- home
- Advanced Search
- Energy Research
- agricultural and veterinary science...
- 12. Responsible consumption
- 11. Sustainability
- FR
- NL
- CH
- Energy Research
- agricultural and veterinary science...
- 12. Responsible consumption
- 11. Sustainability
- FR
- NL
- CH
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 France, France, France, United Kingdom, France, Netherlands, Russian Federation, France, France, France, France, France, FrancePublisher:Elsevier BV Publicly fundedFunded by:RSF | Large-scale digital soil ..., ARC | Dynamic soil landscape ca...RSF| Large-scale digital soil mapping based on remote sensing data ,ARC| Dynamic soil landscape carbon modellingMinasny, Budiman; Malone, Brendan P.; Mcbratney, Alex B.; Angers, Denis A.; Arrouays, Dominique; Chambers, Adam; Chaplot, Vincent; Chen, Zueng-Sang; Cheng, Kun; Das, Bhabani S.; Field, Damien J.; Gimona, Alessandro; Hedley, Carolyn B.; Hong, Suk Young; Mandal, Biswapati; Marchant, Ben P.; Martin, Manuel; Mcconkey, Brian G.; Mulder, Vera Leatitia; O'Rourke, Sharon; Richer-De-Forges, Anne C; Odeh, Inakwu; Padarian, José; Paustian, Keith; Pan, Genxing; Poggio, Laura; Savin, Igor; Stolbovoy, Vladimir; Stockmann, Uta; Sulaeman, Yiyi; Tsui, Chun-Chih; Vågen, Tor-Gunnar; van Wesemael, Bas; Winowiecki, Leigh;The ‘4 per mille Soils for Food Security and Climate’ was launched at the COP21 with an aspiration to increase global soil organic matter stocks by 4 per 1000 (or 0.4 %) per year as a compensation for the global emissions of greenhouse gases by anthropogenic sources. This paper surveyed the soil organic carbon (SOC) stock estimates and sequestration potentials from 20 regions in the world (New Zealand, Chile, South Africa, Australia, Tanzania, Indonesia, Kenya, Nigeria, India, China Taiwan, South Korea, China Mainland, United States of America, France, Canada, Belgium, England & Wales, Ireland, Scotland, and Russia). We asked whether the 4 per mille initiative is feasible for the region. The outcomes highlight region specific efforts and scopes for soil carbon sequestration. Reported soil C sequestration rates globally show that under best management practices, 4 per mille or even higher sequestration rates can be accomplished. High C sequestration rates (up to 10 per mille) can be achieved for soils with low initial SOC stock (topsoil less than 30 t C ha− 1), and at the first twenty years after implementation of best management practices. In addition, areas which have reached equilibrium will not be able to further increase their sequestration. We found that most studies on SOC sequestration only consider topsoil (up to 0.3 m depth), as it is considered to be most affected by management techniques. The 4 per mille number was based on a blanket calculation of the whole global soil profile C stock, however the potential to increase SOC is mostly on managed agricultural lands. If we consider 4 per mille in the top 1m of global agricultural soils, SOC sequestration is between 2-3 Gt C year− 1, which effectively offset 20–35% of global anthropogenic greenhouse gas emissions. As a strategy for climate change mitigation, soil carbon sequestration buys time over the next ten to twenty years while other effective sequestration and low carbon technologies become viable. The challenge for cropping farmers is to find disruptive technologies that will further improve soil condition and deliver increased soil carbon. Progress in 4 per mille requires collaboration and communication between scientists, farmers, policy makers, and marketeers.
NERC Open Research A... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverWageningen Staff PublicationsArticle . 2017License: CC BY NC NDData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2017License: CC BY NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.geoderma.2017.01.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2K citations 1,540 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverWageningen Staff PublicationsArticle . 2017License: CC BY NC NDData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2017License: CC BY NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.geoderma.2017.01.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Germany, France, FrancePublisher:Informa UK Limited Wassmann, Reiner; Pasco R; Zerrudo J; Ngo DM; Vo TBT; Sander, Björn Ole;handle: 10568/100183
The new GHG calculator named SECTOR (Source-selective and Emission-adjusted GHG CalculaTOR for Cropland) is based on the IPCC Tier 2 approach for rice as well as other crops. The new features of SECTOR facilitate high flexibility in terms of entering newly obtained emission factors, easy data transfer from crop statistics for entering activity data and detailed specifications of GHG scenarios. A new procedure of entering frequency-based data on current water management practices was also developed. Moreover, the tool allows deviating from the 2006 IPCC Guidelines by considering field records with high background levels of N₂O emissions in the overall assessment of GHG emissions. This article assesses different applications of the tool, namely as add-ons to field measurements, for GHG calculation at national/sectorial scale and within measurement, reporting and verification of development projects. SECTOR is downloadable in the form of templates that can be used to develop custom versions with varying levels of disaggregated data entries at different scales. A case study for rice production in one Vietnamese province demonstrates the potential to display GHG results in combination with GIS. SECTOR can easily be adjusted to incorporate new emission factors and calculation procedures expected in forthcoming revisions of the IPCC Guidelines.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2019License: CC BY NC NDFull-Text: https://hdl.handle.net/10568/100183Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/17583004.2018.1553436&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2019License: CC BY NC NDFull-Text: https://hdl.handle.net/10568/100183Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/17583004.2018.1553436&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:Springer Science and Business Media LLC Authors: Hostyn, Guillaume; Schwartz, C.; Côme, Jean-Marie; Ouvrard, Stéphanie;pmid: 35394632
Once previous industrial activity has ceased, brownfields are found in urban and suburban environments and managed in different ways ranging from being left untouched to total reconversion. These situations apply to large surface areas often impacted by residual diffuse pollution. Though significant and preventing any sensitive use, residual contamination does not necessarily require treatment. Moreover, conventional treatments show their technical and economic limits in these situations and gentle remediation options such as phytomanagement might appear more relevant to the management of those sites. Thus, these sites face up two major issues: managing moderate contamination levels and providing an alternative use of economic interest. This work proposes to assess a management strategy associating the phytoremediation of organic pollution along with the production of biomass for energy generation production. A 16-week controlled growth experiment was conducted on a soil substrate moderately impacted by multiple pollution (trace elements, mainly Zn and Pb, and hydrocarbons), by associating rhizodegradation with Medicago sativa or biomass production with Robinia pseudoacacia or Alnus incana in monocultures. The effect of a microbial inoculum amendment on the performances of these treatments was also evaluated. Results showed total hydrocarbons (TH), and to a lesser extent polycyclic aromatic hydrocarbons (PAH), concentrations decreased over time, whatever the plant cover. Good biomass production yields were achieved for both tree species in comparison with the control sample, even though R. pseudoacacia seemed to perform better. Furthermore, the quality of the biomass produced was in conformity with the thresholds set by the legislation concerning its use as a renewable energy source.
Institut National de... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Full-Text: https://hal.univ-lorraine.fr/hal-03696022Data sources: Bielefeld Academic Search Engine (BASE)Environmental Science and Pollution ResearchArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-022-19963-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Institut National de... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Full-Text: https://hal.univ-lorraine.fr/hal-03696022Data sources: Bielefeld Academic Search Engine (BASE)Environmental Science and Pollution ResearchArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-022-19963-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2020 FrancePublisher:Elsevier BV James M. Njeru; Fred Kanampiu; Dan Makumbi; Leonard Rusinamhodzi; Leonard Rusinamhodzi;La combinaison de différents systèmes de culture et de travail du sol avec différents génotypes au cours de plusieurs saisons de culture peut révéler des opportunités d'intensification durable (IS). L'objectif de cette étude était d'évaluer la performance de six génotypes de maïs en culture intercalaire avec labour de conservation (sans labour) - deux options prometteuses pour le SI. L'expérience a été menée sur trois ans (ou six saisons de culture) à la station de recherche de Kiboko, au Kenya, avec la culture de la sole et le labour des plaques de moulage comme systèmes de production de base. Les résultats ont montré que les génotypes et les systèmes de culture du maïs avaient un effet significatif sur le rendement, mais que l'effet du travail du sol n'était pas significatif. De plus, il n'y avait pas d'effets interactifs significatifs des facteurs testés sur le rendement du maïs. Le génotype de maïs CKH10085 avait le rendement le plus élevé de 7,7 t ha-1 en culture en solitaire, mais il a également enregistré la plus grande pénalité de rendement en raison de la culture intercalaire de 1,1 t ha-1. D'autre part, le génotype CKH10717 a maintenu le même rendement moyen de 7,1 t ha-1 dans les systèmes de travail du sol conventionnels et de conservation. Les génotypes commerciaux CKH10080 et CKH08051 étaient plus stables que les autres génotypes expérimentaux dans les conditions variables de croissance et de gestion. Ces deux génotypes sont de maturité intermédiaire et de tolérance à la sécheresse, deux attributs essentiels à l'amélioration de la production de maïs. Les cultures intercalaires ont réduit les rendements de maïs en raison de la concurrence accrue, par exemple, le rendement global de la culture de la sole était de 7,1 t ha-1 par rapport à 6,4 t ha-1 en cultures intercalaires ; ce qui représente une pénalité de rendement global de 0,7 t ha-1. Les différences de performance des génotypes de maïs ont révélé des possibilités de déploiement de génotypes pour réduire les risques ou maximiser le rendement, en fonction des circonstances biophysiques et de l'objectif de production de l'agriculteur. La combinación de diferentes sistemas de cultivo y labranza con diferentes genotipos a lo largo de varias temporadas de cultivo puede revelar oportunidades para la intensificación sostenible (IS). El objetivo de este estudio fue evaluar el rendimiento de seis genotipos de maíz en cultivos intercalados con labranza conservadora (sin labranza), dos opciones prometedoras para SI. El experimento se llevó a cabo durante tres años (o seis temporadas de cultivo) en la Estación de Investigación de Kiboko, Kenia, con el cultivo de lenguado y el arado de vertederos como sistemas de producción de referencia. Los resultados mostraron que los genotipos de maíz y los sistemas de cultivo tuvieron un efecto significativo en el rendimiento, pero el efecto de la labranza no fue significativo. Además, no hubo efectos interactivos significativos de los factores probados en el rendimiento del maíz. El genotipo de maíz CKH10085 tuvo el mayor rendimiento de 7,7 t ha-1 en el cultivo de lenguado, pero también registró la mayor penalización de rendimiento debido al cultivo intercalado de 1,1 t ha-1. Por otro lado, el genotipo CKH10717 mantuvo el mismo rendimiento medio de 7,1 t ha-1 tanto en sistemas de labranza convencional como conservadora. Los genotipos comerciales CKH10080 y CKH08051 fueron más estables que los otros genotipos experimentales en las condiciones variables de crecimiento y manejo. Estos dos genotipos son de madurez intermedia y tolerancia a la sequía, dos atributos críticos para mejorar la producción de maíz. Los cultivos intercalados redujeron los rendimientos de maíz debido a una mayor competencia, por ejemplo, el rendimiento general del cultivo de lenguado fue de 7,1 t ha-1 en comparación con 6,4 t ha-1 en cultivos intercalados; lo que representa una penalización de rendimiento general de 0,7 t ha-1. Las diferencias en el rendimiento de los genotipos de maíz revelaron oportunidades para desplegar genotipos para reducir el riesgo o maximizar el rendimiento, dependiendo de las circunstancias biofísicas y el objetivo de producción del agricultor. Combining different cropping and tillage systems with different genotypes across several cropping seasons can reveal opportunities for sustainable intensification (SI). The objective of this study was to assess the performance of six maize genotypes under intercropping with conservation tillage (no-till) - two promising options for SI. The experiment was carried out over three years (or six cropping seasons) at Kiboko Research Station, Kenya with sole cropping and mouldboard ploughing as baseline production systems. Results showed that maize genotypes and cropping systems had a significant effect on yield, but the effect of tillage was not significant. Moreover, there was no significant interactive effects of the tested factors on maize yield. The maize genotype CKH10085 had the highest yield of 7.7 t ha-1 under sole cropping yet it also recorded the largest yield penalty due to intercropping of 1.1 t ha-1. On the other hand, genotype CKH10717 maintained the same average yield of 7.1 t ha-1 in both conventional and conservation tillage systems. The commercial genotype genotype CKH10080 and CKH08051 were more stable than the other experimental genotypes under the variable growing and management conditions. These two genotypes are of intermediate maturity and drought tolerance, two critical attributes to improved maize production. Intercropping reduced maize yields due to increased competition, for example the overall yield of sole cropping was 7.1 t ha-1 compared with 6.4 t ha-1 under intercropping; representing an overall yield penalty of 0.7 t ha-1. The differences in performance of maize genotypes revealed opportunities to deploy genotypes to reduce risk or maximize yield, depending on the biophysical circumstances and the production objective of the farmer. يمكن أن يكشف الجمع بين أنظمة المحاصيل والحراثة المختلفة والأنماط الجينية المختلفة عبر العديد من مواسم المحاصيل عن فرص للتكثيف المستدام (SI). كان الهدف من هذه الدراسة هو تقييم أداء ستة أنماط جينية للذرة تحت الزراعة البينية مع حراثة الحفظ (بدون حراثة) - وهما خياران واعدان لـ SI. تم إجراء التجربة على مدى ثلاث سنوات (أو ستة مواسم زراعة) في محطة أبحاث كيبوكو، كينيا باستخدام الزراعة الوحيدة وحرث ألواح القوالب كنظم إنتاج أساسية. أظهرت النتائج أن الأنماط الجينية للذرة وأنظمة المحاصيل كان لها تأثير كبير على المحصول، لكن تأثير الحراثة لم يكن كبيرًا. علاوة على ذلك، لم تكن هناك آثار تفاعلية كبيرة للعوامل التي تم اختبارها على محصول الذرة. كان للنمط الجيني للذرة CKH10085 أعلى إنتاجية تبلغ 7.7 طن هكتار -1 تحت المحصول الوحيد، ومع ذلك فقد سجل أيضًا أكبر عقوبة على المحصول بسبب المحصول البيني البالغ 1.1 طن هكتار -1. من ناحية أخرى، حافظ النمط الجيني CKH10717 على نفس متوسط العائد البالغ 7.1 طن هكتار -1 في كل من أنظمة الحراثة التقليدية وأنظمة الحفظ. كان النمط الجيني التجاري CKH10080 و CKH08051 أكثر استقرارًا من الأنماط الجينية التجريبية الأخرى في ظل ظروف النمو والإدارة المتغيرة. هذان النمطان الوراثيان لهما نضج متوسط وتحمل للجفاف، وهما سمتان حاسمتان لتحسين إنتاج الذرة. قللت الزراعة البينية من غلة الذرة بسبب زيادة المنافسة، على سبيل المثال، كان العائد الإجمالي للمحصول الوحيد 7.1 طن هكتار -1 مقارنة بـ 6.4 طن هكتار -1 تحت الزراعة البينية ؛ مما يمثل عقوبة إنتاجية إجمالية قدرها 0.7 طن هكتار -1. كشفت الاختلافات في أداء الأنماط الجينية للذرة عن فرص لنشر الأنماط الجينية لتقليل المخاطر أو زيادة الغلة، اعتمادًا على الظروف الفيزيائية الحيوية وهدف الإنتاج للمزارع.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/10568/119255Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fcr.2020.107738&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/10568/119255Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fcr.2020.107738&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:Elsevier BV Phyu Sin Thant; Apple Espino; Giulia Soria; Chan Myae; Edgard Rodriguez; Wilson John Barbon; Julian Gonsalves;handle: 10568/119418
Understanding the impacts of climate on food systems is vital to identifying the most effective food system interventions to support climate-smart agriculture. The study examines how climate change is affecting food systems and what can be done to mitigate its effects. Two methodological approaches were combined in the study. The first was an Asia-wide regional consultation and forum to explore a range of initiatives that transform food systems among stakeholders working in Myanmar. The second method was an in-depth food systems study employing qualitative methods in Htee Pu Village in the Myanmar Central Dry Zone, a research site of IIRR since 2017. Key informant interviews (KII) and focus group discussions (FGD) were conducted to capture insights and data. Food systems consist of components, drivers, actors, and elements that interact with one another and other systems such as social, health, and transportation. The Myanmar food system is complex. Making it sustainable and transformative requires a mix of different approaches implemented at various scales from local to national. It also requires actions that engage various actors in the system from producers to consumers. The study of the local food system of Htee Pu Village indicates that the village has a rural and traditional food system and that climate change is one of its key food system drivers. Climate change negatively impacted farming and agricultural practices and disrupted the input supply of the local food systems. The role of intermediaries such as traders and consolidators is critical in the supply and distribution of food in the Central Dry Zone. Improved and more connected roads are essential for the supply and distribution of food for the village. The informal market outlets serve as the primary food source or sale points for households. Household diets are inadequate in quantity as the population remains highly dependent on their crops for their diets due to relatively low income. Climate adaptation must be embedded in the local level management to mitigate the effect of climate change in food production in the longer term.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BY NC NDFull-Text: https://hdl.handle.net/10568/119418Data sources: Bielefeld Academic Search Engine (BASE)Environmental and Sustainability IndicatorsArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.indic.2022.100170&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BY NC NDFull-Text: https://hdl.handle.net/10568/119418Data sources: Bielefeld Academic Search Engine (BASE)Environmental and Sustainability IndicatorsArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.indic.2022.100170&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Preprint 2016 FrancePublisher:Elsevier BV Authors: Dragicevic, Arnaud; Lobianco, Antonello; Leblois, Antoine;In order to make a comparative assessment between productivity and risk, we study the forest planning by means of the Markowitz mean-value (M-V) portfolio model. By weighting the forest productivity with factors of future climate change effects, we compute the optimal tree species mixes, within reach of forest managers, in ninety French administrative departments. Considering three different productivity measures (wood production, carbon sequestration and economic valorization) and their respective variances, we find that: a) the empirical allocation lies between the optimizations of wood production and economic valorization; b) forest managers prefer low variance to high productivity, i.e. their revealed risk aversion is high; and c) unlike maximizing wood productivity or carbon sequestration, which leads to similar portfolios, maximizing the economic value of wood production decreases both the levels of wood production and carbon sequestration. Under high risk aversion, the economic valorization would lead to a high species specialization, which is very unlikely in reality. In all considered scenarios, the objectives set out in the Kyoto Protocol would be attained, which puts into question its relevance in terms of additionality.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverPreprint . 2015Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverMémoires en Sciences de l'Information et de la CommunicationPreprint . 2015Forest Policy and EconomicsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.forpol.2015.12.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverPreprint . 2015Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverMémoires en Sciences de l'Information et de la CommunicationPreprint . 2015Forest Policy and EconomicsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.forpol.2015.12.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Preprint 2018 FrancePublisher:MDPI AG Zeinab Saad; Akram Hijazi; Martins Sabovics; Zanda Kruma; Thierry Talou; Evita Straumite; Othmane Merah; Othmane Merah; Bouchra Sayed Ahmad; Bouchra Sayed Ahmad;Malnutrition continues to be a key health problem in developing regions. The valorization of food waste appears as an ideal way to prevent malnutrition and improve people’s access to food. Cumin (Cuminum cyminum L.) and caraway (Carum carvi L.) oilseeds are commonly used for cuisine and medicinal purposes. However, remaining cakes after oil extraction are usually underutilized. In order to assess the usefulness of these by-products in food applications, this study investigated the effect of their addition to protein bread formulations. Different levels (2, 4 and 6%) of whole seeds and cakes flour were used in the study. Fortified protein bread samples were compared to control protein bread and evaluated for their sensory, color, moisture, hardness properties, nutritional values as well as their biological activity. Results indicated that bread fortification shows a significant effect on bread properties depending on fortification level. A higher acceptability was observed specially for bread fortified with by-products flour. Increased tendencies of color darkness, moisture content, bread hardness, nutritional values as well as total phenolic content and radical scavenging activity compared to control bread were observed as the percentage of fortification increased in both cases. The overall results showed that the addition of cumin and caraway seeds and by-product flour can improve the antioxidant potential and overall quality of protein bread.
Foods arrow_drop_down FoodsOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2304-8158/7/3/28/pdfData sources: Multidisciplinary Digital Publishing InstituteOpen Archive Toulouse Archive OuverteArticle . 2018 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteInstitut National Polytechnique de Toulouse (Theses)Article . 2018 . Peer-reviewedData sources: Institut National Polytechnique de Toulouse (Theses)Institut National de la Recherche Agronomique: ProdINRAArticle . 2018License: CC BY SAFull-Text: https://hal.science/hal-02370140Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.20944/prepr...Article . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/foods7030028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 42 citations 42 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 12visibility views 12 download downloads 10 Powered bymore_vert Foods arrow_drop_down FoodsOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2304-8158/7/3/28/pdfData sources: Multidisciplinary Digital Publishing InstituteOpen Archive Toulouse Archive OuverteArticle . 2018 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteInstitut National Polytechnique de Toulouse (Theses)Article . 2018 . Peer-reviewedData sources: Institut National Polytechnique de Toulouse (Theses)Institut National de la Recherche Agronomique: ProdINRAArticle . 2018License: CC BY SAFull-Text: https://hal.science/hal-02370140Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.20944/prepr...Article . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/foods7030028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 FrancePublisher:Elsevier BV Jiang, Rong; Wang, Meie; Chen, Weiping; Li, Xuzhi; Balseiro-Romero, Maria; Baveye, Philippe;pmid: 31541819
Assessing the ecological risk of combined pollution, especially from a holistic perspective with the consideration of the overarching functions of soil ecosystem, is crucial and beneficial to the improvement of ecological risk assessment (ERA) framework. In this study, four soils with similar physicochemical properties but contrasting heavy metals contamination levels were selected to explore changes in the integrated functional sensitivity (MSI), resistance (MRS) and resilience (MRL) of soil microbial communities subjected to herbicide siduron, based on which the ecological risk of the accumulation of siduron in the four studied soils were evaluated. The results suggested that the microbial biomass carbon, activity of denitrification enzyme and nitrogenase were indicative of MSI and MRS, and the same three parameters plus soil basal respiration were indicative of MRL. Significant dose-effect relationships between siduron residues in soils and MSI, MRS and MRL under combined pollution were observed. Heavy metal polluted soils showed higher sensitivity and lower resistance to the additional disturbance of herbicide siduron due to the lower microbial biomass, while the resilience of heavy metal polluted soils was much higher due to the pre-adaption to the chemical stresses. The quantifiable indicator microbial functional stability was incorporated in the framework of ERA and the results showed that the accumulation of siduron in the studied soils could exhibit potential harm to the integrated functional stability of soil microbial community. Thus, this work provides insights into the application of integrated function of soil microbial community into the framework of ERA.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2019.113184&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2019.113184&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV Sophie Prache; Gabriel Laignel; J. P. Dulphy; Jacques Cabaret; Marc Benoit; Hervé Tournadre;pmid: 22444455
A 4-year interdisciplinary study was performed to compare two organically managed sheep production systems, using 118 ewes and 24 ha each. The systems differed in the ewes' reproduction rhythm: one lambing per ewe per year (1L/1Y), with the aim of balancing feed self-sufficiency and lamb marketing periods v. three lambings over 2 years (3L/2Y), with the aim of maximising ewes' productivity. The sustainability was evaluated through ewes' reproductive performance, lamb growth rate, carcass characteristics and quality, animal health, forage and feed self-sufficiency, soil mineral balance and gross margin. General animal health was assessed by recording ewe and lamb mortality and putative cause of death. Nematode digestive-tract strongyles parasitism was studied using faecal egg counts and necropsies. Carcass quality was assessed by recording carcass weight, conformation and fatness, and colour and firmness of subcutaneous fat. Thirty-three percent of 3L/2Y ewes lambed twice a year against 4% of 1L/1Y. Mean ewe productivity was 161.3% and 151.0% in 3L/2Y and 1L/1Y, respectively, and it was more variable between years in 3L/2Y. Average concentrate feed consumption and the corresponding cost per ewe were higher in 3L/2Y than in 1L/1Y (156 v. 121 kg, and €49.5 v. €39.3, respectively). Finally, average gross margin was lower in 3L/2Y than in 1L/1Y (€59 v. €65 per ewe, respectively). Even in year 2002, when ewe productivity was highest in 3L/2Y (193%), gross margin was not different between systems (€90 v. €86 per ewe in 3L/2Y and 1L/1Y, respectively), because of higher concentrate costs in 3L/2Y. The 3L/2Y animals presented a lower health status, with a higher lamb mortality (P < 0.05) and a higher digestive-tract strongyles and coccidia parasitism level (P < 0.05). Lamb carcass conformation, fatness and fat colour were not different between systems, but carcass weight and subcutaneous dorsal fat firmness were lower in 3L/2Y lambs than in 1L/1Y lambs (P < 0.05 and < 0.001, respectively). Intensification in an organically managed sheep system, through an increased reproduction rhythm, thus did not lead to better economic results and proved riskier, more variable and more difficult to manage, and so less sustainable. The less intensive system (1L/1Y) was both highly efficient from the animal standpoint and highly feed self-sufficient. The technical and economic results of this system were better than those of organic private farms in the same area and matched those of non-organic farms.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/s1751731109004133&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/s1751731109004133&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 FrancePublisher:MDPI AG Shalini Dhyani; Indu K Murthy; Rakesh Kadaverugu; Rajarshi Dasgupta; Manoj Kumar; Kritika Adesh Gadpayle;doi: 10.3390/f12030303
handle: 10568/113593
Traditional agroforestry systems across South Asia have historically supported millions of smallholding farmers. Since, 2007 agroforestry has received attention in global climate discussions for its carbon sink potential. Agroforestry plays a defining role in offsetting greenhouse gases, providing sustainable livelihoods, localizing Sustainable Development Goals and achieving biodiversity targets. The review explores evidence of agroforestry systems for human well-being along with its climate adaptation and mitigation potential for South Asia. In particular, we explore key enabling and constraining conditions for mainstreaming agroforestry systems to use them to fulfill global climate mitigation targets. Nationally determined contributions submitted by South Asian countries to the United Nations Framework Convention on Climate Change acknowledge agroforestry systems. In 2016, South Asian Association for Regional Cooperation’s Resolution on Agroforestry brought consensus on developing national agroforestry policies by all regional countries and became a strong enabling condition to ensure effectiveness of using agroforestry for climate targets. Lack of uniform methodologies for creation of databases to monitor tree and soil carbon stocks was found to be a key limitation for the purpose. Water scarcity, lack of interactive governance, rights of farmers and ownership issues along with insufficient financial support to rural farmers for agroforestry were other constraining conditions that should be appropriately addressed by the regional countries to develop their preparedness for achieving national climate ambitions. Our review indicates the need to shift from planning to the implementation phase following strong examples shared from India and Nepal, including carbon neutrality scenarios, incentives and sustainable local livelihood to enhance preparedness.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/113593Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/f12030303&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 72 citations 72 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/113593Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/f12030303&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 France, France, France, United Kingdom, France, Netherlands, Russian Federation, France, France, France, France, France, FrancePublisher:Elsevier BV Publicly fundedFunded by:RSF | Large-scale digital soil ..., ARC | Dynamic soil landscape ca...RSF| Large-scale digital soil mapping based on remote sensing data ,ARC| Dynamic soil landscape carbon modellingMinasny, Budiman; Malone, Brendan P.; Mcbratney, Alex B.; Angers, Denis A.; Arrouays, Dominique; Chambers, Adam; Chaplot, Vincent; Chen, Zueng-Sang; Cheng, Kun; Das, Bhabani S.; Field, Damien J.; Gimona, Alessandro; Hedley, Carolyn B.; Hong, Suk Young; Mandal, Biswapati; Marchant, Ben P.; Martin, Manuel; Mcconkey, Brian G.; Mulder, Vera Leatitia; O'Rourke, Sharon; Richer-De-Forges, Anne C; Odeh, Inakwu; Padarian, José; Paustian, Keith; Pan, Genxing; Poggio, Laura; Savin, Igor; Stolbovoy, Vladimir; Stockmann, Uta; Sulaeman, Yiyi; Tsui, Chun-Chih; Vågen, Tor-Gunnar; van Wesemael, Bas; Winowiecki, Leigh;The ‘4 per mille Soils for Food Security and Climate’ was launched at the COP21 with an aspiration to increase global soil organic matter stocks by 4 per 1000 (or 0.4 %) per year as a compensation for the global emissions of greenhouse gases by anthropogenic sources. This paper surveyed the soil organic carbon (SOC) stock estimates and sequestration potentials from 20 regions in the world (New Zealand, Chile, South Africa, Australia, Tanzania, Indonesia, Kenya, Nigeria, India, China Taiwan, South Korea, China Mainland, United States of America, France, Canada, Belgium, England & Wales, Ireland, Scotland, and Russia). We asked whether the 4 per mille initiative is feasible for the region. The outcomes highlight region specific efforts and scopes for soil carbon sequestration. Reported soil C sequestration rates globally show that under best management practices, 4 per mille or even higher sequestration rates can be accomplished. High C sequestration rates (up to 10 per mille) can be achieved for soils with low initial SOC stock (topsoil less than 30 t C ha− 1), and at the first twenty years after implementation of best management practices. In addition, areas which have reached equilibrium will not be able to further increase their sequestration. We found that most studies on SOC sequestration only consider topsoil (up to 0.3 m depth), as it is considered to be most affected by management techniques. The 4 per mille number was based on a blanket calculation of the whole global soil profile C stock, however the potential to increase SOC is mostly on managed agricultural lands. If we consider 4 per mille in the top 1m of global agricultural soils, SOC sequestration is between 2-3 Gt C year− 1, which effectively offset 20–35% of global anthropogenic greenhouse gas emissions. As a strategy for climate change mitigation, soil carbon sequestration buys time over the next ten to twenty years while other effective sequestration and low carbon technologies become viable. The challenge for cropping farmers is to find disruptive technologies that will further improve soil condition and deliver increased soil carbon. Progress in 4 per mille requires collaboration and communication between scientists, farmers, policy makers, and marketeers.
NERC Open Research A... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverWageningen Staff PublicationsArticle . 2017License: CC BY NC NDData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2017License: CC BY NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.geoderma.2017.01.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2K citations 1,540 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverWageningen Staff PublicationsArticle . 2017License: CC BY NC NDData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2017License: CC BY NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.geoderma.2017.01.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Germany, France, FrancePublisher:Informa UK Limited Wassmann, Reiner; Pasco R; Zerrudo J; Ngo DM; Vo TBT; Sander, Björn Ole;handle: 10568/100183
The new GHG calculator named SECTOR (Source-selective and Emission-adjusted GHG CalculaTOR for Cropland) is based on the IPCC Tier 2 approach for rice as well as other crops. The new features of SECTOR facilitate high flexibility in terms of entering newly obtained emission factors, easy data transfer from crop statistics for entering activity data and detailed specifications of GHG scenarios. A new procedure of entering frequency-based data on current water management practices was also developed. Moreover, the tool allows deviating from the 2006 IPCC Guidelines by considering field records with high background levels of N₂O emissions in the overall assessment of GHG emissions. This article assesses different applications of the tool, namely as add-ons to field measurements, for GHG calculation at national/sectorial scale and within measurement, reporting and verification of development projects. SECTOR is downloadable in the form of templates that can be used to develop custom versions with varying levels of disaggregated data entries at different scales. A case study for rice production in one Vietnamese province demonstrates the potential to display GHG results in combination with GIS. SECTOR can easily be adjusted to incorporate new emission factors and calculation procedures expected in forthcoming revisions of the IPCC Guidelines.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2019License: CC BY NC NDFull-Text: https://hdl.handle.net/10568/100183Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/17583004.2018.1553436&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2019License: CC BY NC NDFull-Text: https://hdl.handle.net/10568/100183Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/17583004.2018.1553436&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:Springer Science and Business Media LLC Authors: Hostyn, Guillaume; Schwartz, C.; Côme, Jean-Marie; Ouvrard, Stéphanie;pmid: 35394632
Once previous industrial activity has ceased, brownfields are found in urban and suburban environments and managed in different ways ranging from being left untouched to total reconversion. These situations apply to large surface areas often impacted by residual diffuse pollution. Though significant and preventing any sensitive use, residual contamination does not necessarily require treatment. Moreover, conventional treatments show their technical and economic limits in these situations and gentle remediation options such as phytomanagement might appear more relevant to the management of those sites. Thus, these sites face up two major issues: managing moderate contamination levels and providing an alternative use of economic interest. This work proposes to assess a management strategy associating the phytoremediation of organic pollution along with the production of biomass for energy generation production. A 16-week controlled growth experiment was conducted on a soil substrate moderately impacted by multiple pollution (trace elements, mainly Zn and Pb, and hydrocarbons), by associating rhizodegradation with Medicago sativa or biomass production with Robinia pseudoacacia or Alnus incana in monocultures. The effect of a microbial inoculum amendment on the performances of these treatments was also evaluated. Results showed total hydrocarbons (TH), and to a lesser extent polycyclic aromatic hydrocarbons (PAH), concentrations decreased over time, whatever the plant cover. Good biomass production yields were achieved for both tree species in comparison with the control sample, even though R. pseudoacacia seemed to perform better. Furthermore, the quality of the biomass produced was in conformity with the thresholds set by the legislation concerning its use as a renewable energy source.
Institut National de... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Full-Text: https://hal.univ-lorraine.fr/hal-03696022Data sources: Bielefeld Academic Search Engine (BASE)Environmental Science and Pollution ResearchArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-022-19963-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Institut National de... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Full-Text: https://hal.univ-lorraine.fr/hal-03696022Data sources: Bielefeld Academic Search Engine (BASE)Environmental Science and Pollution ResearchArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-022-19963-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2020 FrancePublisher:Elsevier BV James M. Njeru; Fred Kanampiu; Dan Makumbi; Leonard Rusinamhodzi; Leonard Rusinamhodzi;La combinaison de différents systèmes de culture et de travail du sol avec différents génotypes au cours de plusieurs saisons de culture peut révéler des opportunités d'intensification durable (IS). L'objectif de cette étude était d'évaluer la performance de six génotypes de maïs en culture intercalaire avec labour de conservation (sans labour) - deux options prometteuses pour le SI. L'expérience a été menée sur trois ans (ou six saisons de culture) à la station de recherche de Kiboko, au Kenya, avec la culture de la sole et le labour des plaques de moulage comme systèmes de production de base. Les résultats ont montré que les génotypes et les systèmes de culture du maïs avaient un effet significatif sur le rendement, mais que l'effet du travail du sol n'était pas significatif. De plus, il n'y avait pas d'effets interactifs significatifs des facteurs testés sur le rendement du maïs. Le génotype de maïs CKH10085 avait le rendement le plus élevé de 7,7 t ha-1 en culture en solitaire, mais il a également enregistré la plus grande pénalité de rendement en raison de la culture intercalaire de 1,1 t ha-1. D'autre part, le génotype CKH10717 a maintenu le même rendement moyen de 7,1 t ha-1 dans les systèmes de travail du sol conventionnels et de conservation. Les génotypes commerciaux CKH10080 et CKH08051 étaient plus stables que les autres génotypes expérimentaux dans les conditions variables de croissance et de gestion. Ces deux génotypes sont de maturité intermédiaire et de tolérance à la sécheresse, deux attributs essentiels à l'amélioration de la production de maïs. Les cultures intercalaires ont réduit les rendements de maïs en raison de la concurrence accrue, par exemple, le rendement global de la culture de la sole était de 7,1 t ha-1 par rapport à 6,4 t ha-1 en cultures intercalaires ; ce qui représente une pénalité de rendement global de 0,7 t ha-1. Les différences de performance des génotypes de maïs ont révélé des possibilités de déploiement de génotypes pour réduire les risques ou maximiser le rendement, en fonction des circonstances biophysiques et de l'objectif de production de l'agriculteur. La combinación de diferentes sistemas de cultivo y labranza con diferentes genotipos a lo largo de varias temporadas de cultivo puede revelar oportunidades para la intensificación sostenible (IS). El objetivo de este estudio fue evaluar el rendimiento de seis genotipos de maíz en cultivos intercalados con labranza conservadora (sin labranza), dos opciones prometedoras para SI. El experimento se llevó a cabo durante tres años (o seis temporadas de cultivo) en la Estación de Investigación de Kiboko, Kenia, con el cultivo de lenguado y el arado de vertederos como sistemas de producción de referencia. Los resultados mostraron que los genotipos de maíz y los sistemas de cultivo tuvieron un efecto significativo en el rendimiento, pero el efecto de la labranza no fue significativo. Además, no hubo efectos interactivos significativos de los factores probados en el rendimiento del maíz. El genotipo de maíz CKH10085 tuvo el mayor rendimiento de 7,7 t ha-1 en el cultivo de lenguado, pero también registró la mayor penalización de rendimiento debido al cultivo intercalado de 1,1 t ha-1. Por otro lado, el genotipo CKH10717 mantuvo el mismo rendimiento medio de 7,1 t ha-1 tanto en sistemas de labranza convencional como conservadora. Los genotipos comerciales CKH10080 y CKH08051 fueron más estables que los otros genotipos experimentales en las condiciones variables de crecimiento y manejo. Estos dos genotipos son de madurez intermedia y tolerancia a la sequía, dos atributos críticos para mejorar la producción de maíz. Los cultivos intercalados redujeron los rendimientos de maíz debido a una mayor competencia, por ejemplo, el rendimiento general del cultivo de lenguado fue de 7,1 t ha-1 en comparación con 6,4 t ha-1 en cultivos intercalados; lo que representa una penalización de rendimiento general de 0,7 t ha-1. Las diferencias en el rendimiento de los genotipos de maíz revelaron oportunidades para desplegar genotipos para reducir el riesgo o maximizar el rendimiento, dependiendo de las circunstancias biofísicas y el objetivo de producción del agricultor. Combining different cropping and tillage systems with different genotypes across several cropping seasons can reveal opportunities for sustainable intensification (SI). The objective of this study was to assess the performance of six maize genotypes under intercropping with conservation tillage (no-till) - two promising options for SI. The experiment was carried out over three years (or six cropping seasons) at Kiboko Research Station, Kenya with sole cropping and mouldboard ploughing as baseline production systems. Results showed that maize genotypes and cropping systems had a significant effect on yield, but the effect of tillage was not significant. Moreover, there was no significant interactive effects of the tested factors on maize yield. The maize genotype CKH10085 had the highest yield of 7.7 t ha-1 under sole cropping yet it also recorded the largest yield penalty due to intercropping of 1.1 t ha-1. On the other hand, genotype CKH10717 maintained the same average yield of 7.1 t ha-1 in both conventional and conservation tillage systems. The commercial genotype genotype CKH10080 and CKH08051 were more stable than the other experimental genotypes under the variable growing and management conditions. These two genotypes are of intermediate maturity and drought tolerance, two critical attributes to improved maize production. Intercropping reduced maize yields due to increased competition, for example the overall yield of sole cropping was 7.1 t ha-1 compared with 6.4 t ha-1 under intercropping; representing an overall yield penalty of 0.7 t ha-1. The differences in performance of maize genotypes revealed opportunities to deploy genotypes to reduce risk or maximize yield, depending on the biophysical circumstances and the production objective of the farmer. يمكن أن يكشف الجمع بين أنظمة المحاصيل والحراثة المختلفة والأنماط الجينية المختلفة عبر العديد من مواسم المحاصيل عن فرص للتكثيف المستدام (SI). كان الهدف من هذه الدراسة هو تقييم أداء ستة أنماط جينية للذرة تحت الزراعة البينية مع حراثة الحفظ (بدون حراثة) - وهما خياران واعدان لـ SI. تم إجراء التجربة على مدى ثلاث سنوات (أو ستة مواسم زراعة) في محطة أبحاث كيبوكو، كينيا باستخدام الزراعة الوحيدة وحرث ألواح القوالب كنظم إنتاج أساسية. أظهرت النتائج أن الأنماط الجينية للذرة وأنظمة المحاصيل كان لها تأثير كبير على المحصول، لكن تأثير الحراثة لم يكن كبيرًا. علاوة على ذلك، لم تكن هناك آثار تفاعلية كبيرة للعوامل التي تم اختبارها على محصول الذرة. كان للنمط الجيني للذرة CKH10085 أعلى إنتاجية تبلغ 7.7 طن هكتار -1 تحت المحصول الوحيد، ومع ذلك فقد سجل أيضًا أكبر عقوبة على المحصول بسبب المحصول البيني البالغ 1.1 طن هكتار -1. من ناحية أخرى، حافظ النمط الجيني CKH10717 على نفس متوسط العائد البالغ 7.1 طن هكتار -1 في كل من أنظمة الحراثة التقليدية وأنظمة الحفظ. كان النمط الجيني التجاري CKH10080 و CKH08051 أكثر استقرارًا من الأنماط الجينية التجريبية الأخرى في ظل ظروف النمو والإدارة المتغيرة. هذان النمطان الوراثيان لهما نضج متوسط وتحمل للجفاف، وهما سمتان حاسمتان لتحسين إنتاج الذرة. قللت الزراعة البينية من غلة الذرة بسبب زيادة المنافسة، على سبيل المثال، كان العائد الإجمالي للمحصول الوحيد 7.1 طن هكتار -1 مقارنة بـ 6.4 طن هكتار -1 تحت الزراعة البينية ؛ مما يمثل عقوبة إنتاجية إجمالية قدرها 0.7 طن هكتار -1. كشفت الاختلافات في أداء الأنماط الجينية للذرة عن فرص لنشر الأنماط الجينية لتقليل المخاطر أو زيادة الغلة، اعتمادًا على الظروف الفيزيائية الحيوية وهدف الإنتاج للمزارع.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/10568/119255Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fcr.2020.107738&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/10568/119255Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fcr.2020.107738&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:Elsevier BV Phyu Sin Thant; Apple Espino; Giulia Soria; Chan Myae; Edgard Rodriguez; Wilson John Barbon; Julian Gonsalves;handle: 10568/119418
Understanding the impacts of climate on food systems is vital to identifying the most effective food system interventions to support climate-smart agriculture. The study examines how climate change is affecting food systems and what can be done to mitigate its effects. Two methodological approaches were combined in the study. The first was an Asia-wide regional consultation and forum to explore a range of initiatives that transform food systems among stakeholders working in Myanmar. The second method was an in-depth food systems study employing qualitative methods in Htee Pu Village in the Myanmar Central Dry Zone, a research site of IIRR since 2017. Key informant interviews (KII) and focus group discussions (FGD) were conducted to capture insights and data. Food systems consist of components, drivers, actors, and elements that interact with one another and other systems such as social, health, and transportation. The Myanmar food system is complex. Making it sustainable and transformative requires a mix of different approaches implemented at various scales from local to national. It also requires actions that engage various actors in the system from producers to consumers. The study of the local food system of Htee Pu Village indicates that the village has a rural and traditional food system and that climate change is one of its key food system drivers. Climate change negatively impacted farming and agricultural practices and disrupted the input supply of the local food systems. The role of intermediaries such as traders and consolidators is critical in the supply and distribution of food in the Central Dry Zone. Improved and more connected roads are essential for the supply and distribution of food for the village. The informal market outlets serve as the primary food source or sale points for households. Household diets are inadequate in quantity as the population remains highly dependent on their crops for their diets due to relatively low income. Climate adaptation must be embedded in the local level management to mitigate the effect of climate change in food production in the longer term.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BY NC NDFull-Text: https://hdl.handle.net/10568/119418Data sources: Bielefeld Academic Search Engine (BASE)Environmental and Sustainability IndicatorsArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.indic.2022.100170&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BY NC NDFull-Text: https://hdl.handle.net/10568/119418Data sources: Bielefeld Academic Search Engine (BASE)Environmental and Sustainability IndicatorsArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.indic.2022.100170&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Preprint 2016 FrancePublisher:Elsevier BV Authors: Dragicevic, Arnaud; Lobianco, Antonello; Leblois, Antoine;In order to make a comparative assessment between productivity and risk, we study the forest planning by means of the Markowitz mean-value (M-V) portfolio model. By weighting the forest productivity with factors of future climate change effects, we compute the optimal tree species mixes, within reach of forest managers, in ninety French administrative departments. Considering three different productivity measures (wood production, carbon sequestration and economic valorization) and their respective variances, we find that: a) the empirical allocation lies between the optimizations of wood production and economic valorization; b) forest managers prefer low variance to high productivity, i.e. their revealed risk aversion is high; and c) unlike maximizing wood productivity or carbon sequestration, which leads to similar portfolios, maximizing the economic value of wood production decreases both the levels of wood production and carbon sequestration. Under high risk aversion, the economic valorization would lead to a high species specialization, which is very unlikely in reality. In all considered scenarios, the objectives set out in the Kyoto Protocol would be attained, which puts into question its relevance in terms of additionality.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverPreprint . 2015Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverMémoires en Sciences de l'Information et de la CommunicationPreprint . 2015Forest Policy and EconomicsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.forpol.2015.12.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverPreprint . 2015Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverMémoires en Sciences de l'Information et de la CommunicationPreprint . 2015Forest Policy and EconomicsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.forpol.2015.12.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Preprint 2018 FrancePublisher:MDPI AG Zeinab Saad; Akram Hijazi; Martins Sabovics; Zanda Kruma; Thierry Talou; Evita Straumite; Othmane Merah; Othmane Merah; Bouchra Sayed Ahmad; Bouchra Sayed Ahmad;Malnutrition continues to be a key health problem in developing regions. The valorization of food waste appears as an ideal way to prevent malnutrition and improve people’s access to food. Cumin (Cuminum cyminum L.) and caraway (Carum carvi L.) oilseeds are commonly used for cuisine and medicinal purposes. However, remaining cakes after oil extraction are usually underutilized. In order to assess the usefulness of these by-products in food applications, this study investigated the effect of their addition to protein bread formulations. Different levels (2, 4 and 6%) of whole seeds and cakes flour were used in the study. Fortified protein bread samples were compared to control protein bread and evaluated for their sensory, color, moisture, hardness properties, nutritional values as well as their biological activity. Results indicated that bread fortification shows a significant effect on bread properties depending on fortification level. A higher acceptability was observed specially for bread fortified with by-products flour. Increased tendencies of color darkness, moisture content, bread hardness, nutritional values as well as total phenolic content and radical scavenging activity compared to control bread were observed as the percentage of fortification increased in both cases. The overall results showed that the addition of cumin and caraway seeds and by-product flour can improve the antioxidant potential and overall quality of protein bread.
Foods arrow_drop_down FoodsOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2304-8158/7/3/28/pdfData sources: Multidisciplinary Digital Publishing InstituteOpen Archive Toulouse Archive OuverteArticle . 2018 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteInstitut National Polytechnique de Toulouse (Theses)Article . 2018 . Peer-reviewedData sources: Institut National Polytechnique de Toulouse (Theses)Institut National de la Recherche Agronomique: ProdINRAArticle . 2018License: CC BY SAFull-Text: https://hal.science/hal-02370140Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.20944/prepr...Article . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/foods7030028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 42 citations 42 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 12visibility views 12 download downloads 10 Powered bymore_vert Foods arrow_drop_down FoodsOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2304-8158/7/3/28/pdfData sources: Multidisciplinary Digital Publishing InstituteOpen Archive Toulouse Archive OuverteArticle . 2018 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteInstitut National Polytechnique de Toulouse (Theses)Article . 2018 . Peer-reviewedData sources: Institut National Polytechnique de Toulouse (Theses)Institut National de la Recherche Agronomique: ProdINRAArticle . 2018License: CC BY SAFull-Text: https://hal.science/hal-02370140Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.20944/prepr...Article . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/foods7030028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 FrancePublisher:Elsevier BV Jiang, Rong; Wang, Meie; Chen, Weiping; Li, Xuzhi; Balseiro-Romero, Maria; Baveye, Philippe;pmid: 31541819
Assessing the ecological risk of combined pollution, especially from a holistic perspective with the consideration of the overarching functions of soil ecosystem, is crucial and beneficial to the improvement of ecological risk assessment (ERA) framework. In this study, four soils with similar physicochemical properties but contrasting heavy metals contamination levels were selected to explore changes in the integrated functional sensitivity (MSI), resistance (MRS) and resilience (MRL) of soil microbial communities subjected to herbicide siduron, based on which the ecological risk of the accumulation of siduron in the four studied soils were evaluated. The results suggested that the microbial biomass carbon, activity of denitrification enzyme and nitrogenase were indicative of MSI and MRS, and the same three parameters plus soil basal respiration were indicative of MRL. Significant dose-effect relationships between siduron residues in soils and MSI, MRS and MRL under combined pollution were observed. Heavy metal polluted soils showed higher sensitivity and lower resistance to the additional disturbance of herbicide siduron due to the lower microbial biomass, while the resilience of heavy metal polluted soils was much higher due to the pre-adaption to the chemical stresses. The quantifiable indicator microbial functional stability was incorporated in the framework of ERA and the results showed that the accumulation of siduron in the studied soils could exhibit potential harm to the integrated functional stability of soil microbial community. Thus, this work provides insights into the application of integrated function of soil microbial community into the framework of ERA.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2019.113184&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2019.113184&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV Sophie Prache; Gabriel Laignel; J. P. Dulphy; Jacques Cabaret; Marc Benoit; Hervé Tournadre;pmid: 22444455
A 4-year interdisciplinary study was performed to compare two organically managed sheep production systems, using 118 ewes and 24 ha each. The systems differed in the ewes' reproduction rhythm: one lambing per ewe per year (1L/1Y), with the aim of balancing feed self-sufficiency and lamb marketing periods v. three lambings over 2 years (3L/2Y), with the aim of maximising ewes' productivity. The sustainability was evaluated through ewes' reproductive performance, lamb growth rate, carcass characteristics and quality, animal health, forage and feed self-sufficiency, soil mineral balance and gross margin. General animal health was assessed by recording ewe and lamb mortality and putative cause of death. Nematode digestive-tract strongyles parasitism was studied using faecal egg counts and necropsies. Carcass quality was assessed by recording carcass weight, conformation and fatness, and colour and firmness of subcutaneous fat. Thirty-three percent of 3L/2Y ewes lambed twice a year against 4% of 1L/1Y. Mean ewe productivity was 161.3% and 151.0% in 3L/2Y and 1L/1Y, respectively, and it was more variable between years in 3L/2Y. Average concentrate feed consumption and the corresponding cost per ewe were higher in 3L/2Y than in 1L/1Y (156 v. 121 kg, and €49.5 v. €39.3, respectively). Finally, average gross margin was lower in 3L/2Y than in 1L/1Y (€59 v. €65 per ewe, respectively). Even in year 2002, when ewe productivity was highest in 3L/2Y (193%), gross margin was not different between systems (€90 v. €86 per ewe in 3L/2Y and 1L/1Y, respectively), because of higher concentrate costs in 3L/2Y. The 3L/2Y animals presented a lower health status, with a higher lamb mortality (P < 0.05) and a higher digestive-tract strongyles and coccidia parasitism level (P < 0.05). Lamb carcass conformation, fatness and fat colour were not different between systems, but carcass weight and subcutaneous dorsal fat firmness were lower in 3L/2Y lambs than in 1L/1Y lambs (P < 0.05 and < 0.001, respectively). Intensification in an organically managed sheep system, through an increased reproduction rhythm, thus did not lead to better economic results and proved riskier, more variable and more difficult to manage, and so less sustainable. The less intensive system (1L/1Y) was both highly efficient from the animal standpoint and highly feed self-sufficient. The technical and economic results of this system were better than those of organic private farms in the same area and matched those of non-organic farms.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/s1751731109004133&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/s1751731109004133&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 FrancePublisher:MDPI AG Shalini Dhyani; Indu K Murthy; Rakesh Kadaverugu; Rajarshi Dasgupta; Manoj Kumar; Kritika Adesh Gadpayle;doi: 10.3390/f12030303
handle: 10568/113593
Traditional agroforestry systems across South Asia have historically supported millions of smallholding farmers. Since, 2007 agroforestry has received attention in global climate discussions for its carbon sink potential. Agroforestry plays a defining role in offsetting greenhouse gases, providing sustainable livelihoods, localizing Sustainable Development Goals and achieving biodiversity targets. The review explores evidence of agroforestry systems for human well-being along with its climate adaptation and mitigation potential for South Asia. In particular, we explore key enabling and constraining conditions for mainstreaming agroforestry systems to use them to fulfill global climate mitigation targets. Nationally determined contributions submitted by South Asian countries to the United Nations Framework Convention on Climate Change acknowledge agroforestry systems. In 2016, South Asian Association for Regional Cooperation’s Resolution on Agroforestry brought consensus on developing national agroforestry policies by all regional countries and became a strong enabling condition to ensure effectiveness of using agroforestry for climate targets. Lack of uniform methodologies for creation of databases to monitor tree and soil carbon stocks was found to be a key limitation for the purpose. Water scarcity, lack of interactive governance, rights of farmers and ownership issues along with insufficient financial support to rural farmers for agroforestry were other constraining conditions that should be appropriately addressed by the regional countries to develop their preparedness for achieving national climate ambitions. Our review indicates the need to shift from planning to the implementation phase following strong examples shared from India and Nepal, including carbon neutrality scenarios, incentives and sustainable local livelihood to enhance preparedness.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/113593Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/f12030303&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 72 citations 72 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/113593Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/f12030303&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu