- home
- Advanced Search
- Energy Research
- medical and health sciences
- 7. Clean energy
- CH
- Energy Research
- medical and health sciences
- 7. Clean energy
- CH
description Publicationkeyboard_double_arrow_right Conference object , Article , Other literature type 2019Publisher:MDPI AG Publicly fundedLetizia D’Angelo; Noel Finnerty; Federico Seri; Alessandro Piccinini; Ronan Coffey; Carlos Tighe; PJ Mealy; Marc Mellotte; Marcus Keane;Global energy consumption has risen enormously over the past century due to population growth and increasing energy use per person. Industrial production consumes a significant portion of global energy resources. Thus, industrial sector’s investment in energy efficiency is critical to a sustainable future. For most global enterprises the consumption of energy and natural resources represents a major overhead and developing sustainable energy policies can represent a significant competitive advantage due to the growing price of energy and volatility of supply. This symbiotic relationship can lead to the mutual benefits of increasing industrial efficiency whilst allowing the transition to a sustainable renewables-based energy future and needs to be significantly harnessed. This paper describes a decision support framework to help industrial organisations make positive investment decisions on energy performance improvement projects.
https://doi.org/10.3... arrow_drop_down https://doi.org/10.3390/procee...Conference object . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/proceedings2019020022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.3... arrow_drop_down https://doi.org/10.3390/procee...Conference object . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/proceedings2019020022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Christoph Bisig; Andreas Mayer; Pierre Comte; Barbara Rothen-Rutishauser; Alke Petri-Fink; Jan Czerwinski; Norbert V. Heeb; Michèle Roth; Loretta Müller;pmid: 27670152
Ethanol can be produced from biomass and as such is renewable, unlike petroleum-based fuel. Almost all gasoline cars can drive with fuel containing 10% ethanol (E10), flex-fuel cars can even use 85% ethanol (E85). Brazil and the USA already include 10-27% ethanol in their standard fuel by law. Most health effect studies on car emissions are however performed with diesel exhausts, and only few data exists for other fuels. In this work we investigated possible toxic effects of exhaust aerosols from ethanol-gasoline blends using a multi-cellular model of the human lung. A flex-fuel passenger car was driven on a chassis dynamometer and fueled with E10, E85, or pure gasoline (E0). Exhausts obtained from a steady state cycle were directly applied for 6h at a dilution of 1:10 onto a multi-cellular human lung model mimicking the bronchial compartment composed of human bronchial cells (16HBE14o-), supplemented with human monocyte-derived dendritic cells and monocyte-derived macrophages, cultured at the air-liquid interface. Biological endpoints were assessed after 6h post incubation and included cytotoxicity, pro-inflammation, oxidative stress, and DNA damage. Filtered air was applied to control cells in parallel to the different exhausts; for comparison an exposure to diesel exhaust was also included in the study. No differences were measured for the volatile compounds, i.e. CO, NOx, and T.HC for the different ethanol supplemented exhausts. Average particle number were 6×102 #/cm3 (E0), 1×105 #/cm3 (E10), 3×103 #/cm3 (E85), and 2.8×106 #/cm3 (diesel). In ethanol-gasoline exposure conditions no cytotoxicity and no morphological changes were observed in the lung cell cultures, in addition no oxidative stress - as analyzed with the glutathione assay - was measured. Gene expression analysis also shows no induction in any of the tested genes, including mRNA levels of genes related to oxidative stress and pro-inflammation, as well as indoleamine 2,3-dioxygenase 1 (IDO-1), transcription factor NFE2-related factor 2 (NFE2L2), and NAD(P)H dehydrogenase [quinone] 1 (NQO1). Finally, no DNA damage was observed with the OxyDNA assay. On the other hand, cell death, oxidative stress, as well as an increase in pro-inflammatory cytokines was observed for cells exposed to diesel exhaust, confirming the results of other studies and the applicability of our exposure system. In conclusion, the tested exhausts from a flex-fuel gasoline vehicle using different ethanol-gasoline blends did not induce adverse cell responses in this acute exposure. So far ethanol-gasoline blends can promptly be used, though further studies, e.g. chronic and in vivo studies, are needed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envres.2016.09.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envres.2016.09.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:MDPI AG Zhiqian Yi; Maonian Xu; Manuela Magnusdottir; Yuetuan Zhang; Sigurdur Brynjolfsson; Weiqi Fu;Marine diatoms have recently gained much attention as they are expected to be a promising resource for sustainable production of bioactive compounds such as carotenoids and biofuels as a future clean energy solution. To develop photosynthetic cell factories, it is important to improve diatoms for value-added products. In this study, we utilized UVC radiation to induce mutations in the marine diatom Phaeodactylum tricornutum and screened strains with enhanced accumulation of neutral lipids and carotenoids. Adaptive laboratory evolution (ALE) was also used in parallel to develop altered phenotypic and biological functions in P. tricornutum and it was reported for the first time that ALE was successfully applied on diatoms for the enhancement of growth performance and productivity of value-added carotenoids to date. Liquid chromatography-mass spectrometry (LC-MS) was utilized to study the composition of major pigments in the wild type P. tricornutum, UV mutants and ALE strains. UVC radiated strains exhibited higher accumulation of fucoxanthin as well as neutral lipids compared to their wild type counterpart. In addition to UV mutagenesis, P. tricornutum strains developed by ALE also yielded enhanced biomass production and fucoxanthin accumulation under combined red and blue light. In short, both UV mutagenesis and ALE appeared as an effective approach to developing desired phenotypes in the marine diatoms via electromagnetic radiation-induced oxidative stress.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/md13106138&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 61 citations 61 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/md13106138&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1980Publisher:American Chemical Society (ACS) Authors: Henry J. Pownall; Antonio M. Gotto; Michael C. Doody; Larry A. Sklar;doi: 10.1021/bi00548a005
pmid: 7387988
The location of several fluorescent chromophores in lipoproteins has been determined by using resonance energy transfer. The primary acceptor is 5-(N-hexadecanoylamino)fluorescein whose chromophore is shown to reside at the lipoprotein surface at pH 7.4. Polar donors include cis-parinaric acid (cis,trans,trans,cis-9,11,13,15-octadecatetraenoic acid), trans-parinaric acid (all-trans-9,11,13,15-octadecatetraenoic acid), and 16-(9-anthroyloxy)palmitic acid; nonpolar donors are parinaric acid methyl ester, parinaric acid cholesteryl ester, and 1,6-diphenyl-1,3,5-hexatriene. The polar donors transfer more efficiently than the nonpolar donors in several classes of lipoprotein particles. The data are analyzed by a simple mathematical model from which it is concluded that the polar donors are localized in the putative lipoprotein surface monolayer; the possibility that nonpolar donors are partitioned between the surface and core of lipoproteins is considered.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/bi00548a005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 63 citations 63 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/bi00548a005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal , Other literature type 2015Embargo end date: 01 Jan 2014 Australia, Sweden, France, Switzerland, Spain, Spain, Spain, Spain, Spain, Germany, SwitzerlandPublisher:American Physical Society (APS) Funded by:EC | CHANDAEC| CHANDASrinivasan Ganesan; F. Alvarez-Velarde; P. M. Milazzo; E. Griesmayer; M. J. Vermeulen; L. Tavora; J. M. Quesada; I. Dillmann; E. Leal-Cidoncha; Marco Calviani; C. Pretel; G. Vannini; D. G. Jenkins; Aaron Couture; S. Andriamonje; S. Altstadt; N. Patronis; K. Fraval; L. Ferrant; S. Walter; A. Mengoni; G. Cortes; Stefan Schmidt; E. Mendoza; Masayuki Igashira; P. Pavlopoulos; D. Karadimos; L. Cosentino; Vittorio Boccone; Manuel Lozano; Jeri Kroll; R. Vlastou; F. Gramegna; M. Brugger; M. B. Gómez-Hornillos; K. Fujii; B. Berthier; T. Ware; R. Terlizzi; G. Rudolf; D. Karamanis; S. O'Brien; J. Pancin; L. Plukis; Diego Tarrio; Diego Tarrio; P. Cennini; J. Andrzejewski; J. Billowes; Petar Žugec; M. A. Cortés-Giraldo; A. Ventura; Rene Reifarth; V. Bécares; C. Weiß; V. Konovalov; C. Santos; A. Musumarra; F. Cerutti; Vasilis Vlachoudis; J. Marganiec; Massimo Barbagallo; M. Mirea; H. Álvarez; W. Dridi; M. Krtička; M. C. Vincente; E. Jericha; A. K. Saxena; P. Baumann; Niko Kivel; A. Riego; H. Leeb; Nicola Colonna; V. Ketlerov; A. Pavlik; Carlos Guerrero; Gerald Badurek; F. Käppeler; S. Isaev; Y. Kadi; P. F. Mastinu; A. J. M. Plompen; K. Wisshak; Peter Schillebeeckx; D. Cano-Ott; M. Diakaki; Damir Bosnar; I. F. Gonçalves; F. Bečvář; Marco T. Pigni; R. C. Haight; M. Kerveno; T. J. Wright; G. Giubrone; Thomas Rauscher; Thomas Rauscher; C. Lampoudis; S. Lo Meo; I. Duran; A. Manousos; S. Valenta; S. Marrone; G. Aerts; L. Perrot; M. Kokkoris; F. Mingrone; C. Rubbia; C. Domingo-Pardo; A. Poch; S. David; F. Calviño; S. Heinitz; C. Stephan; Arnaud Ferrari; A. Tsinganis; C. Le Naour; James L. Cox; J. L. Tain; Corrie S. Moreau; Dorothea Schumann; Fabio Belloni; Michael Heil; W.I. Furman; M. Embid-Segura; A. Goverdovski; Roberto Capote; P. Gurusamy; F. Gunsing; D. Villamarin; E. Berthoumieux; M. Wiesher; Ralf Plag; J. Perkowski; L. Tassan-Got; Roberto Losito; C. Paradela; C. Lederer; J. Salgado; Roberto Versaci; M. Mosconi; M. Mastromarco; A. R. García; Christoph Langer; G. Tagliente; E. Chiaveri; L. Audouin; F. Voss; M. P. W. Chin; W. Mondelaers; P. Vaz; T. Martinez; Mario Weigand; Anton Wallner; Rugard Dressler; P. Rullhusen; Javier Praena; F. Roman; C. Eleftheriadis; V. Variale; E. González-Romero; L.S. Leong; L.S. Leong; C. Carrapiço; Paolo Finocchiaro; R. Sarmento; Cristian Massimi; L. Sarchiapone;doi: 10.1103/physrevc.91.024602 , 10.1016/j.chemolab.2014.12.002 , 10.48550/arxiv.1410.7737 , 10.3929/ethz-b-000099844
arXiv: 1410.7737
handle: 1885/61544 , 2117/28483
doi: 10.1103/physrevc.91.024602 , 10.1016/j.chemolab.2014.12.002 , 10.48550/arxiv.1410.7737 , 10.3929/ethz-b-000099844
arXiv: 1410.7737
handle: 1885/61544 , 2117/28483
The $^{238}$U to $^{235}$U fission cross section ratio has been determined at n_TOF up to $\sim$1 GeV, with two different detection systems, in different geometrical configurations. A total of four datasets have been collected and compared. They are all consistent to each other within the relative systematic uncertainty of 3-4%. The data collected at n_TOF have been suitably combined to yield a unique fission cross section ratio as a function of the neutron energy. The result confirms current evaluations up to 200 MeV. A good agreement is also observed with theoretical calculations based on the INCL++/Gemini++ combination up to the highest measured energy. The n_TOF results may help solving a long-standing discrepancy between the two most important experimental dataset available so far above 20 MeV, while extending the neutron energy range for the first time up to $\sim$1 GeV.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/61544Data sources: Bielefeld Academic Search Engine (BASE)Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2015Full-Text: http://hdl.handle.net/2117/28483Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2015License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de SevillaUPCommons. Portal del coneixement obert de la UPCArticle . 2015Data sources: UPCommons. Portal del coneixement obert de la UPCPublikationer från Uppsala UniversitetArticle . 2015Data sources: Publikationer från Uppsala UniversitetChemometrics and Intelligent Laboratory SystemsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2014License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1103/physrevc.91.024602&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/61544Data sources: Bielefeld Academic Search Engine (BASE)Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2015Full-Text: http://hdl.handle.net/2117/28483Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2015License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de SevillaUPCommons. Portal del coneixement obert de la UPCArticle . 2015Data sources: UPCommons. Portal del coneixement obert de la UPCPublikationer från Uppsala UniversitetArticle . 2015Data sources: Publikationer från Uppsala UniversitetChemometrics and Intelligent Laboratory SystemsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2014License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1103/physrevc.91.024602&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 ItalyPublisher:Frontiers Media SA Gianluca Vernillo; Gianluca Vernillo; Aldo Savoldelli; Aldo Savoldelli; Spyros Skafidas; Spyros Skafidas; Andrea Zignoli; Andrea Zignoli; Antonio La Torre; Barbara Pellegrini; Barbara Pellegrini; Guido Giardini; Pietro Trabucchi; Pietro Trabucchi; Gregoire P Millet; Federico Schena; Federico Schena;Purpose: To examine the effects of the world's most challenging mountain ultramarathon (MUM, 330 km, cumulative elevation gain of +24,000 m) on the energy cost and kinematics of different uphill gaits. Methods: Before (PRE) and immediately after (POST) the competition, 19 male athletes performed three submaximal 5-min treadmill exercise trials in a randomized order: walking at 5 km·h-1, +20%; running at 6 km·h-1, +15%; and running at 8 km·h-1, +10%. During the three trials, energy cost was assessed using an indirect calorimetry system and spatiotemporal gait parameters were acquired with a floor-level high-density photoelectric cells system. Results: The average time of the study participants to complete the MUM was 129 h 43 min 48 s (range: 107 h 29 min 24 s to 144 h 21 min 0 s). Energy costs in walking (-11.5 ± 5.5%, P < 0.001), as well as in the first (-7.2 ± 3.1%, P = 0.01) and second (-7.0 ± 3.9%, P = 0.02) running condition decreased between PRE and POST, with a reduction both in the heart rate (-11.3, -10.0, and -9.3%, respectively) and oxygen uptake only for the walking condition (-6.5%). No consistent and significant changes in the kinematics variables were detected (P-values from 0.10 to 0.96). Conclusion: Though fatigued after completing the MUM, the subjects were still able to maintain their uphill locomotion patterns noted at PRE. The decrease (improvement) in the energy costs was likely due to the prolonged and repetitive walking/running, reflecting a generic improvement in the mechanical efficiency of locomotion after ~130 h of uphill locomotion rather than constraints imposed by the activity on the musculoskeletal structure and function.
Frontiers in Physiol... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fphys.2016.00530&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Frontiers in Physiol... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fphys.2016.00530&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 GermanyPublisher:Royal Society of Chemistry (RSC) Sepideh Skandary; Marc Brecht; Marc Brecht; Alexander Konrad; Anna-Lisa Trost; Martin Hussels; Alfred J. Meixner; N. V. Karapetyan;We demonstrate controlled modification of the fluorescence and energy transfer properties of Photosystem I (PSI) - one of the most important light harvesting systems - by using a newly developed approach to produce optical subwavelength microcavities for cryogenic temperature issues. The experiments were carried out on PSI from the cyanobacterium Arthrospira platensis as it shows a broad and structured fluorescence emission. By changing the distance between the cavity forming mirrors, the electromagnetic field mode structure around PSI is varied affecting the emission and energy transfer properties, which allows us to selectively enhance signals of resonant emitters and suppress off-resonant emission. By comparing the experimental data with simulations, we are able to show how excitation transfer within PSI is affected by the microcavity. The ability to control the energy transfer within such efficient energy converters as photosynthetic proteins can establish the opportunity for enhancing the efficiencies of bio-solar applications. The defined control of the resonance conditions by microcavities makes them a preferable tool to study the effects of additional electromagnetic modes on the energy transfer in any coupled multi-chromophore system. The resonator geometry excludes the direct contact of the proteins with any surface. Possible quenching or denaturation of the complexes close to metal surfaces is still an insuperable obstacle for studies with proteins and nanostructures, which can be avoided by resonators.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c3cp55195d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c3cp55195d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Embargo end date: 01 Jan 2018 United States, SwitzerlandPublisher:Wiley Guowei Liu; Johannes Pfeifer; Rita de Brito Francisco; Aurelia Emonet; Marina Stirnemann; Christian Gübeli; Olivier Hutter; Joëlle Sasse; Christian Mattheyer; Ernst Stelzer; Achim Walter; Enrico Martinoia; Lorenzo Borghi;Summary Strigolactones (SLs) are carotenoid‐derived phytohormones shaping plant architecture and inducing the symbiosis with endomycorrhizal fungi. In Petunia hybrida, SL transport within the plant and towards the rhizosphere is driven by the ABCG‐class protein PDR1. PDR1 expression is regulated by phytohormones and by the soil phosphate abundance, and thus SL transport integrates plant development with nutrient conditions. We overexpressed PDR1 (PDR1 OE) to investigate whether increased endogenous SL transport is sufficient to improve plant nutrition and productivity. Phosphorus quantification and nondestructive X‐ray computed tomography were applied. Morphological and gene expression changes were quantified at cellular and whole tissue levels via time‐lapse microscopy and quantitative PCR. PDR1 OE significantly enhanced phosphate uptake and plant biomass production on phosphate‐poor soils. PDR1 OE plants showed increased lateral root formation, extended root hair elongation, faster mycorrhization and reduced leaf senescence. PDR1 overexpression allowed considerable SL biosynthesis by releasing SL biosynthetic genes from an SL‐dependent negative feedback. The increased endogenous SL transport/biosynthesis in PDR1 OE plants is a powerful tool to improve plant growth on phosphate‐poor soils. We propose PDR1 as an as yet unexplored trait to be investigated for crop production. The overexpression of PDR1 is a valuable strategy to investigate SL functions and transport routes.
New Phytologist arrow_drop_down eScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.14847&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 50 citations 50 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert New Phytologist arrow_drop_down eScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.14847&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1990Publisher:Elsevier BV Authors: A. Fassò; R. Tartaglia; A. Ferrari; Graham R. Stevenson;Abstract An electron-positron collider (LEP) has recently been put into operation at CERN. Two 46 GeV beams circulate around the 27 km accelerator ring and these produce intense synchrotron radiation with photon energies up to more than 1 MeV. A lead shiedl 8 mm thick has been provided in most places around the vacuum chamber to minimize radiation damage to sensitive machine components. Monte-Carlo techniques using a modified version of MORSE have been used to estimate dose-rate levels in the tunnel due to radiation escaping from the vacuum pipe and scattered by magnets and the tunnel walls. The results have been confirmed by dosimetry measurements.
Progress in Nuclear ... arrow_drop_down Progress in Nuclear EnergyArticle . 1990 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0149-1970(90)90061-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Progress in Nuclear ... arrow_drop_down Progress in Nuclear EnergyArticle . 1990 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0149-1970(90)90061-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Van Hai Nguyen; Thanh Danh Nguyen; Jongwoo Song; Jongdeok An; Chan Im;Efforts to improve the solar power conversion efficiencies of binary bulk heterojunction-type organic photovoltaic devices using an active layer consisting of a poly-(3-alkylthiophene) (P3AT) homopolymer and a suitable fullerene derivative face barriers caused by the intrinsic properties of homopolymers. To overcome such barriers, researchers might be able to chemically tailor homopolymers by means of monomer ratio-balanced block copolymerization to obtain preferable properties. Triblock copolymers consisting of three components—3-hexylthiophene (HT), 3-butylthiophene (BT), and 3-octylthiophene (OT)—were synthesized via Grignard metathesis (GRIM) polymerization. The component ratios of the synthesized block copolymers were virtually the same as the feeding ratios of the monomers, a fact which was verified using 1H-NMR spectra. All the copolymers exhibited comparable crystalline and melting temperatures, which increased when one type of monomer became dominant. In addition, their power conversion efficiencies and photoluminescence properties were governed by the major components of the copolymers. Interestingly, the HT component-dominated block copolymer indicated the highest power conversion efficiency, comparable to that of its homopolymer, although its molecular weight was significantly shorter.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/molecules27238469&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/molecules27238469&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Conference object , Article , Other literature type 2019Publisher:MDPI AG Publicly fundedLetizia D’Angelo; Noel Finnerty; Federico Seri; Alessandro Piccinini; Ronan Coffey; Carlos Tighe; PJ Mealy; Marc Mellotte; Marcus Keane;Global energy consumption has risen enormously over the past century due to population growth and increasing energy use per person. Industrial production consumes a significant portion of global energy resources. Thus, industrial sector’s investment in energy efficiency is critical to a sustainable future. For most global enterprises the consumption of energy and natural resources represents a major overhead and developing sustainable energy policies can represent a significant competitive advantage due to the growing price of energy and volatility of supply. This symbiotic relationship can lead to the mutual benefits of increasing industrial efficiency whilst allowing the transition to a sustainable renewables-based energy future and needs to be significantly harnessed. This paper describes a decision support framework to help industrial organisations make positive investment decisions on energy performance improvement projects.
https://doi.org/10.3... arrow_drop_down https://doi.org/10.3390/procee...Conference object . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/proceedings2019020022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.3... arrow_drop_down https://doi.org/10.3390/procee...Conference object . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/proceedings2019020022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Christoph Bisig; Andreas Mayer; Pierre Comte; Barbara Rothen-Rutishauser; Alke Petri-Fink; Jan Czerwinski; Norbert V. Heeb; Michèle Roth; Loretta Müller;pmid: 27670152
Ethanol can be produced from biomass and as such is renewable, unlike petroleum-based fuel. Almost all gasoline cars can drive with fuel containing 10% ethanol (E10), flex-fuel cars can even use 85% ethanol (E85). Brazil and the USA already include 10-27% ethanol in their standard fuel by law. Most health effect studies on car emissions are however performed with diesel exhausts, and only few data exists for other fuels. In this work we investigated possible toxic effects of exhaust aerosols from ethanol-gasoline blends using a multi-cellular model of the human lung. A flex-fuel passenger car was driven on a chassis dynamometer and fueled with E10, E85, or pure gasoline (E0). Exhausts obtained from a steady state cycle were directly applied for 6h at a dilution of 1:10 onto a multi-cellular human lung model mimicking the bronchial compartment composed of human bronchial cells (16HBE14o-), supplemented with human monocyte-derived dendritic cells and monocyte-derived macrophages, cultured at the air-liquid interface. Biological endpoints were assessed after 6h post incubation and included cytotoxicity, pro-inflammation, oxidative stress, and DNA damage. Filtered air was applied to control cells in parallel to the different exhausts; for comparison an exposure to diesel exhaust was also included in the study. No differences were measured for the volatile compounds, i.e. CO, NOx, and T.HC for the different ethanol supplemented exhausts. Average particle number were 6×102 #/cm3 (E0), 1×105 #/cm3 (E10), 3×103 #/cm3 (E85), and 2.8×106 #/cm3 (diesel). In ethanol-gasoline exposure conditions no cytotoxicity and no morphological changes were observed in the lung cell cultures, in addition no oxidative stress - as analyzed with the glutathione assay - was measured. Gene expression analysis also shows no induction in any of the tested genes, including mRNA levels of genes related to oxidative stress and pro-inflammation, as well as indoleamine 2,3-dioxygenase 1 (IDO-1), transcription factor NFE2-related factor 2 (NFE2L2), and NAD(P)H dehydrogenase [quinone] 1 (NQO1). Finally, no DNA damage was observed with the OxyDNA assay. On the other hand, cell death, oxidative stress, as well as an increase in pro-inflammatory cytokines was observed for cells exposed to diesel exhaust, confirming the results of other studies and the applicability of our exposure system. In conclusion, the tested exhausts from a flex-fuel gasoline vehicle using different ethanol-gasoline blends did not induce adverse cell responses in this acute exposure. So far ethanol-gasoline blends can promptly be used, though further studies, e.g. chronic and in vivo studies, are needed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envres.2016.09.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envres.2016.09.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:MDPI AG Zhiqian Yi; Maonian Xu; Manuela Magnusdottir; Yuetuan Zhang; Sigurdur Brynjolfsson; Weiqi Fu;Marine diatoms have recently gained much attention as they are expected to be a promising resource for sustainable production of bioactive compounds such as carotenoids and biofuels as a future clean energy solution. To develop photosynthetic cell factories, it is important to improve diatoms for value-added products. In this study, we utilized UVC radiation to induce mutations in the marine diatom Phaeodactylum tricornutum and screened strains with enhanced accumulation of neutral lipids and carotenoids. Adaptive laboratory evolution (ALE) was also used in parallel to develop altered phenotypic and biological functions in P. tricornutum and it was reported for the first time that ALE was successfully applied on diatoms for the enhancement of growth performance and productivity of value-added carotenoids to date. Liquid chromatography-mass spectrometry (LC-MS) was utilized to study the composition of major pigments in the wild type P. tricornutum, UV mutants and ALE strains. UVC radiated strains exhibited higher accumulation of fucoxanthin as well as neutral lipids compared to their wild type counterpart. In addition to UV mutagenesis, P. tricornutum strains developed by ALE also yielded enhanced biomass production and fucoxanthin accumulation under combined red and blue light. In short, both UV mutagenesis and ALE appeared as an effective approach to developing desired phenotypes in the marine diatoms via electromagnetic radiation-induced oxidative stress.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/md13106138&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 61 citations 61 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/md13106138&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1980Publisher:American Chemical Society (ACS) Authors: Henry J. Pownall; Antonio M. Gotto; Michael C. Doody; Larry A. Sklar;doi: 10.1021/bi00548a005
pmid: 7387988
The location of several fluorescent chromophores in lipoproteins has been determined by using resonance energy transfer. The primary acceptor is 5-(N-hexadecanoylamino)fluorescein whose chromophore is shown to reside at the lipoprotein surface at pH 7.4. Polar donors include cis-parinaric acid (cis,trans,trans,cis-9,11,13,15-octadecatetraenoic acid), trans-parinaric acid (all-trans-9,11,13,15-octadecatetraenoic acid), and 16-(9-anthroyloxy)palmitic acid; nonpolar donors are parinaric acid methyl ester, parinaric acid cholesteryl ester, and 1,6-diphenyl-1,3,5-hexatriene. The polar donors transfer more efficiently than the nonpolar donors in several classes of lipoprotein particles. The data are analyzed by a simple mathematical model from which it is concluded that the polar donors are localized in the putative lipoprotein surface monolayer; the possibility that nonpolar donors are partitioned between the surface and core of lipoproteins is considered.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/bi00548a005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 63 citations 63 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/bi00548a005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal , Other literature type 2015Embargo end date: 01 Jan 2014 Australia, Sweden, France, Switzerland, Spain, Spain, Spain, Spain, Spain, Germany, SwitzerlandPublisher:American Physical Society (APS) Funded by:EC | CHANDAEC| CHANDASrinivasan Ganesan; F. Alvarez-Velarde; P. M. Milazzo; E. Griesmayer; M. J. Vermeulen; L. Tavora; J. M. Quesada; I. Dillmann; E. Leal-Cidoncha; Marco Calviani; C. Pretel; G. Vannini; D. G. Jenkins; Aaron Couture; S. Andriamonje; S. Altstadt; N. Patronis; K. Fraval; L. Ferrant; S. Walter; A. Mengoni; G. Cortes; Stefan Schmidt; E. Mendoza; Masayuki Igashira; P. Pavlopoulos; D. Karadimos; L. Cosentino; Vittorio Boccone; Manuel Lozano; Jeri Kroll; R. Vlastou; F. Gramegna; M. Brugger; M. B. Gómez-Hornillos; K. Fujii; B. Berthier; T. Ware; R. Terlizzi; G. Rudolf; D. Karamanis; S. O'Brien; J. Pancin; L. Plukis; Diego Tarrio; Diego Tarrio; P. Cennini; J. Andrzejewski; J. Billowes; Petar Žugec; M. A. Cortés-Giraldo; A. Ventura; Rene Reifarth; V. Bécares; C. Weiß; V. Konovalov; C. Santos; A. Musumarra; F. Cerutti; Vasilis Vlachoudis; J. Marganiec; Massimo Barbagallo; M. Mirea; H. Álvarez; W. Dridi; M. Krtička; M. C. Vincente; E. Jericha; A. K. Saxena; P. Baumann; Niko Kivel; A. Riego; H. Leeb; Nicola Colonna; V. Ketlerov; A. Pavlik; Carlos Guerrero; Gerald Badurek; F. Käppeler; S. Isaev; Y. Kadi; P. F. Mastinu; A. J. M. Plompen; K. Wisshak; Peter Schillebeeckx; D. Cano-Ott; M. Diakaki; Damir Bosnar; I. F. Gonçalves; F. Bečvář; Marco T. Pigni; R. C. Haight; M. Kerveno; T. J. Wright; G. Giubrone; Thomas Rauscher; Thomas Rauscher; C. Lampoudis; S. Lo Meo; I. Duran; A. Manousos; S. Valenta; S. Marrone; G. Aerts; L. Perrot; M. Kokkoris; F. Mingrone; C. Rubbia; C. Domingo-Pardo; A. Poch; S. David; F. Calviño; S. Heinitz; C. Stephan; Arnaud Ferrari; A. Tsinganis; C. Le Naour; James L. Cox; J. L. Tain; Corrie S. Moreau; Dorothea Schumann; Fabio Belloni; Michael Heil; W.I. Furman; M. Embid-Segura; A. Goverdovski; Roberto Capote; P. Gurusamy; F. Gunsing; D. Villamarin; E. Berthoumieux; M. Wiesher; Ralf Plag; J. Perkowski; L. Tassan-Got; Roberto Losito; C. Paradela; C. Lederer; J. Salgado; Roberto Versaci; M. Mosconi; M. Mastromarco; A. R. García; Christoph Langer; G. Tagliente; E. Chiaveri; L. Audouin; F. Voss; M. P. W. Chin; W. Mondelaers; P. Vaz; T. Martinez; Mario Weigand; Anton Wallner; Rugard Dressler; P. Rullhusen; Javier Praena; F. Roman; C. Eleftheriadis; V. Variale; E. González-Romero; L.S. Leong; L.S. Leong; C. Carrapiço; Paolo Finocchiaro; R. Sarmento; Cristian Massimi; L. Sarchiapone;doi: 10.1103/physrevc.91.024602 , 10.1016/j.chemolab.2014.12.002 , 10.48550/arxiv.1410.7737 , 10.3929/ethz-b-000099844
arXiv: 1410.7737
handle: 1885/61544 , 2117/28483
doi: 10.1103/physrevc.91.024602 , 10.1016/j.chemolab.2014.12.002 , 10.48550/arxiv.1410.7737 , 10.3929/ethz-b-000099844
arXiv: 1410.7737
handle: 1885/61544 , 2117/28483
The $^{238}$U to $^{235}$U fission cross section ratio has been determined at n_TOF up to $\sim$1 GeV, with two different detection systems, in different geometrical configurations. A total of four datasets have been collected and compared. They are all consistent to each other within the relative systematic uncertainty of 3-4%. The data collected at n_TOF have been suitably combined to yield a unique fission cross section ratio as a function of the neutron energy. The result confirms current evaluations up to 200 MeV. A good agreement is also observed with theoretical calculations based on the INCL++/Gemini++ combination up to the highest measured energy. The n_TOF results may help solving a long-standing discrepancy between the two most important experimental dataset available so far above 20 MeV, while extending the neutron energy range for the first time up to $\sim$1 GeV.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/61544Data sources: Bielefeld Academic Search Engine (BASE)Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2015Full-Text: http://hdl.handle.net/2117/28483Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2015License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de SevillaUPCommons. Portal del coneixement obert de la UPCArticle . 2015Data sources: UPCommons. Portal del coneixement obert de la UPCPublikationer från Uppsala UniversitetArticle . 2015Data sources: Publikationer från Uppsala UniversitetChemometrics and Intelligent Laboratory SystemsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2014License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1103/physrevc.91.024602&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/61544Data sources: Bielefeld Academic Search Engine (BASE)Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2015Full-Text: http://hdl.handle.net/2117/28483Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2015License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de SevillaUPCommons. Portal del coneixement obert de la UPCArticle . 2015Data sources: UPCommons. Portal del coneixement obert de la UPCPublikationer från Uppsala UniversitetArticle . 2015Data sources: Publikationer från Uppsala UniversitetChemometrics and Intelligent Laboratory SystemsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2014License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1103/physrevc.91.024602&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 ItalyPublisher:Frontiers Media SA Gianluca Vernillo; Gianluca Vernillo; Aldo Savoldelli; Aldo Savoldelli; Spyros Skafidas; Spyros Skafidas; Andrea Zignoli; Andrea Zignoli; Antonio La Torre; Barbara Pellegrini; Barbara Pellegrini; Guido Giardini; Pietro Trabucchi; Pietro Trabucchi; Gregoire P Millet; Federico Schena; Federico Schena;Purpose: To examine the effects of the world's most challenging mountain ultramarathon (MUM, 330 km, cumulative elevation gain of +24,000 m) on the energy cost and kinematics of different uphill gaits. Methods: Before (PRE) and immediately after (POST) the competition, 19 male athletes performed three submaximal 5-min treadmill exercise trials in a randomized order: walking at 5 km·h-1, +20%; running at 6 km·h-1, +15%; and running at 8 km·h-1, +10%. During the three trials, energy cost was assessed using an indirect calorimetry system and spatiotemporal gait parameters were acquired with a floor-level high-density photoelectric cells system. Results: The average time of the study participants to complete the MUM was 129 h 43 min 48 s (range: 107 h 29 min 24 s to 144 h 21 min 0 s). Energy costs in walking (-11.5 ± 5.5%, P < 0.001), as well as in the first (-7.2 ± 3.1%, P = 0.01) and second (-7.0 ± 3.9%, P = 0.02) running condition decreased between PRE and POST, with a reduction both in the heart rate (-11.3, -10.0, and -9.3%, respectively) and oxygen uptake only for the walking condition (-6.5%). No consistent and significant changes in the kinematics variables were detected (P-values from 0.10 to 0.96). Conclusion: Though fatigued after completing the MUM, the subjects were still able to maintain their uphill locomotion patterns noted at PRE. The decrease (improvement) in the energy costs was likely due to the prolonged and repetitive walking/running, reflecting a generic improvement in the mechanical efficiency of locomotion after ~130 h of uphill locomotion rather than constraints imposed by the activity on the musculoskeletal structure and function.
Frontiers in Physiol... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fphys.2016.00530&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Frontiers in Physiol... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fphys.2016.00530&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 GermanyPublisher:Royal Society of Chemistry (RSC) Sepideh Skandary; Marc Brecht; Marc Brecht; Alexander Konrad; Anna-Lisa Trost; Martin Hussels; Alfred J. Meixner; N. V. Karapetyan;We demonstrate controlled modification of the fluorescence and energy transfer properties of Photosystem I (PSI) - one of the most important light harvesting systems - by using a newly developed approach to produce optical subwavelength microcavities for cryogenic temperature issues. The experiments were carried out on PSI from the cyanobacterium Arthrospira platensis as it shows a broad and structured fluorescence emission. By changing the distance between the cavity forming mirrors, the electromagnetic field mode structure around PSI is varied affecting the emission and energy transfer properties, which allows us to selectively enhance signals of resonant emitters and suppress off-resonant emission. By comparing the experimental data with simulations, we are able to show how excitation transfer within PSI is affected by the microcavity. The ability to control the energy transfer within such efficient energy converters as photosynthetic proteins can establish the opportunity for enhancing the efficiencies of bio-solar applications. The defined control of the resonance conditions by microcavities makes them a preferable tool to study the effects of additional electromagnetic modes on the energy transfer in any coupled multi-chromophore system. The resonator geometry excludes the direct contact of the proteins with any surface. Possible quenching or denaturation of the complexes close to metal surfaces is still an insuperable obstacle for studies with proteins and nanostructures, which can be avoided by resonators.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c3cp55195d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c3cp55195d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Embargo end date: 01 Jan 2018 United States, SwitzerlandPublisher:Wiley Guowei Liu; Johannes Pfeifer; Rita de Brito Francisco; Aurelia Emonet; Marina Stirnemann; Christian Gübeli; Olivier Hutter; Joëlle Sasse; Christian Mattheyer; Ernst Stelzer; Achim Walter; Enrico Martinoia; Lorenzo Borghi;Summary Strigolactones (SLs) are carotenoid‐derived phytohormones shaping plant architecture and inducing the symbiosis with endomycorrhizal fungi. In Petunia hybrida, SL transport within the plant and towards the rhizosphere is driven by the ABCG‐class protein PDR1. PDR1 expression is regulated by phytohormones and by the soil phosphate abundance, and thus SL transport integrates plant development with nutrient conditions. We overexpressed PDR1 (PDR1 OE) to investigate whether increased endogenous SL transport is sufficient to improve plant nutrition and productivity. Phosphorus quantification and nondestructive X‐ray computed tomography were applied. Morphological and gene expression changes were quantified at cellular and whole tissue levels via time‐lapse microscopy and quantitative PCR. PDR1 OE significantly enhanced phosphate uptake and plant biomass production on phosphate‐poor soils. PDR1 OE plants showed increased lateral root formation, extended root hair elongation, faster mycorrhization and reduced leaf senescence. PDR1 overexpression allowed considerable SL biosynthesis by releasing SL biosynthetic genes from an SL‐dependent negative feedback. The increased endogenous SL transport/biosynthesis in PDR1 OE plants is a powerful tool to improve plant growth on phosphate‐poor soils. We propose PDR1 as an as yet unexplored trait to be investigated for crop production. The overexpression of PDR1 is a valuable strategy to investigate SL functions and transport routes.
New Phytologist arrow_drop_down eScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.14847&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 50 citations 50 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert New Phytologist arrow_drop_down eScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.14847&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1990Publisher:Elsevier BV Authors: A. Fassò; R. Tartaglia; A. Ferrari; Graham R. Stevenson;Abstract An electron-positron collider (LEP) has recently been put into operation at CERN. Two 46 GeV beams circulate around the 27 km accelerator ring and these produce intense synchrotron radiation with photon energies up to more than 1 MeV. A lead shiedl 8 mm thick has been provided in most places around the vacuum chamber to minimize radiation damage to sensitive machine components. Monte-Carlo techniques using a modified version of MORSE have been used to estimate dose-rate levels in the tunnel due to radiation escaping from the vacuum pipe and scattered by magnets and the tunnel walls. The results have been confirmed by dosimetry measurements.
Progress in Nuclear ... arrow_drop_down Progress in Nuclear EnergyArticle . 1990 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0149-1970(90)90061-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Progress in Nuclear ... arrow_drop_down Progress in Nuclear EnergyArticle . 1990 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0149-1970(90)90061-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Van Hai Nguyen; Thanh Danh Nguyen; Jongwoo Song; Jongdeok An; Chan Im;Efforts to improve the solar power conversion efficiencies of binary bulk heterojunction-type organic photovoltaic devices using an active layer consisting of a poly-(3-alkylthiophene) (P3AT) homopolymer and a suitable fullerene derivative face barriers caused by the intrinsic properties of homopolymers. To overcome such barriers, researchers might be able to chemically tailor homopolymers by means of monomer ratio-balanced block copolymerization to obtain preferable properties. Triblock copolymers consisting of three components—3-hexylthiophene (HT), 3-butylthiophene (BT), and 3-octylthiophene (OT)—were synthesized via Grignard metathesis (GRIM) polymerization. The component ratios of the synthesized block copolymers were virtually the same as the feeding ratios of the monomers, a fact which was verified using 1H-NMR spectra. All the copolymers exhibited comparable crystalline and melting temperatures, which increased when one type of monomer became dominant. In addition, their power conversion efficiencies and photoluminescence properties were governed by the major components of the copolymers. Interestingly, the HT component-dominated block copolymer indicated the highest power conversion efficiency, comparable to that of its homopolymer, although its molecular weight was significantly shorter.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/molecules27238469&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/molecules27238469&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu