- home
- Advanced Search
- Energy Research
- CH
- Energy Research
- CH
description Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2014Embargo end date: 01 Jan 2014 SwitzerlandPublisher:Elsevier BV Authors: Petrescu, Letitia; Müller, Christoph R.; Cormos, Calin-Cristian;Hydrogen production from natural gas, combined with advanced CO2 capture technologies, such as iron-based chemical looping (CL), is considered in the present work. The processes are compared to the conventional base case, i.e. hydrogen production via natural gas steam reforming (SR) without CO2 capture. The processes are simulated using commercial software (ChemCAD) and evaluated from a technical point of view considering important key performance indicators such as hydrogen thermal output, net electric power, carbon capture rate and specific CO2 emissions. The environmental evaluation is performed using Life Cycle Analysis (LCA) with the following system boundaries considered: i) hydrogen production from natural gas coupled to CO2 capture technologies based on CL, ii) upstream processes such as: extraction and processing of natural gas, ilmenite and catalyst production and iii) downstream processes such as: H2 and CO2 compression, transport and storage. The LCA assessment was carried out using the GaBi6 software. Different environmental impact categories, following here the CML 2001 impact assessment method, were calculated and used to determine the most suitable technology. Sensitivity analyses of the CO2 compression, transport and storage stages were performed in order to examine their effect on the environmental impact categories. 12th International Conference on Greenhouse Gas Control Technologies, GHGT-12 Energy Procedia, 63 ISSN:1876-6102
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.777&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.777&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2014Embargo end date: 01 Jan 2014 SwitzerlandPublisher:Elsevier BV Authors: Petrescu, Letitia; Müller, Christoph R.; Cormos, Calin-Cristian;Hydrogen production from natural gas, combined with advanced CO2 capture technologies, such as iron-based chemical looping (CL), is considered in the present work. The processes are compared to the conventional base case, i.e. hydrogen production via natural gas steam reforming (SR) without CO2 capture. The processes are simulated using commercial software (ChemCAD) and evaluated from a technical point of view considering important key performance indicators such as hydrogen thermal output, net electric power, carbon capture rate and specific CO2 emissions. The environmental evaluation is performed using Life Cycle Analysis (LCA) with the following system boundaries considered: i) hydrogen production from natural gas coupled to CO2 capture technologies based on CL, ii) upstream processes such as: extraction and processing of natural gas, ilmenite and catalyst production and iii) downstream processes such as: H2 and CO2 compression, transport and storage. The LCA assessment was carried out using the GaBi6 software. Different environmental impact categories, following here the CML 2001 impact assessment method, were calculated and used to determine the most suitable technology. Sensitivity analyses of the CO2 compression, transport and storage stages were performed in order to examine their effect on the environmental impact categories. 12th International Conference on Greenhouse Gas Control Technologies, GHGT-12 Energy Procedia, 63 ISSN:1876-6102
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.777&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.777&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu