- home
- Advanced Search
- Energy Research
- CH
- Energy Research
- CH
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019Embargo end date: 01 Jan 2019 Germany, United Kingdom, Ireland, Switzerland, GermanyPublisher:Wiley Publicly fundedFunded by:UKRI | Impacts of global warming..., DFG | Exploring mechanisms unde..., UKRI | Impacts of habitat fragme... +3 projectsUKRI| Impacts of global warming in sentinel systems: from genes to ecosystems ,DFG| Exploring mechanisms underlying the relationship between biodiversity and ecosystem functioning (Jena Experiment) ,UKRI| Impacts of habitat fragmentation in a warming world ,NSF| NSF Postdoctoral Fellowship in Biology FY 2014 ,DFG ,DFG| German Centre for Integrative Biodiversity Research - iDivAuthors:Louise C. Archer;
Louise C. Archer; Bruno Gallo; Guy Woodward; +6 AuthorsLouise C. Archer
Louise C. Archer in OpenAIRELouise C. Archer;
Louise C. Archer; Bruno Gallo; Guy Woodward;Louise C. Archer
Louise C. Archer in OpenAIREEoin J. O'Gorman;
Eoin J. O'Gorman
Eoin J. O'Gorman in OpenAIREMalte Jochum;
Malte Jochum
Malte Jochum in OpenAIREBjörn C. Rall;
Björn C. Rall
Björn C. Rall in OpenAIREEsra H. Sohlström;
Esra H. Sohlström; Rebecca L. Kordas;Esra H. Sohlström
Esra H. Sohlström in OpenAIREAbstract Global warming is one of the greatest threats to the persistence of populations: increased metabolic demands should strengthen pairwise species interactions, which could destabilize food webs at the higher organizational levels. Quantifying the temperature dependence of consumer–resource interactions is thus essential for predicting ecological responses to warming. We explored feeding interactions between different predator–prey pairs in controlled‐temperature chambers and in a system of naturally heated streams. We found consistent temperature dependence of attack rates across experimental settings, though the magnitude and activation energy of attack rate were specific to each predator, which varied in mobility and foraging mode. We used these parameters along with metabolic rate measurements to estimate energetic efficiency and population abundance with warming. Energetic efficiency accurately estimated field abundance of a mobile predator that struggled to meet its metabolic demands, but was a poor predictor for a sedentary predator that operated well below its energetic limits. Temperature effects on population abundance may thus be strongly dependent on whether organisms are regulated by their own energy intake or interspecific interactions. Given the widespread use of functional response parameters in ecological modelling, reconciling outcomes from laboratory and field studies increases the confidence and precision with which we can predict warming impacts on natural systems.
Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2019 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Imperial College London: SpiralArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10044/1/87266Data sources: Bielefeld Academic Search Engine (BASE)University of Essex Research RepositoryArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2019License: CC BYData sources: Spiral - Imperial College Digital RepositoryPublikationenserver der Georg-August-Universität GöttingenArticle . 2019 . Peer-reviewedGöttingen Research Online PublicationsArticle . 2021License: CC BYData sources: Göttingen Research Online PublicationsCork Open Research Archive (CORA)Article . 2019License: CC BYData sources: Cork Open Research Archive (CORA)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.13060&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2019 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Imperial College London: SpiralArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10044/1/87266Data sources: Bielefeld Academic Search Engine (BASE)University of Essex Research RepositoryArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2019License: CC BYData sources: Spiral - Imperial College Digital RepositoryPublikationenserver der Georg-August-Universität GöttingenArticle . 2019 . Peer-reviewedGöttingen Research Online PublicationsArticle . 2021License: CC BYData sources: Göttingen Research Online PublicationsCork Open Research Archive (CORA)Article . 2019License: CC BYData sources: Cork Open Research Archive (CORA)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.13060&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2017 United Kingdom, Switzerland, GermanyPublisher:Wiley Funded by:UKRI | Impacts of global warming..., UKRI | Impacts of habitat fragme...UKRI| Impacts of global warming in sentinel systems: from genes to ecosystems ,UKRI| Impacts of habitat fragmentation in a warming worldAuthors:Malte Jochum;
Malte Jochum; Jón S. Ólafsson;Malte Jochum
Malte Jochum in OpenAIREEoin J. O'Gorman;
+1 AuthorsEoin J. O'Gorman
Eoin J. O'Gorman in OpenAIREMalte Jochum;
Malte Jochum; Jón S. Ólafsson;Malte Jochum
Malte Jochum in OpenAIREEoin J. O'Gorman;
Jennifer Scrine;Eoin J. O'Gorman
Eoin J. O'Gorman in OpenAIREAbstractWarming can lead to increased growth of plants or algae at the base of the food web, which may increase the overall complexity of habitat available for other organisms. Temperature and habitat complexity have both been shown to alter the structure and functioning of communities, but they may also have interactive effects, for example, if the shade provided by additional habitat negates the positive effect of temperature on understory plant or algal growth. This study explored the interactive effects of these two major environmental factors in a manipulative field experiment, by assessing changes in ecosystem functioning (primary production and decomposition) and community structure in the presence and absence of artificial plants along a natural stream temperature gradient of 5–18°C. There was no effect of temperature or habitat complexity on benthic primary production, but epiphytic production increased with temperature in the more complex habitat. Cellulose decomposition rate increased with temperature, but was unaffected by habitat complexity. Macroinvertebrate communities were less similar to each other as temperature increased, while habitat complexity only altered community composition in the coldest streams. There was also an overall increase in macroinvertebrate abundance, body mass, and biomass in the warmest streams, driven by increasing dominance of snails and blackfly larvae. Presence of habitat complexity, however, dampened the strength of this temperature effect on the abundance of macroinvertebrates in the benthos. The interactive effects that were observed suggest that habitat complexity can modify the effects of temperature on important ecosystem functions and community structure, which may alter energy flow through the food web. Given that warming is likely to increase habitat complexity, particularly at higher latitudes, more studies should investigate these two major environmental factors in combination to improve our ability to predict the impacts of future global change.
Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2017 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)University of Essex Research RepositoryArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/10044/1/50497Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2017Data sources: Spiral - Imperial College Digital RepositoryPublikationenserver der Georg-August-Universität GöttingenArticle . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ece3.3412&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2017 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)University of Essex Research RepositoryArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/10044/1/50497Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2017Data sources: Spiral - Imperial College Digital RepositoryPublikationenserver der Georg-August-Universität GöttingenArticle . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ece3.3412&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Funded by:UKRI | Impacts of habitat fragme..., UKRI | Using individual metaboli...UKRI| Impacts of habitat fragmentation in a warming world ,UKRI| Using individual metabolism and body size to predict climate warming impacts on aquatic food websAuthors:Plebani, Marco;
Plebani, Marco
Plebani, Marco in OpenAIREKrug, Rainer M.;
Krug, Rainer M.
Krug, Rainer M. in OpenAIREFußman, Katarina E.;
Fußman, Katarina E.
Fußman, Katarina E. in OpenAIREHansen, Dennis M.;
+4 AuthorsHansen, Dennis M.
Hansen, Dennis M. in OpenAIREPlebani, Marco;
Plebani, Marco
Plebani, Marco in OpenAIREKrug, Rainer M.;
Krug, Rainer M.
Krug, Rainer M. in OpenAIREFußman, Katarina E.;
Fußman, Katarina E.
Fußman, Katarina E. in OpenAIREHansen, Dennis M.;
Hansen, Dennis M.
Hansen, Dennis M. in OpenAIREO'Gorman, Eoin J.;
O'Gorman, Eoin J.
O'Gorman, Eoin J. in OpenAIREStewart, Rebecca I. A;
Stewart, Rebecca I. A
Stewart, Rebecca I. A in OpenAIREWoodward, Guy;
Woodward, Guy
Woodward, Guy in OpenAIREPetchey, Owen L.;
Petchey, Owen L.
Petchey, Owen L. in OpenAIRECiliate assemblages play a significant role in the microbial food web. The effects of environmental temperature on assemblage composition may be influenced by abiotic factors such as seasonality and disturbance, but the effects of temperature on ciliate assemblages found on different substrata have not been explored. Sandy bottoms and submerged rocks harbour dissimilar ciliate assemblages, and it might be expected that their ciliate assemblages will respond differently to temperature. We studied how alpha diversity, beta diversity and total biomass of ciliate protist assemblages found on sandy bottoms and submerged rocks differed in 13 geothermally heated streams in Iceland whose mean temperatures range from 5 to 20 °C. We recorded number of operational taxonomic units (OTUs) and measured the size of cells in ciliate assemblages from both substrata. Effects of temperature on natural ciliate assemblages were substratum dependent. On rock surfaces, both total ciliate biomass and alpha diversity declined with increasing temperature, and beta diversity increased with increasing temperature difference due to OTU nestedness (assemblages from warm streams being composed chiefly of subsets of the OTUs found in colder streams). In sandy substrata, however, ciliate assemblage composition was independent of temperature. Substratum‐specific responses may be due to differences in mechanical disturbance, nutrient availability or exposure to invertebrate grazers. Rock‐surface assemblages may be more exposed to the flow and retain less nutrient than those of sandy substratum; thus, they may be more strongly resource limited and more responsive to direct effects of temperature on metabolism. Alternatively, rock‐surface assemblages may be more exposed to grazing by invertebrates, which intensifies with temperature. Our study highlights the need to account for environmental context such as substratum type to fully understand the effect of temperature on microbial assemblages in streams. Future increases in global temperatures may affect fresh waters differently depending on their prevalent substratum. Those dominated by hard substrata may have their ciliate assemblages, and thus, food‐web structures and ecosystem functioning more strongly affected by warming relative to systems dominated by soft substrata. {"references": ["Plebani, M., Fussmann, K.E., Hansen, D.M. & Gorman, E.J.O. (2015) Substratum-dependent responses of ciliate assemblages to temperature\u202f: a natural experiment in Icelandic streams. Freshwater Biology, 60, 1561-1570. https://doi.org/10.1111/fwb.12588"]}
ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4686554&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 4visibility views 4 download downloads 9 Powered bymore_vert ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4686554&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2018 Finland, France, United Kingdom, FrancePublisher:Wiley Funded by:UKRI | Impacts of habitat fragme..., UKRI | Impacts of global warming...UKRI| Impacts of habitat fragmentation in a warming world ,UKRI| Impacts of global warming in sentinel systems: from genes to ecosystemsAuthors: Orla McLaughlin;Sinikka I. Robinson;
Sinikka I. Robinson;Sinikka I. Robinson
Sinikka I. Robinson in OpenAIREEoin J. O'Gorman;
+2 AuthorsEoin J. O'Gorman
Eoin J. O'Gorman in OpenAIREOrla McLaughlin;Sinikka I. Robinson;
Sinikka I. Robinson;Sinikka I. Robinson
Sinikka I. Robinson in OpenAIREEoin J. O'Gorman;
Eoin J. O'Gorman
Eoin J. O'Gorman in OpenAIREBryndís Marteinsdóttir;
Bryndís Marteinsdóttir;Bryndís Marteinsdóttir
Bryndís Marteinsdóttir in OpenAIREAbstract Global warming is predicted to significantly alter species physiology, biotic interactions and thus ecosystem functioning, as a consequence of coexisting species exhibiting a wide range of thermal sensitivities. There is, however, a dearth of research examining warming impacts on natural communities. Here, we used a natural warming experiment in Iceland to investigate the changes in above‐ground terrestrial plant and invertebrate communities along a soil temperature gradient (10°C–30°C). The α‐diversity of plants and invertebrates decreased with increasing soil temperature, driven by decreasing plant species richness and increasing dominance of certain invertebrate species in warmer habitats. There was also greater species turnover in both plant and invertebrate communities with increasing pairwise temperature difference between sites. There was no effect of temperature on percentage cover of vegetation at the community level, driven by contrasting effects at the population level. There was a reduction in the mean body mass and an increase in the total abundance of the invertebrate community, resulting in no overall change in community biomass. There were contrasting effects of temperature on the population abundance of various invertebrate species, which could be explained by differential thermal tolerances and metabolic requirements, or may have been mediated by changes in plant community composition. Our study provides an important baseline from which the effect of changing environmental conditions on terrestrial communities can be tracked. It also contributes to our understanding of why community‐level studies of warming impacts are imperative if we are to disentangle the contrasting thermal responses of individual populations.
Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02625664/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02625664/documentImperial College London: SpiralArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10044/1/56395Data sources: Bielefeld Academic Search Engine (BASE)University of Essex Research RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2018Data sources: Spiral - Imperial College Digital RepositoryHELDA - Digital Repository of the University of HelsinkiArticle . 2018 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)HAL - Université de Bourgogne (HAL-uB)Other literature type . 2018Data sources: HAL - Université de Bourgogne (HAL-uB)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.12798&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 55 citations 55 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02625664/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02625664/documentImperial College London: SpiralArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10044/1/56395Data sources: Bielefeld Academic Search Engine (BASE)University of Essex Research RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2018Data sources: Spiral - Imperial College Digital RepositoryHELDA - Digital Repository of the University of HelsinkiArticle . 2018 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)HAL - Université de Bourgogne (HAL-uB)Other literature type . 2018Data sources: HAL - Université de Bourgogne (HAL-uB)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.12798&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu