et al. (2020). Approximately 0.3 g of dry sediment was treated with an oxidative solution composed of hydrogen peroxide (H2O2), distilled water and tetrasodium pyrophosphate (decahydrate, Na4O7P2-10H2O) in a warm bath (~65°C) for several hours until the reaction ceased. The residue was then rinsed repeatedly with distilled water by centrifugation (7 min at 1200 rpm). Hydrochloric acid (HCl, 30%) was used to remove the carbonate content. The residue was again rinsed several times until neutral pH, and microscopy slides were mounted in Naphrax©. In each sample, ca. 300 diatom valves were identified to the lowest taxonomic level possible. Resting spores of Chaetoceros were counted, but not included in the relative abundance calculations. Census counts were done using a light microscope (Olympus BX53, UNB) with dark field, phase contrast optics and oil immersion, at 1000X magnification. We followed the counting rules presented in Crosta and Koç (2007): specimens were counted when at least half of the valve was observed, with the exception of Rhizosolenia and Thalassiothrix taxa that were only counted when the spine-like proboscis or appendix was visible, respectively. The Pikialasorsuaq (North Water polynya) is an area of local and global cultural and ecological significance. However, over the last decades, the region has been subject to rapid warming and, in some recent years, the seasonal ice arch that has historically defined the polynya’s northern boundary has failed to form. Both factors are deemed to alter the polynya’s ecosystem functioning. To understand how climate-induced changes to the Pikialasorsuaq impact the basis of the marine food web, we explored diatom community-level responses to changing conditions, from a sediment core spanning the last 3800 years. Four metrics were used: total diatom concentrations, taxonomic composition, mean size, and diversity. Generalized additive model statistics highlight significant changes at ca. 2400, 2050, 1550, 1200, and 130 cal years BP, all coeval with known transitions between colder and warmer intervals of the Late Holocene, and regime shifts in the Pikialasorsuaq. Notably, a weaker/contracted polynya during the Roman Warm Period and Medieval Climate Anomaly caused the diatom community to reorganize via shifts in species composition, with the presence of larger taxa but lower diversity, and significantly reduced export production. This study underlines the high sensitivity of primary producers to changes in the polynya dynamics and illustrates that the strong pulse of early-spring cryopelagic diatoms that makes the Pikialasorsuaq exceptionally productive may be jeopardized by rapid warming and associated Nares Strait ice arch destabilization. Future alterations to the phenology of primary producers may disproportionately impact higher trophic levels and keystone species in this region, with implications for Indigenous Peoples and global diversity.  # Marine diatoms record Late Holocene regime shifts in the Pikialasorsuaq ecosystem [https://doi.org/10.5061/dryad.cz8w9gj8p](https://doi.org/10.5061/dryad.cz8w9gj8p) This dataset includes diatom counts (relative abundances, %) from core AMD15-Casq1. Diatoms were analyzed at a 1 to 10 cm sampling interval, which corresponds to an effective age resolution ranging from ca. 3 to 64 years (mean: 31 years). Absolute abundances are reported in valves per g of dry sediment. Fluxes were calculated by combining diatom concentrations (valves and spores g-1) with mass accumulation rates (g cm-2 yr-1). ## Description of the data and file structure Diatom data are presented against depth and modelled age (years BP) in the sediment archive. ## Sharing/Access information n/a ## Code/Software n/a

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2023
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2023
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility3
    visibilityviews3
    downloaddownloads2
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2023
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2023
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Robinson, Sinikka; O'Gorman, Eoin; Frey, Beat; Hagner, Marleena; +1 Authors

    Study site This is a dataset of soil physiochemical properties, bacterial and fungal abundance, and above and belowground plant and invertebrate biomass, sampled at 40 soil plots in the Hengill geothermal valley, Iceland, from 15th to 22nd August 2018. The plots, measuring approximately 1 m2, evenly span a temperature gradient of 10-35°C. The dataset also includes data on the decomposition rate of soil organic matter, which was sampled at 60 plots in the Hengill valley from May to July 2015 (see Robinson et al. 2021 for plot details and sampling regime). Soil properties Soil temperature was measured at 5 cm depth at each plot on 15th, 18th, and 22nd August, and a mean plot temperature calculated. Soil physiochemical properties were analysed from 3 soil cores of 3 cm in diameter, taken from the upper 10 cm soil stratum at each plot; one quarter of each subsample was pooled to obtain an estimate per plot. Aboveground plant matter, excluding roots, were removed from each core. Percentage soil moisture was calculated by measuring the weight of one pooled soil sample before and after drying for 24 h in a 70°C drying oven. Soil pH was obtained from 20 g of the dry soil by adding 100 ml distilled water, shaking for 5 min on 150 rpm, letting the sample stand for 2 h, and measuring soil pH from the water layer using an InoLab pH 720 (WTW) probe. Soil PO4, NH4, and NO3 concentrations were analysed from a second pooled soil; 60 g of fresh soil was extracted in 100 ml distilled water, filtered through a GF/C (1.2μm) glass microfiber filter (Whatman, GE Healthcare Europe GmbH), and analysed using a Lachat QuikChem 8000 analyser (Zallweger Analytics, Inc., Lachat Instruments Division, USA). Total mineral N was calculated as the sum of NH4 and NO3. Soil organic matter content (excluding dry root biomass) was calculated as the weight lost from an oven dried (105°C for 24 hours) soil sample after heating at 550 °C for 5 h. Decomposition rate of soil organic matter was measured using the Cotton-strip Assay method (Tiegs et al. 2013) by placing a 2.5 cm x 8 cm strip of Fredrix-brand unprimed 12-oz. heavyweight cotton fabric (Style #548) 5 cm belowground at 60 plots, concurrently with a Maxim Integrated DS1921G Thermocron iButton temperature logger, on 13th May 2015. The strips were collected on 3rd July, rinsed with stream water to remove residual soil, soaked in 96% ethanol for 30 seconds to kill bacteria and halt decomposition, and dried at 60 °C for 12 h. Using a universal testing machine (Instron 5866 with 500 kN tensile holding clamps), maximum tensile strench of each cotton strip was measured. % tensile loss (proxy for decomposition) was calculated as (C-T) / C x 100, where T is the maximum tensile strength for each strip collected from the field, and C is the mean tensile strength of seven control strips, which had not been placed in the ground. See Robinson et al. 2021 for detailed description of plots sampled in 2015. Microbial abundance Bacterial and fungal abundance was estimated from additional soil cores of 3 cm in diameter taken from the upper 4 cm soil stratum (including the litter layer) at each plot. DNA was extracted using the PowerSoil DNA Isolation Kit (Qiagen, Germany). DNA was quantified using the high-sensitivity Qubit assay (Thermo Fisher Scientific, Switzerland). Relative abundances of bacterial and fungal communities were determined by quantitative PCR (qPCR) on an ABI7500 Fast Real-Time PCR system (Applied Biosystems, Foster City, CA, USA). PCR amplification of partial bacterial small-subunit ribosomal RNA genes (region V1–V3 of 16S; primers 27F and 512R) and fungal ribosomal internal transcribed spacers (region ITS2; primers IT3 and ITS4) was performed as described previously (Frey et al. 2020, Frey et al. 2021). For qPCR analyses, 2.5 ng DNA in a total volume of 6.6 µL and 8.4 µL GoTaq qPCRMaster Mix (Promega, Switzerland), containing 1.8 mM of each primer and 0.2 mg mL-1 of BSA, were used. The PCR conditions consisted of an initial denaturation at 95 ºC for 10 min, 40 cycles of denaturation at 95 ºC for 40 s, annealing at 58 ºC for 40 s and elongation at 72 ºC for 60 s followed by the final data acquisition step at 80 ºC for 60 s. The specificity of the amplification products was confirmed by melting-curve analysis. Three standard curves per target region (correlations ≥0.997) were obtained using tenfold serial dilutions (10-1 to 10-9 copies) of plasmids generated from cloned targets (Frey et al. 2020). Data were converted to represent the average copy number of targets per μg DNA and per g soil. Vegetation properties Vascular plant biomass was measured from a randomly placed 30 x 30 cm quadrat at each plot. To measure aboveground biomass (AGB) of plants, the aboveground layer of vegetation was cut and removed, dried at 70 °C for 24 h and weighed to obtain biomass per unit area. AGB was estimated as the biomass of graminoids plus forbs; total biomass of mosses was also estimated. Graminoid leaf N concentration was analysed from dried and ground leaf material using a LECO CNS-2000 analyser (LECO Corporation, Saint Joseph, MI, USA). Belowground biomass (BGB) of vascular plants was estimated from a soil core of 3 cm in diameter taken from the 10 cm upper soil stratum (excluding aboveground plant material) at each quadrat. Roots were extracted from the soil cores by rinsing in water using a 250-μm sieve, dried at 70 °C for 24 hours and weighed to obtain biomass per unit area. Root to shoot ratio was calculated as dry weight of BGB per cm2 divided by dry weight of AGB per cm2, and the total vascular plant biomass as the sum of AGB and BGB. Invertebrate community Enchytraied and nematode biomass was estimated from 3 soil cores of 3 cm in diameter taken from the upper 4 cm soil stratum (including litter layer) at each plot. Enchytraieds were extracted using wet funnels (O'Connor 1962) from a pooled sample of one half of each of the three soil cores, counted live, and classified into size classes (length 0-2, 2.1-4, 4.1-6, 6.1-8, 8.1-10, 10.1-12 or >12 mm) and their biomass was calculated according to Abrahamsen (1973). Nematodes were also extracted using wet funnels (Sohlenius 1979) from a pooled sample of a quarter of each of the three soil cores, counted live and preserved in 70% ethanol. Fifty individuals from each sample were identified and classified by trophic group (bacterivore, fungivoe, herbivore, omnivore, predator; Yeates et al. 1993). Soil micro-arthropods were extracted using a modified high-gradient-extractor (MacFayden 1961) from soil cores of 5.4 cm in diameter, taken from the upper 4 cm soil straum (including litter layer) at each plot. Total micro-arthropod biomass was calculated as the sum of all individual species' biomasses, obtained using length-weight regressions (see Robinson et al. 2021), and abundance of individual trophic groups (microbivore/detritivore, herbivore, omnivore, predator) calculated. Epigeal invertebrates were sampled by deploying five pitfall traps in each plot. White plastic cups of 7 cm in diameter and 8.5 cm in depth were filled with 10 ml of ethylene glycol and 30 ml of stream water, and left for 48 h before collection. Samples from the five traps at each plot were combined into a 250-μm sieve and stored in 70% ethanol. Invertebrate activity density (abundance) was estimate as the total number of individuals in the five traps, and total biomass as the sum of all individual species' biomasses. Invertebrates were identified to species level where possible and split into trophic groups, exluding adult Diptera, Hymenoptera, and Lepidoptera. Further details of sampling and collection of epigeal invertebrates are detailed in Robinson et al. (2018). References: Abrahamsen G. (1973) Studies on body-volume, body-surface area, density, and live weight of enchytraeidae (Oligochaeta). Pedobiologia 13: 6–15. Frey B, Carnol M, Dharmarajah A, Brunner I, Schleppi P. (2020) Only minor changes in the soil microbiome of a sub-alpine forest after 20 years of moderately increased nitrogen loads. Frontiers in Forests and Global Change 3: 77. Frey B, Walthert L, Perez-Mon C, Stierli B, Köchli R, Dharmarajah A, Brunner I (2021) Deep soil layers of drough-exposed forests harbor poorly known bacterial and fungal communities. Frontiers in Microbiology 12: 1061. MacFayden A. (1961) Improved funnel-type extractors for soil arthropods. Journal of Animal Ecology 30: 171–184. O’Connor FB. (1962) The extraction of Enchytraeidae from soil. In: P. W. Murphy (Ed.) Progress in soil zoology. Butterworth, London, UK; 279–285. Robinson SI, McLaughlin ÓB, Marteinsdóttir B, O'Gorman EJ. (2018) Soil temperature effects on the structure and diversity of plant and invertebrate communities in a natural warming experiment. Journal of Animal Ecology 87: 634–46. Robinson SI, Mikola J, Ovaskainen O, O’Gorman EJ. (2021) Temperature effects on the temporal dynamics of a subarctic invertebrate community. Journal of Animal Ecology 90: 1217-1227. Sohlenius B. (1979) A carbon budget for nematodes, rotifers and tardigrades in a Swedish coniferous forest soil. Holarctic Ecology 2: 30–40. Tiegs SD, Clapcott JE, Griffiths NA, Boulton AJ. (2013) A standardized cotton-strip assay for measuring organic-matter decomposition in streams. Ecological Indicators 32: 131–139. Yeates GW, Bongers T, De Goede RGM, Freckman DW, Georgieva SS. (1993) Feeding habits in soil nematode families and genera—an outline for soil ecologists. Journal of Nematology 25: 315–331. This is a dataset of soil physiochemical properties, bacterial and fungal abundance, and above and belowground plant and invertebrate biomass, sampled at 40 plots in the Hengill geothermal valley, Iceland, from 15th to 22nd August 2018. The plots span a temperature gradient of 10-35 °C over the sampling period, and this temperature gradient is consistent over time. The dataset also includes data on the decomposition rate of soil organic matter, which was sampled at 60 plots in the Hengill valley from May to July 2015. See README_Robinson_Hengill2018.txt 

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2022
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2022
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility32
    visibilityviews32
    downloaddownloads21
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2022
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2022
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Helmi Räisänen; Emma Hakala; Jussi T. Eronen; Janne I. Hukkinen; +1 Authors

    In security and foreign policy discourse, environmental issues have been discussed increasingly as security threats that require immediate action. Yet, as the traditional security sector does not provide straightforward means to deal with climate change and other environmental issues, this has prompted concerns over undue securitisation and ill-placed extreme measures. We argue that an effective policy to address foreseeable environmental security threats can only be developed and maintained by ensuring that it remains resolutely within the domain of civil society. In this article, we consider the case of Finland, where the policy concept of comprehensive security has been presented as the official guideline for security and preparedness activities in different sectors. Comprehensive security aims to safeguard the vital functions of society through cooperation between authorities, business operators, organisations, and citizens. We analyse the opportunities and challenges of Finland’s comprehensive security policy in addressing environmental changes through a three-level framework of local, geopolitical and structural security impacts. Our empirical evidence is based on a set of expert interviews (n = 40) that represent a wide range of fields relevant to unconventional security issues. We find that the Finnish comprehensive security model provides an example of a wide and inclusive perspective to security which would allow for taking into account environmental security concerns. However, due to major challenges in the implementation of the model, it does not fully incorporate the long-term, cross-sectoral, and cascading aspects of environmental threats. This weakens Finland’s preparedness against climate change which currently poses some of the most urgent environmental security problems.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Politics and Governa...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Politics and Governance
    Article . 2021 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Politics and Governance
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Politics and Governance
    Article . 2021
    Data sources: DOAJ
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    gold
    7
    citations7
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Politics and Governa...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Politics and Governance
      Article . 2021 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Politics and Governance
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Politics and Governance
      Article . 2021
      Data sources: DOAJ
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Ilja Vuorinne; Janne Heiskanen; Marianne Maghenda; Lucas Mwangala; +2 Authors

    Abstract Biomass is a key variable for crop monitoring and for assessing carbon stocks and bioenergy potential. This study aimed to develop an allometric model for predicting the dry leaf biomass of sisal, an agave plant with crassulacean acid metabolism grown for fibre production in the tropics and subtropics and whose biomass can be utilised as a feedstock to produce biogas through anaerobic digestion. The allometric model was used to estimate leaf biomass and productivity across different stand ages in a sisal plantation in semi-arid region in south-east Kenya (annual rainfall 611 mm and temperature 24.9 °C). Based on a sample of 38 leaves, the best predictor for biomass was leaf maximum width and plant height used as a combined variable in a log-log regression model (cross-validated R2 = 0.96 and root-mean-square error = 7.69 g). The mean productivity in nine 26- to 36-month-old plots was 11.1 Mg ha−1 yr−1, which could potentially yield approximately 3000 m3 CH4 ha−1 yr−1. The leaf biomass in 55 field plots (400 m2 in area) ranged from 2.7 to 42.7 Mg ha−1, with mean at 13.5 Mg ha−1, which equals to 6.3 Mg C ha−1. The yielded allometric equations can be utilised for predicting the leaf biomass of sisal in similar agro-ecological zones. The estimates on plantation biomass can be used in assessing the role of sisal plantations as a regional carbon storage. In addition, the results provide reference on the productivity of agave and crassulacean acid metabolism in semi-arid regions of East Africa, where such reports are few.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biomass and Bioenerg...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Biomass and Bioenergy
    Article . 2021 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Biomass and Bioenergy
    Article
    License: CC BY
    Data sources: UnpayWall
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    hybrid
    5
    citations5
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biomass and Bioenerg...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Biomass and Bioenergy
      Article . 2021 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Biomass and Bioenergy
      Article
      License: CC BY
      Data sources: UnpayWall
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Puig Broch, Sebastià; Vassilev, Igor; Dessì, Paolo; Kokko, Marika;

    Cathodic biofilms have an important role in CO2 bio-reduction to carboxylic acids and biofuels in microbial electrosynthesis (MES) cells. However, robust and resilient electroactive biofilms for an efficient CO2 conversion are difficult to achieve. In this review, the fundamentals of cathodic biofilm formation, including energy conservation, electron transfer and development of catalytic biofilms, are presented. In addition, strategies for improving cathodic biofilm formation, such as the selection of electrode and carrier materials, cell design and operational conditions, are described. The knowledge gaps are individuated, and possible solutions are proposed to achieve stable and productive biofilms in MES cathodes.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Bioresource Technolo...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Bioresource Technology
    Article . 2022 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Recolector de Ciencia Abierta, RECOLECTA
    Article . 2022 . Peer-reviewed
    License: CC BY
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    DUGiDocs – Universitat de Girona
    Article . 2022 . Peer-reviewed
    License: CC BY
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    hybrid
    43
    citations43
    popularityTop 10%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Bioresource Technolo...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Bioresource Technology
      Article . 2022 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Recolector de Ciencia Abierta, RECOLECTA
      Article . 2022 . Peer-reviewed
      License: CC BY
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      DUGiDocs – Universitat de Girona
      Article . 2022 . Peer-reviewed
      License: CC BY
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
673 Research products
  • Authors: O’Gorman, E.J.; Warner, E.; Marteinsdóttir, B.; Helmutsdóttir, V.F.; +2 Authors

    Herbivory assessments were made at the plant community and species levels. We focused on three plant species with a widespread occurrence across the temperature gradient: cuckooflower (Cardamine pratensis, Linnaeus), common mouse-ear (Cerastium fontanum, Baumgerten), and marsh violet (Viola palustris, Linnaeus). For assessments of invertebrate herbivory at the species level, thirty individuals per species of C. pratensis, C. fontanum, and V. palustris were marked in each of ten plots, using a stratified random sampling method where individuals were randomly selected, but the full range of within-plot soil temperatures was represented. For assessments of invertebrate herbivory at the community level, five 50 × 50 cm quadrats were marked at random points in eight of the plots that best captured the full temperature gradient. The community-level herbivory assessment was conducted on 19th June. The number of damaged plants was recorded out of 100 random individuals, selected using a 10 × 10 grid within each 50 × 50 cm quadrat. For the species-level herbivory assessment, individual marked plants were surveyed for signs of invertebrate herbivory every two weeks from 30th May to 2nd July, generating three time-points per species. At each survey, all marked individuals for each species were assessed within a 48-hour period. Plants were recorded as damaged or not damaged by invertebrate herbivores at each time-point. Further details of how phenological stage of development, vegetation community composition, soil temperature, moisture, pH, nitrate, ammonium, and phosphate were recorded are provided in the supporting documentation. This is a dataset of environmental data, vegetation cover, and community- and species-level invertebrate herbivory, sampled at 14 experimental soil plots in the Hengill geothermal valley, Iceland, from May to July 2017. The plots span a temperature gradient of 5-35 °C on average over the sampling period, yet they occur within 1 km of each other and have similar soil moisture, pH, nitrate, ammonium, and phosphate.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Opito, Emmanuel A.; Alanko, Timo; Kalbitzer, Urs; Nummelin, Matti; +3 Authors

    Data from: 30 Years Brings Changes to the Arthropod Community of Kibale National Park, Uganda by Opito, E.A., T. Alanko, U. Kalbitzer, M. Nummelin, P. Omeja, A. Valtonen, and Colin A. Chapman. 2023, Biotropica, Article DOI: 10.1111/btp.13206

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.17617/3....
    Dataset . 2023
    License: CC BY SA
    Data sources: Datacite
    B2FIND
    Dataset . 2023
    Data sources: B2FIND
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.17617/3....
      Dataset . 2023
      License: CC BY SA
      Data sources: Datacite
      B2FIND
      Dataset . 2023
      Data sources: B2FIND
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

    Data and GrADS scripts needed to reproduce the figures in the article "Probabilistic forecasts of near-term climate change: verification for temperature and precipitation changes from years 1971-2000 to 2011-2020", submitted for publication in Climate Dynamics. Please see the file README for further details.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility43
    visibilityviews43
    downloaddownloads25
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Virtanen, E. A.; Lappalainen, J.; Nurmi, M.; Viitasalo, M; +6 Authors

    Dataset related to the article: Virtanen, E.A., Lappalainen, J., Nurmi, M., Viitasalo, M., Tikanmäki, M., Heinonen, J., Atlaskin, E., Kallasvuo, M., Tikkanen, H., Moilanen, A. (2022) Balancing profitability of energy production, societal impacts and biodiversity in offshore wind farm design. Renewable and Sustainable Energy Reviews 158, 112087. Dataset includes suitability maps for offshore windfarms, where priority values are scaled between 0-1 (note the reversed value scale): analysis solution (A) economy, (B) society, (C) biodiversity, (D) restrictions, (E) A+B+C without restrictions and (F) A+B+C with restrictions. Dataset includes also the conflict map (and R script), where each three main solutions (A, B, C) are mapped onto an RGB color composite map. Additional details can be found from the published article: https://doi.org/10.1016/j.rser.2022.112087

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2022
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2022
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2022
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2022
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2022
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2022
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Abotaleb Salehnasab; Harold E. Burkhart; Mahmoud Bayat; Bagher Khaleghi; +2 Authors

    The Hyrcanian forests of Iran are mainly managed with the single-selection silvicultural technique. Despite significant ecological benefits associated with selection cutting, this type of forest management leads towards more challenging situations where it is difficult to maintain and practice successful forestry than in even-aged systems. Therefore, this study provides relevant management tools in the form of models to estimate low growth levels in Hyrcanian forests. In the present study, estimation of the population growth rate and then the allowable cut rate of these forests using a matrix model have been calculated in the Gorazbon district. For this purpose, the data of 256 permanent sample plots measured during the years between 2003 and 2012, as well as the data recorded about the trees harvested according to the forestry plan, have been used. As a first step, the most frequently occurring tree species were divided into four groups (beech, hornbeam, chestnut-leaved oak, and other species). Compartments of the district were divided into two groups of logged and unlogged compartments. The purpose of this division was to estimate the allowable cut and compare its volume with the volumes of observed and predicted allowable cuts obtained from forestry plans. The results showed that the total operated allowable cut (OAC) in logged compartments was more than the estimated allowable cut (EAC). In unlogged compartments, the total predicted allowable cut (PAC) was more than EAC. A comparison of EAC and OAC showed that hornbeam has been harvested more than its potential. However, chestnut-leaved oak and other species group have depicted opposite trends. Our models provide important advancements for estimating allowable cut that can enhance the goal of practicing sustainable forestry.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article . 2022 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article . 2022
    Data sources: DOAJ
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    VTechWorks
    Other literature type . 2022
    License: CC BY
    Data sources: VTechWorks
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    gold
    3
    citations3
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article . 2022 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article . 2022
      Data sources: DOAJ
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      VTechWorks
      Other literature type . 2022
      License: CC BY
      Data sources: VTechWorks
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Limoges, Audrey; Ribeiro, Sofia; Van Nieuwenhove, Nicolas; Jackson, Rebecca; +3 Authors

    A Calypso Square gravity core AMD15-Casq1 (543 cm) and corresponding box core (40 cm) were collected in 2015 from the central north NOW (77°15.035’ N, 74°25.500’ W, 692 m water depth) (Figure 1) during the ArcticNet Leg 4a, onboard the Canadian Coast Guard Ship Amundsen. Core chronology: The core chronology is based on 11 accelerator mass spectrometry (AMS) dates on mollusc shells from the Calypso core, and 210Pb and 137Cs measurements on 20 samples from the box core (see Jackson et al. (2021) for more details). Here, all radiocarbon dates were calibrated using the latest marine calibration curve (Marine20; Heaton et al., 2020; Table S1). In Jackson et al. (2021), and using the Marine13 calibration curve, a local reservoir correction of 140 ± 60 years was applied based on measurements from a live marine mollusc specimen collected from the NOW before the mid-1950’s (McNeely & Brennan, 2005). Using the Marine20 calibration curve, this specimen now yields a reservoir offset of –4 ± 60 years. In line with this reduced reservoir offset for the Marine 20 (vs. Marine13) calibration curve, and owing to the lack of a regional ΔR term for the polynya (Pieńkowski et al., 2023), no additional reservoir age correction (i.e., ΔR=0) was applied. A mixed age-depth model was constructed using the bacon-package in R (Blaauw & Christen, 2011). Accordingly, the composite core covers the last ca. 3800 cal years BP. We note that the new calibration only resulted in negligible changes compared to the age model presented in Jackson et al. (2021). Diatom analyses: Sediment samples for diatom analysis were prepared following the protocol described in Crosta et al. (2020). Approximately 0.3 g of dry sediment was treated with an oxidative solution composed of hydrogen peroxide (H2O2), distilled water and tetrasodium pyrophosphate (decahydrate, Na4O7P2-10H2O) in a warm bath (~65°C) for several hours until the reaction ceased. The residue was then rinsed repeatedly with distilled water by centrifugation (7 min at 1200 rpm). Hydrochloric acid (HCl, 30%) was used to remove the carbonate content. The residue was again rinsed several times until neutral pH, and microscopy slides were mounted in Naphrax©. In each sample, ca. 300 diatom valves were identified to the lowest taxonomic level possible. Resting spores of Chaetoceros were counted, but not included in the relative abundance calculations. Census counts were done using a light microscope (Olympus BX53, UNB) with dark field, phase contrast optics and oil immersion, at 1000X magnification. We followed the counting rules presented in Crosta and Koç (2007): specimens were counted when at least half of the valve was observed, with the exception of Rhizosolenia and Thalassiothrix taxa that were only counted when the spine-like proboscis or appendix was visible, respectively. The Pikialasorsuaq (North Water polynya) is an area of local and global cultural and ecological significance. However, over the last decades, the region has been subject to rapid warming and, in some recent years, the seasonal ice arch that has historically defined the polynya’s northern boundary has failed to form. Both factors are deemed to alter the polynya’s ecosystem functioning. To understand how climate-induced changes to the Pikialasorsuaq impact the basis of the marine food web, we explored diatom community-level responses to changing conditions, from a sediment core spanning the last 3800 years. Four metrics were used: total diatom concentrations, taxonomic composition, mean size, and diversity. Generalized additive model statistics highlight significant changes at ca. 2400, 2050, 1550, 1200, and 130 cal years BP, all coeval with known transitions between colder and warmer intervals of the Late Holocene, and regime shifts in the Pikialasorsuaq. Notably, a weaker/contracted polynya during the Roman Warm Period and Medieval Climate Anomaly caused the diatom community to reorganize via shifts in species composition, with the presence of larger taxa but lower diversity, and significantly reduced export production. This study underlines the high sensitivity of primary producers to changes in the polynya dynamics and illustrates that the strong pulse of early-spring cryopelagic diatoms that makes the Pikialasorsuaq exceptionally productive may be jeopardized by rapid warming and associated Nares Strait ice arch destabilization. Future alterations to the phenology of primary producers may disproportionately impact higher trophic levels and keystone species in this region, with implications for Indigenous Peoples and global diversity.  # Marine diatoms record Late Holocene regime shifts in the Pikialasorsuaq ecosystem [https://doi.org/10.5061/dryad.cz8w9gj8p](https://doi.org/10.5061/dryad.cz8w9gj8p) This dataset includes diatom counts (relative abundances, %) from core AMD15-Casq1. Diatoms were analyzed at a 1 to 10 cm sampling interval, which corresponds to an effective age resolution ranging from ca. 3 to 64 years (mean: 31 years). Absolute abundances are reported in valves per g of dry sediment. Fluxes were calculated by combining diatom concentrations (valves and spores g-1) with mass accumulation rates (g cm-2 yr-1). ## Description of the data and file structure Diatom data are presented against depth and modelled age (years BP) in the sediment archive. ## Sharing/Access information n/a ## Code/Software n/a

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2023
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2023
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility3
    visibilityviews3
    downloaddownloads2
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2023
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2023
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Robinson, Sinikka; O'Gorman, Eoin; Frey, Beat; Hagner, Marleena; +1 Authors

    Study site This is a dataset of soil physiochemical properties, bacterial and fungal abundance, and above and belowground plant and invertebrate biomass, sampled at 40 soil plots in the Hengill geothermal valley, Iceland, from 15th to 22nd August 2018. The plots, measuring approximately 1 m2, evenly span a temperature gradient of 10-35°C. The dataset also includes data on the decomposition rate of soil organic matter, which was sampled at 60 plots in the Hengill valley from May to July 2015 (see Robinson et al. 2021 for plot details and sampling regime). Soil properties Soil temperature was measured at 5 cm depth at each plot on 15th, 18th, and 22nd August, and a mean plot temperature calculated. Soil physiochemical properties were analysed from 3 soil cores of 3 cm in diameter, taken from the upper 10 cm soil stratum at each plot; one quarter of each subsample was pooled to obtain an estimate per plot. Aboveground plant matter, excluding roots, were removed from each core. Percentage soil moisture was calculated by measuring the weight of one pooled soil sample before and after drying for 24 h in a 70°C drying oven. Soil pH was obtained from 20 g of the dry soil by adding 100 ml distilled water, shaking for 5 min on 150 rpm, letting the sample stand for 2 h, and measuring soil pH from the water layer using an InoLab pH 720 (WTW) probe. Soil PO4, NH4, and NO3 concentrations were analysed from a second pooled soil; 60 g of fresh soil was extracted in 100 ml distilled water, filtered through a GF/C (1.2μm) glass microfiber filter (Whatman, GE Healthcare Europe GmbH), and analysed using a Lachat QuikChem 8000 analyser (Zallweger Analytics, Inc., Lachat Instruments Division, USA). Total mineral N was calculated as the sum of NH4 and NO3. Soil organic matter content (excluding dry root biomass) was calculated as the weight lost from an oven dried (105°C for 24 hours) soil sample after heating at 550 °C for 5 h. Decomposition rate of soil organic matter was measured using the Cotton-strip Assay method (Tiegs et al. 2013) by placing a 2.5 cm x 8 cm strip of Fredrix-brand unprimed 12-oz. heavyweight cotton fabric (Style #548) 5 cm belowground at 60 plots, concurrently with a Maxim Integrated DS1921G Thermocron iButton temperature logger, on 13th May 2015. The strips were collected on 3rd July, rinsed with stream water to remove residual soil, soaked in 96% ethanol for 30 seconds to kill bacteria and halt decomposition, and dried at 60 °C for 12 h. Using a universal testing machine (Instron 5866 with 500 kN tensile holding clamps), maximum tensile strench of each cotton strip was measured. % tensile loss (proxy for decomposition) was calculated as (C-T) / C x 100, where T is the maximum tensile strength for each strip collected from the field, and C is the mean tensile strength of seven control strips, which had not been placed in the ground. See Robinson et al. 2021 for detailed description of plots sampled in 2015. Microbial abundance Bacterial and fungal abundance was estimated from additional soil cores of 3 cm in diameter taken from the upper 4 cm soil stratum (including the litter layer) at each plot. DNA was extracted using the PowerSoil DNA Isolation Kit (Qiagen, Germany). DNA was quantified using the high-sensitivity Qubit assay (Thermo Fisher Scientific, Switzerland). Relative abundances of bacterial and fungal communities were determined by quantitative PCR (qPCR) on an ABI7500 Fast Real-Time PCR system (Applied Biosystems, Foster City, CA, USA). PCR amplification of partial bacterial small-subunit ribosomal RNA genes (region V1–V3 of 16S; primers 27F and 512R) and fungal ribosomal internal transcribed spacers (region ITS2; primers IT3 and ITS4) was performed as described previously (Frey et al. 2020, Frey et al. 2021). For qPCR analyses, 2.5 ng DNA in a total volume of 6.6 µL and 8.4 µL GoTaq qPCRMaster Mix (Promega, Switzerland), containing 1.8 mM of each primer and 0.2 mg mL-1 of BSA, were used. The PCR conditions consisted of an initial denaturation at 95 ºC for 10 min, 40 cycles of denaturation at 95 ºC for 40 s, annealing at 58 ºC for 40 s and elongation at 72 ºC for 60 s followed by the final data acquisition step at 80 ºC for 60 s. The specificity of the amplification products was confirmed by melting-curve analysis. Three standard curves per target region (correlations ≥0.997) were obtained using tenfold serial dilutions (10-1 to 10-9 copies) of plasmids generated from cloned targets (Frey et al. 2020). Data were converted to represent the average copy number of targets per μg DNA and per g soil. Vegetation properties Vascular plant biomass was measured from a randomly placed 30 x 30 cm quadrat at each plot. To measure aboveground biomass (AGB) of plants, the aboveground layer of vegetation was cut and removed, dried at 70 °C for 24 h and weighed to obtain biomass per unit area. AGB was estimated as the biomass of graminoids plus forbs; total biomass of mosses was also estimated. Graminoid leaf N concentration was analysed from dried and ground leaf material using a LECO CNS-2000 analyser (LECO Corporation, Saint Joseph, MI, USA). Belowground biomass (BGB) of vascular plants was estimated from a soil core of 3 cm in diameter taken from the 10 cm upper soil stratum (excluding aboveground plant material) at each quadrat. Roots were extracted from the soil cores by rinsing in water using a 250-μm sieve, dried at 70 °C for 24 hours and weighed to obtain biomass per unit area. Root to shoot ratio was calculated as dry weight of BGB per cm2 divided by dry weight of AGB per cm2, and the total vascular plant biomass as the sum of AGB and BGB. Invertebrate community Enchytraied and nematode biomass was estimated from 3 soil cores of 3 cm in diameter taken from the upper 4 cm soil stratum (including litter layer) at each plot. Enchytraieds were extracted using wet funnels (O'Connor 1962) from a pooled sample of one half of each of the three soil cores, counted live, and classified into size classes (length 0-2, 2.1-4, 4.1-6, 6.1-8, 8.1-10, 10.1-12 or >12 mm) and their biomass was calculated according to Abrahamsen (1973). Nematodes were also extracted using wet funnels (Sohlenius 1979) from a pooled sample of a quarter of each of the three soil cores, counted live and preserved in 70% ethanol. Fifty individuals from each sample were identified and classified by trophic group (bacterivore, fungivoe, herbivore, omnivore, predator; Yeates et al. 1993). Soil micro-arthropods were extracted using a modified high-gradient-extractor (MacFayden 1961) from soil cores of 5.4 cm in diameter, taken from the upper 4 cm soil straum (including litter layer) at each plot. Total micro-arthropod biomass was calculated as the sum of all individual species' biomasses, obtained using length-weight regressions (see Robinson et al. 2021), and abundance of individual trophic groups (microbivore/detritivore, herbivore, omnivore, predator) calculated. Epigeal invertebrates were sampled by deploying five pitfall traps in each plot. White plastic cups of 7 cm in diameter and 8.5 cm in depth were filled with 10 ml of ethylene glycol and 30 ml of stream water, and left for 48 h before collection. Samples from the five traps at each plot were combined into a 250-μm sieve and stored in 70% ethanol. Invertebrate activity density (abundance) was estimate as the total number of individuals in the five traps, and total biomass as the sum of all individual species' biomasses. Invertebrates were identified to species level where possible and split into trophic groups, exluding adult Diptera, Hymenoptera, and Lepidoptera. Further details of sampling and collection of epigeal invertebrates are detailed in Robinson et al. (2018). References: Abrahamsen G. (1973) Studies on body-volume, body-surface area, density, and live weight of enchytraeidae (Oligochaeta). Pedobiologia 13: 6–15. Frey B, Carnol M, Dharmarajah A, Brunner I, Schleppi P. (2020) Only minor changes in the soil microbiome of a sub-alpine forest after 20 years of moderately increased nitrogen loads. Frontiers in Forests and Global Change 3: 77. Frey B, Walthert L, Perez-Mon C, Stierli B, Köchli R, Dharmarajah A, Brunner I (2021) Deep soil layers of drough-exposed forests harbor poorly known bacterial and fungal communities. Frontiers in Microbiology 12: 1061. MacFayden A. (1961) Improved funnel-type extractors for soil arthropods. Journal of Animal Ecology 30: 171–184. O’Connor FB. (1962) The extraction of Enchytraeidae from soil. In: P. W. Murphy (Ed.) Progress in soil zoology. Butterworth, London, UK; 279–285. Robinson SI, McLaughlin ÓB, Marteinsdóttir B, O'Gorman EJ. (2018) Soil temperature effects on the structure and diversity of plant and invertebrate communities in a natural warming experiment. Journal of Animal Ecology 87: 634–46. Robinson SI, Mikola J, Ovaskainen O, O’Gorman EJ. (2021) Temperature effects on the temporal dynamics of a subarctic invertebrate community. Journal of Animal Ecology 90: 1217-1227. Sohlenius B. (1979) A carbon budget for nematodes, rotifers and tardigrades in a Swedish coniferous forest soil. Holarctic Ecology 2: 30–40. Tiegs SD, Clapcott JE, Griffiths NA, Boulton AJ. (2013) A standardized cotton-strip assay for measuring organic-matter decomposition in streams. Ecological Indicators 32: 131–139. Yeates GW, Bongers T, De Goede RGM, Freckman DW, Georgieva SS. (1993) Feeding habits in soil nematode families and genera—an outline for soil ecologists. Journal of Nematology 25: 315–331. This is a dataset of soil physiochemical properties, bacterial and fungal abundance, and above and belowground plant and invertebrate biomass, sampled at 40 plots in the Hengill geothermal valley, Iceland, from 15th to 22nd August 2018. The plots span a temperature gradient of 10-35 °C over the sampling period, and this temperature gradient is consistent over time. The dataset also includes data on the decomposition rate of soil organic matter, which was sampled at 60 plots in the Hengill valley from May to July 2015. See README_Robinson_Hengill2018.txt 

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2022
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2022
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility32
    visibilityviews32
    downloaddownloads21
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2022
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2022
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Helmi Räisänen; Emma Hakala; Jussi T. Eronen; Janne I. Hukkinen; +1 Authors

    In security and foreign policy discourse, environmental issues have been discussed increasingly as security threats that require immediate action. Yet, as the traditional security sector does not provide straightforward means to deal with climate change and other environmental issues, this has prompted concerns over undue securitisation and ill-placed extreme measures. We argue that an effective policy to address foreseeable environmental security threats can only be developed and maintained by ensuring that it remains resolutely within the domain of civil society. In this article, we consider the case of Finland, where the policy concept of comprehensive security has been presented as the official guideline for security and preparedness activities in different sectors. Comprehensive security aims to safeguard the vital functions of society through cooperation between authorities, business operators, organisations, and citizens. We analyse the opportunities and challenges of Finland’s comprehensive security policy in addressing environmental changes through a three-level framework of local, geopolitical and structural security impacts. Our empirical evidence is based on a set of expert interviews (n = 40) that represent a wide range of fields relevant to unconventional security issues. We find that the Finnish comprehensive security model provides an example of a wide and inclusive perspective to security which would allow for taking into account environmental security concerns. However, due to major challenges in the implementation of the model, it does not fully incorporate the long-term, cross-sectoral, and cascading aspects of environmental threats. This weakens Finland’s preparedness against climate change which currently poses some of the most urgent environmental security problems.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Politics and Governa...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Politics and Governance
    Article . 2021 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Politics and Governance
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Politics and Governance
    Article . 2021
    Data sources: DOAJ
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    gold
    7
    citations7
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Politics and Governa...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Politics and Governance
      Article . 2021 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Politics and Governance
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Politics and Governance
      Article . 2021
      Data sources: DOAJ
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Ilja Vuorinne; Janne Heiskanen; Marianne Maghenda; Lucas Mwangala; +2 Authors

    Abstract Biomass is a key variable for crop monitoring and for assessing carbon stocks and bioenergy potential. This study aimed to develop an allometric model for predicting the dry leaf biomass of sisal, an agave plant with crassulacean acid metabolism grown for fibre production in the tropics and subtropics and whose biomass can be utilised as a feedstock to produce biogas through anaerobic digestion. The allometric model was used to estimate leaf biomass and productivity across different stand ages in a sisal plantation in semi-arid region in south-east Kenya (annual rainfall 611 mm and temperature 24.9 °C). Based on a sample of 38 leaves, the best predictor for biomass was leaf maximum width and plant height used as a combined variable in a log-log regression model (cross-validated R2 = 0.96 and root-mean-square error = 7.69 g). The mean productivity in nine 26- to 36-month-old plots was 11.1 Mg ha−1 yr−1, which could potentially yield approximately 3000 m3 CH4 ha−1 yr−1. The leaf biomass in 55 field plots (400 m2 in area) ranged from 2.7 to 42.7 Mg ha−1, with mean at 13.5 Mg ha−1, which equals to 6.3 Mg C ha−1. The yielded allometric equations can be utilised for predicting the leaf biomass of sisal in similar agro-ecological zones. The estimates on plantation biomass can be used in assessing the role of sisal plantations as a regional carbon storage. In addition, the results provide reference on the productivity of agave and crassulacean acid metabolism in semi-arid regions of East Africa, where such reports are few.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biomass and Bioenerg...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Biomass and Bioenergy
    Article . 2021 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Biomass and Bioenergy
    Article
    License: CC BY
    Data sources: UnpayWall
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    hybrid
    5
    citations5
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biomass and Bioenerg...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Biomass and Bioenergy
      Article . 2021 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Biomass and Bioenergy
      Article
      License: CC BY
      Data sources: UnpayWall
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Puig Broch, Sebastià; Vassilev, Igor; Dessì, Paolo; Kokko, Marika;

    Cathodic biofilms have an important role in CO2 bio-reduction to carboxylic acids and biofuels in microbial electrosynthesis (MES) cells. However, robust and resilient electroactive biofilms for an efficient CO2 conversion are difficult to achieve. In this review, the fundamentals of cathodic biofilm formation, including energy conservation, electron transfer and development of catalytic biofilms, are presented. In addition, strategies for improving cathodic biofilm formation, such as the selection of electrode and carrier materials, cell design and operational conditions, are described. The knowledge gaps are individuated, and possible solutions are proposed to achieve stable and productive biofilms in MES cathodes.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Bioresource Technolo...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Bioresource Technology
    Article . 2022 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Recolector de Ciencia Abierta, RECOLECTA
    Article . 2022 . Peer-reviewed
    License: CC BY
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    DUGiDocs – Universitat de Girona
    Article . 2022 . Peer-reviewed
    License: CC BY
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    hybrid
    43
    citations43
    popularityTop 10%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Bioresource Technolo...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Bioresource Technology
      Article . 2022 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Recolector de Ciencia Abierta, RECOLECTA
      Article . 2022 . Peer-reviewed
      License: CC BY
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      DUGiDocs – Universitat de Girona
      Article . 2022 . Peer-reviewed
      License: CC BY
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.