- home
- Advanced Search
- Energy Research
- Restricted
- Open Source
- 13. Climate action
- 15. Life on land
- CH
- Energy Research
- Restricted
- Open Source
- 13. Climate action
- 15. Life on land
- CH
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 FrancePublisher:American Association for the Advancement of Science (AAAS) Jean-Francois Bastin; Yelena Finegold; Claude Garcia; Danilo Mollicone; Marcelo Rezende; Devin Routh; Constantin M. Zohner; Thomas W. Crowther;pmid: 31273120
The potential for global forest cover The restoration of forested land at a global scale could help capture atmospheric carbon and mitigate climate change. Bastin et al. used direct measurements of forest cover to generate a model of forest restoration potential across the globe (see the Perspective by Chazdon and Brancalion). Their spatially explicit maps show how much additional tree cover could exist outside of existing forests and agricultural and urban land. Ecosystems could support an additional 0.9 billion hectares of continuous forest. This would represent a greater than 25% increase in forested area, including more than 200 gigatonnes of additional carbon at maturity.Such a change has the potential to store an equivalent of 25% of the current atmospheric carbon pool. Science , this issue p. 76 ; see also p. 24
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aax0848&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2K citations 1,502 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
visibility 4visibility views 4 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aax0848&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 SwitzerlandPublisher:Elsevier BV Authors: Klaassen, R.E.; Patel, Martin;Domestic heating represents the most dominant energy function in Dutch households nowadays. Using district heat from CHP (combined heat and power) by means of a NGCC (natural gas-fired combined cycle) plants is generally acknowledged as an effective option to reduce primary energy consumption for heating. However, methods to calculate energy savings from CHP differ widely. This paper compares a number of different methods, including the method from the EU CHP Directive, to estimate primary energy savings in comparison with the typically used domestic gas-fired condensing boiler. Real hourly CHP plant performance data is used. An estimation of the CO2 mitigation cost of delivering district heat to Dutch dwellings is made. We find that supplying dwellings with district heat from an NGCC-CHP saves energy, regardless of the calculation method and for a rather wide range of reference efficiencies. CO2 mitigation costs are acceptable from a social perspective (at discount rates up to 4%, excluding fuel taxes) and negative from a private perspective (at discount rates up to 10%, including fuel taxes).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2013.02.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2013.02.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 SwitzerlandPublisher:Elsevier BV Authors: Jonathan Chambers; Kapil Narula; Matthias Sulzer; Martin K. Patel;Abstract In its 2016 Heating and Cooling Strategy, the European Commission (EC) highlighted the strategic importance of heating demand for the energy demand reduction, and further noted that District Heat Networks (DHN) can play an important role in decarbonising this sector. This study applied a thermal atlas approach to map the potential for district heat networks in Switzerland. It extended existing methods with a novel approach to estimating linear thermal demand density in DHN at a national scale. DHN potential for current-generation high temperature networks as well as cutting-edge low temperature networks were compared for current building space heating and hot water demand as well as for two demand reduction scenarios. The method was tested by comparing its results to those of a local engineering study conducted for a Swiss municipality (Brig-Glis). The potential percentage of demand supplied by high temperature DHN was shown to decrease from 66% to 41% with energy saving while the potential for low temperature systems increased significantly from 2.1% to 42%. The percentage of heat demand covered by heat networks decreases less than the percentage of buildings covered, reflecting the strength of heat networks for supplying large fractions of thermal demand in geographically confined areas.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.04.044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu48 citations 48 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.04.044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014 Netherlands, SwitzerlandPublisher:Wiley Garonna, I.; de Jong, R.; de Wit, A.J.W.; Mücher, C.A.; Schmid, B.; Schaepman, M.E.;doi: 10.1111/gcb.12625
pmid: 24797086
AbstractLand Surface Phenology (LSP) is the most direct representation of intra‐annual dynamics of vegetated land surfaces as observed from satellite imagery. LSP plays a key role in characterizing land‐surface fluxes, and is central to accurately parameterizing terrestrial biosphere–atmosphere interactions, as well as climate models. In this article, we present an evaluation of Pan‐European LSP and its changes over the past 30 years, using the longest continuous record of Normalized Difference Vegetation Index (NDVI) available to date in combination with a landscape‐based aggregation scheme. We used indicators of Start‐Of‐Season, End‐Of‐Season and Growing Season Length (SOS, EOS and GSL, respectively) for the period 1982–2011 to test for temporal trends in activity of terrestrial vegetation and their spatial distribution. We aggregated pixels into ecologically representative spatial units using the European Landscape Classification (LANMAP) and assessed the relative contribution of spring and autumn phenology. GSL increased significantly by 18–24 days decade−1 over 18–30% of the land area of Europe, depending on methodology. This trend varied extensively within and between climatic zones and landscape classes. The areas of greatest growing‐season lengthening were the Continental and Boreal zones, with hotspots concentrated in southern Fennoscandia, Western Russia and pockets of continental Europe. For the Atlantic and Steppic zones, we found an average shortening of the growing season with hotspots in Western France, the Po valley, and around the Caspian Sea. In many zones, changes in the NDVI‐derived end‐of‐season contributed more to the GSL trend than changes in spring green‐up, resulting in asymmetric trends. This underlines the importance of investigating senescence and its underlying processes more closely as a driver of LSP and global change.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefZurich Open Repository and ArchiveArticle . 2014 . Peer-reviewedData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12625&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu216 citations 216 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefZurich Open Repository and ArchiveArticle . 2014 . Peer-reviewedData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12625&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Other literature type 2022Embargo end date: 28 Jan 2022 Italy, Italy, SwitzerlandPublisher:Oxford University Press (OUP) Allen; S. (1; 2); Frey; H. (1); Haeberli; W. (1); Huggel; C. (1); Chiarle; M. (3); Geertsema; M. (4);Glacier and permafrost hazards in cold mountain regions encompass various flood and mass movement processes that are strongly affected by rapid and cumulative climate-induced changes in the alpine cryosphere. These processes are characterized by a range of spatial and temporal dimensions, from small volume icefalls and rockfalls that present a frequent but localized danger to less frequent but large magnitude process chains that can threaten people and infrastructure located far downstream. Glacial lake outburst floods (GLOFs) have proven particularly devastating, accounting for the most far-reaching disasters in high mountain regions globally. Comprehensive assessments of glacier and permafrost hazards define two core components (or outcomes): 1. Susceptibility and stability assessment: Identifies likelihood and origin of an event based on analyses of wide-ranging triggering and conditioning factors driven by interlinking atmospheric, cryospheric, geological, geomorphological, and hydrological processes. 2. Hazard mapping: Identifies the potential impact on downslope and downstream areas through a combination of process modeling and field mapping that provides the scientific basis for decision making and planning. Glacier and permafrost hazards gained prominence around the mid-20th century, especially following a series of major disasters in the Peruvian Andes, Alaska, and the Swiss Alps. At that time, related hazard assessments were reactionary and event-focused, aiming to understand the causes of the disasters and to reduce ongoing threats to communities. These disasters and others that followed, such as Kolka Karmadon in 2002, established the fundamental need to consider complex geosystems and cascading processes with their cumulative downstream impacts as one of the distinguishing principles of integrative glacier and permafrost hazard assessment. The widespread availability of satellite imagery enables a preemptive approach to hazard assessment, beginning with regional scale first-order susceptibility and hazard assessment and modeling that provide a first indication of possible unstable slopes or dangerous lakes and related cascading processes. Detailed field investigations and scenario-based hazard mapping can then be targeted to high-priority areas. In view of the rapidly changing mountain environment, leading beyond historical precedence, there is a clear need for future-oriented scenarios to be integrated into the hazard assessment that consider, for example, the threat from new lakes that are projected to emerge in a deglaciating landscape. In particular, low-probability events with extreme magnitudes are a challenge for authorities to plan for, but such events can be appropriately considered as a worst-case scenario in a comprehensive, forward-looking, multiscenario hazard assessment.
Zurich Open Reposito... arrow_drop_down Zurich Open Repository and ArchivePart of book or chapter of book . 2022Data sources: Zurich Open Repository and Archivehttps://doi.org/10.1093/acrefo...Part of book or chapter of book . 2022 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/acrefore/9780199389407.013.356&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Zurich Open Reposito... arrow_drop_down Zurich Open Repository and ArchivePart of book or chapter of book . 2022Data sources: Zurich Open Repository and Archivehttps://doi.org/10.1093/acrefo...Part of book or chapter of book . 2022 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/acrefore/9780199389407.013.356&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 SwitzerlandPublisher:Springer Science and Business Media LLC Funded by:SNSF | Syndicalisme internationa...SNSF| Syndicalisme international et lutte contre le réchauffement climatiqueAuthors: Stevis Dimitris; Felli Romain;Questions of justice in the transition to a green economy have been raised by various social forces. Very few proposals, however, have been as focused and developed as the “just transition” strategy proposed by global labour unions. Yet, labour unions are remarkably absent from discussions of the transition towards a green economy. This is surprising as labour unions are arguably the largest organizations in the world fighting for basic rights and more just social relations. This paper tries to advance the potential contribution of labour unions in this arena by asking: what is the full scope of “just transition” today and how have labour unions developed and refined it over the years to render the move towards a green economy both environmentally and socially sustainable? The concept of just transition is hotly debated within labour unions and has different interpretations, and hence different strategies. The last section assesses these interpretations by means of a normative framework, which seeks to fuse political economy and political ecology. Empirically, we add to the growing literature on labour environmentalism, as well as transitions more generally. Analytically, our goal is to place the various approaches to a “just transition” within a heuristic framework of environmental justice that is explicit about power relations when demanding justice, two themes central to this special issue.
Archive ouverte UNIG... arrow_drop_down International Environmental Agreements Politics Law and EconomicsArticle . 2014 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10784-014-9266-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu249 citations 249 popularity Top 0.1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert Archive ouverte UNIG... arrow_drop_down International Environmental Agreements Politics Law and EconomicsArticle . 2014 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10784-014-9266-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Doctoral thesis , Thesis 2019Embargo end date: 01 Jan 2019 SwitzerlandPublisher:Université de Genève Authors: Pacheco Rodriguez; Maria Natalia;The Paris Agreement, in force since 2016, stipulates the new multilateral foundations for climate actions under the United Nations Convention on Climate Change. This Agreement incorporated Payment for Environmental Services (PES) and Markets for Environmental Services (MES) among its strategies to combat climate change. However, abundant literature has outlined economic, social and environmental equity concerns regarding the implementation of PES and MES under the Kyoto Protocol. How have these concerns been taken into account in the establishment of PES and MES in the Paris Agreement? How can equity considerations be comprehensively assessed in this regard? Through the triangulation of methodologies including literature review, participant observation and interviews with key informants, this thesis explains the consideration of equity in the newly established PES and MES in the Paris Agreement.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.13097/archive-ouverte/unige:120356&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.13097/archive-ouverte/unige:120356&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Embargo end date: 11 Apr 2024 SwitzerlandPublisher:Springer Science and Business Media LLC Müller, Jörg; Hothorn, Torsten; Yuan, Ye; Seibold, Sebastian; Mitesser, Oliver; Rothacher, Julia; Freund, Julia; Wild, Clara; Wolz, Marina; Menzel, Annette;pmid: 37758943
Insects have a pivotal role in ecosystem function, thus the decline of more than 75% in insect biomass in protected areas over recent decades in Central Europe1 and elsewhere2,3 has alarmed the public, pushed decision-makers4 and stimulated research on insect population trends. However, the drivers of this decline are still not well understood. Here, we reanalysed 27 years of insect biomass data from Hallmann et al.1, using sample-specific information on weather conditions during sampling and weather anomalies during the insect life cycle. This model explained variation in temporal decline in insect biomass, including an observed increase in biomass in recent years, solely on the basis of these weather variables. Our finding that terrestrial insect biomass is largely driven by complex weather conditions challenges previous assumptions that climate change is more critical in the tropics5,6 or that negative consequences in the temperate zone might only occur in the future7. Despite the recent observed increase in biomass, new combinations of unfavourable multi-annual weather conditions might be expected to further threaten insect populations under continuing climate change. Our findings also highlight the need for more climate change research on physiological mechanisms affected by annual weather conditions and anomalies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-023-06402-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu45 citations 45 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-023-06402-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 Netherlands, SwitzerlandPublisher:Elsevier BV Authors: Shen, L.; Worrell, E.; Patel, M.K.;This study assesses the environmental impact of polyethylene terephthalate (PET) bottle-to-fibre recycling using the methodology of life-cycle assessment (LCA). Four recycling cases, including mechanical recycling, semi-mechanical recycling, back-to-oligomer recycling and back-to-monomer recycling were analysed. Three allocation methods are applied for open-loop recycling, i.e. the “cut-off” approach, the “waste valuation” approach and the “system expansion” approach. Nine environmental impact indicators were analysed, i.e. non-renewable energy use (NREU), global warming potential (GWP), abiotic depletion, acidification, eutrophication, human toxicity, fresh water aquatic ecotoxicity, terrestrial ecotoxicity and photochemical oxidant formation. The LCA results are compared with virgin PET fibre and other commodity fibre products, i.e. cotton, viscose, PP (polypropylene) and PLA (polylactic acid). The LCA results show that recycled PET fibres offer important environmental benefits over virgin PET fibre. Depending on the allocation methods applied for open-loop-recycling, NREU savings of 40–85% and GWP savings of 25–75% can be achieved. Recycled PET fibres produced by mechanical recycling cause lower environmental impacts than virgin PET in at least eight out of a total of nine categories. Recycled fibres produced from chemical recycling allow to reduce impacts in six to seven out of a total of nine categories compared to virgin PET fibres. Note that while mechanical recycling has a better environmental profile than chemical recycling, chemically recycled fibres can be applied in a wider range of applications than mechanically recycled fibres.
Archive ouverte UNIG... arrow_drop_down Resources Conservation and RecyclingArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.resconrec.2010.06.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu382 citations 382 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Archive ouverte UNIG... arrow_drop_down Resources Conservation and RecyclingArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.resconrec.2010.06.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 Netherlands, United Kingdom, NetherlandsPublisher:Springer Science and Business Media LLC Denis Kosmach; Igor Semiletov; Igor Semiletov; A. N. Charkin; B. E. van Dongen; B. E. van Dongen; Jorien E. Vonk; Jorien E. Vonk; Natalia Shakhova; Natalia Shakhova; Per Roos; Laura Sánchez-García; Laura Sánchez-García; Örjan Gustafsson; August Andersson; V. Alling; V. Alling; Oleg V. Dudarev; Timothy I. Eglinton;The future trajectory of greenhouse gas concentrations depends on interactions between climate and the biogeosphere. Thawing of Arctic permafrost could release significant amounts of carbon into the atmosphere in this century. Ancient Ice Complex deposits outcropping along the ~7,000-kilometre-long coastline of the East Siberian Arctic Shelf (ESAS), and associated shallow subsea permafrost, are two large pools of permafrost carbon, yet their vulnerabilities towards thawing and decomposition are largely unknown. Recent Arctic warming is stronger than has been predicted by several degrees, and is particularly pronounced over the coastal ESAS region. There is thus a pressing need to improve our understanding of the links between permafrost carbon and climate in this relatively inaccessible region. Here we show that extensive release of carbon from these Ice Complex deposits dominates (57 ± 2 per cent) the sedimentary carbon budget of the ESAS, the world’s largest continental shelf, overwhelming the marine and topsoil terrestrial components. Inverse modelling of the dual-carbon isotope composition of organic carbon accumulating in ESAS surface sediments, using Monte Carlo simulations to account for uncertainties, suggests that 44 ± 10 teragrams of old carbon is activated annually from Ice Complex permafrost, an order of magnitude more than has been suggested by previous studies. We estimate that about two-thirds (66 ± 16 per cent) of this old carbon escapes to the atmosphere as carbon dioxide, with the remainder being re-buried in shelf sediments. Thermal collapse and erosion of these carbon-rich Pleistocene coastline and seafloor deposits may accelerate with Arctic amplification of climate warming.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature11392&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu325 citations 325 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature11392&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 FrancePublisher:American Association for the Advancement of Science (AAAS) Jean-Francois Bastin; Yelena Finegold; Claude Garcia; Danilo Mollicone; Marcelo Rezende; Devin Routh; Constantin M. Zohner; Thomas W. Crowther;pmid: 31273120
The potential for global forest cover The restoration of forested land at a global scale could help capture atmospheric carbon and mitigate climate change. Bastin et al. used direct measurements of forest cover to generate a model of forest restoration potential across the globe (see the Perspective by Chazdon and Brancalion). Their spatially explicit maps show how much additional tree cover could exist outside of existing forests and agricultural and urban land. Ecosystems could support an additional 0.9 billion hectares of continuous forest. This would represent a greater than 25% increase in forested area, including more than 200 gigatonnes of additional carbon at maturity.Such a change has the potential to store an equivalent of 25% of the current atmospheric carbon pool. Science , this issue p. 76 ; see also p. 24
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aax0848&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2K citations 1,502 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
visibility 4visibility views 4 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aax0848&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 SwitzerlandPublisher:Elsevier BV Authors: Klaassen, R.E.; Patel, Martin;Domestic heating represents the most dominant energy function in Dutch households nowadays. Using district heat from CHP (combined heat and power) by means of a NGCC (natural gas-fired combined cycle) plants is generally acknowledged as an effective option to reduce primary energy consumption for heating. However, methods to calculate energy savings from CHP differ widely. This paper compares a number of different methods, including the method from the EU CHP Directive, to estimate primary energy savings in comparison with the typically used domestic gas-fired condensing boiler. Real hourly CHP plant performance data is used. An estimation of the CO2 mitigation cost of delivering district heat to Dutch dwellings is made. We find that supplying dwellings with district heat from an NGCC-CHP saves energy, regardless of the calculation method and for a rather wide range of reference efficiencies. CO2 mitigation costs are acceptable from a social perspective (at discount rates up to 4%, excluding fuel taxes) and negative from a private perspective (at discount rates up to 10%, including fuel taxes).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2013.02.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2013.02.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 SwitzerlandPublisher:Elsevier BV Authors: Jonathan Chambers; Kapil Narula; Matthias Sulzer; Martin K. Patel;Abstract In its 2016 Heating and Cooling Strategy, the European Commission (EC) highlighted the strategic importance of heating demand for the energy demand reduction, and further noted that District Heat Networks (DHN) can play an important role in decarbonising this sector. This study applied a thermal atlas approach to map the potential for district heat networks in Switzerland. It extended existing methods with a novel approach to estimating linear thermal demand density in DHN at a national scale. DHN potential for current-generation high temperature networks as well as cutting-edge low temperature networks were compared for current building space heating and hot water demand as well as for two demand reduction scenarios. The method was tested by comparing its results to those of a local engineering study conducted for a Swiss municipality (Brig-Glis). The potential percentage of demand supplied by high temperature DHN was shown to decrease from 66% to 41% with energy saving while the potential for low temperature systems increased significantly from 2.1% to 42%. The percentage of heat demand covered by heat networks decreases less than the percentage of buildings covered, reflecting the strength of heat networks for supplying large fractions of thermal demand in geographically confined areas.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.04.044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu48 citations 48 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.04.044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014 Netherlands, SwitzerlandPublisher:Wiley Garonna, I.; de Jong, R.; de Wit, A.J.W.; Mücher, C.A.; Schmid, B.; Schaepman, M.E.;doi: 10.1111/gcb.12625
pmid: 24797086
AbstractLand Surface Phenology (LSP) is the most direct representation of intra‐annual dynamics of vegetated land surfaces as observed from satellite imagery. LSP plays a key role in characterizing land‐surface fluxes, and is central to accurately parameterizing terrestrial biosphere–atmosphere interactions, as well as climate models. In this article, we present an evaluation of Pan‐European LSP and its changes over the past 30 years, using the longest continuous record of Normalized Difference Vegetation Index (NDVI) available to date in combination with a landscape‐based aggregation scheme. We used indicators of Start‐Of‐Season, End‐Of‐Season and Growing Season Length (SOS, EOS and GSL, respectively) for the period 1982–2011 to test for temporal trends in activity of terrestrial vegetation and their spatial distribution. We aggregated pixels into ecologically representative spatial units using the European Landscape Classification (LANMAP) and assessed the relative contribution of spring and autumn phenology. GSL increased significantly by 18–24 days decade−1 over 18–30% of the land area of Europe, depending on methodology. This trend varied extensively within and between climatic zones and landscape classes. The areas of greatest growing‐season lengthening were the Continental and Boreal zones, with hotspots concentrated in southern Fennoscandia, Western Russia and pockets of continental Europe. For the Atlantic and Steppic zones, we found an average shortening of the growing season with hotspots in Western France, the Po valley, and around the Caspian Sea. In many zones, changes in the NDVI‐derived end‐of‐season contributed more to the GSL trend than changes in spring green‐up, resulting in asymmetric trends. This underlines the importance of investigating senescence and its underlying processes more closely as a driver of LSP and global change.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefZurich Open Repository and ArchiveArticle . 2014 . Peer-reviewedData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12625&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu216 citations 216 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefZurich Open Repository and ArchiveArticle . 2014 . Peer-reviewedData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12625&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Other literature type 2022Embargo end date: 28 Jan 2022 Italy, Italy, SwitzerlandPublisher:Oxford University Press (OUP) Allen; S. (1; 2); Frey; H. (1); Haeberli; W. (1); Huggel; C. (1); Chiarle; M. (3); Geertsema; M. (4);Glacier and permafrost hazards in cold mountain regions encompass various flood and mass movement processes that are strongly affected by rapid and cumulative climate-induced changes in the alpine cryosphere. These processes are characterized by a range of spatial and temporal dimensions, from small volume icefalls and rockfalls that present a frequent but localized danger to less frequent but large magnitude process chains that can threaten people and infrastructure located far downstream. Glacial lake outburst floods (GLOFs) have proven particularly devastating, accounting for the most far-reaching disasters in high mountain regions globally. Comprehensive assessments of glacier and permafrost hazards define two core components (or outcomes): 1. Susceptibility and stability assessment: Identifies likelihood and origin of an event based on analyses of wide-ranging triggering and conditioning factors driven by interlinking atmospheric, cryospheric, geological, geomorphological, and hydrological processes. 2. Hazard mapping: Identifies the potential impact on downslope and downstream areas through a combination of process modeling and field mapping that provides the scientific basis for decision making and planning. Glacier and permafrost hazards gained prominence around the mid-20th century, especially following a series of major disasters in the Peruvian Andes, Alaska, and the Swiss Alps. At that time, related hazard assessments were reactionary and event-focused, aiming to understand the causes of the disasters and to reduce ongoing threats to communities. These disasters and others that followed, such as Kolka Karmadon in 2002, established the fundamental need to consider complex geosystems and cascading processes with their cumulative downstream impacts as one of the distinguishing principles of integrative glacier and permafrost hazard assessment. The widespread availability of satellite imagery enables a preemptive approach to hazard assessment, beginning with regional scale first-order susceptibility and hazard assessment and modeling that provide a first indication of possible unstable slopes or dangerous lakes and related cascading processes. Detailed field investigations and scenario-based hazard mapping can then be targeted to high-priority areas. In view of the rapidly changing mountain environment, leading beyond historical precedence, there is a clear need for future-oriented scenarios to be integrated into the hazard assessment that consider, for example, the threat from new lakes that are projected to emerge in a deglaciating landscape. In particular, low-probability events with extreme magnitudes are a challenge for authorities to plan for, but such events can be appropriately considered as a worst-case scenario in a comprehensive, forward-looking, multiscenario hazard assessment.
Zurich Open Reposito... arrow_drop_down Zurich Open Repository and ArchivePart of book or chapter of book . 2022Data sources: Zurich Open Repository and Archivehttps://doi.org/10.1093/acrefo...Part of book or chapter of book . 2022 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/acrefore/9780199389407.013.356&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Zurich Open Reposito... arrow_drop_down Zurich Open Repository and ArchivePart of book or chapter of book . 2022Data sources: Zurich Open Repository and Archivehttps://doi.org/10.1093/acrefo...Part of book or chapter of book . 2022 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/acrefore/9780199389407.013.356&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 SwitzerlandPublisher:Springer Science and Business Media LLC Funded by:SNSF | Syndicalisme internationa...SNSF| Syndicalisme international et lutte contre le réchauffement climatiqueAuthors: Stevis Dimitris; Felli Romain;Questions of justice in the transition to a green economy have been raised by various social forces. Very few proposals, however, have been as focused and developed as the “just transition” strategy proposed by global labour unions. Yet, labour unions are remarkably absent from discussions of the transition towards a green economy. This is surprising as labour unions are arguably the largest organizations in the world fighting for basic rights and more just social relations. This paper tries to advance the potential contribution of labour unions in this arena by asking: what is the full scope of “just transition” today and how have labour unions developed and refined it over the years to render the move towards a green economy both environmentally and socially sustainable? The concept of just transition is hotly debated within labour unions and has different interpretations, and hence different strategies. The last section assesses these interpretations by means of a normative framework, which seeks to fuse political economy and political ecology. Empirically, we add to the growing literature on labour environmentalism, as well as transitions more generally. Analytically, our goal is to place the various approaches to a “just transition” within a heuristic framework of environmental justice that is explicit about power relations when demanding justice, two themes central to this special issue.
Archive ouverte UNIG... arrow_drop_down International Environmental Agreements Politics Law and EconomicsArticle . 2014 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10784-014-9266-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu249 citations 249 popularity Top 0.1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert Archive ouverte UNIG... arrow_drop_down International Environmental Agreements Politics Law and EconomicsArticle . 2014 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10784-014-9266-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Doctoral thesis , Thesis 2019Embargo end date: 01 Jan 2019 SwitzerlandPublisher:Université de Genève Authors: Pacheco Rodriguez; Maria Natalia;The Paris Agreement, in force since 2016, stipulates the new multilateral foundations for climate actions under the United Nations Convention on Climate Change. This Agreement incorporated Payment for Environmental Services (PES) and Markets for Environmental Services (MES) among its strategies to combat climate change. However, abundant literature has outlined economic, social and environmental equity concerns regarding the implementation of PES and MES under the Kyoto Protocol. How have these concerns been taken into account in the establishment of PES and MES in the Paris Agreement? How can equity considerations be comprehensively assessed in this regard? Through the triangulation of methodologies including literature review, participant observation and interviews with key informants, this thesis explains the consideration of equity in the newly established PES and MES in the Paris Agreement.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.13097/archive-ouverte/unige:120356&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.13097/archive-ouverte/unige:120356&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Embargo end date: 11 Apr 2024 SwitzerlandPublisher:Springer Science and Business Media LLC Müller, Jörg; Hothorn, Torsten; Yuan, Ye; Seibold, Sebastian; Mitesser, Oliver; Rothacher, Julia; Freund, Julia; Wild, Clara; Wolz, Marina; Menzel, Annette;pmid: 37758943
Insects have a pivotal role in ecosystem function, thus the decline of more than 75% in insect biomass in protected areas over recent decades in Central Europe1 and elsewhere2,3 has alarmed the public, pushed decision-makers4 and stimulated research on insect population trends. However, the drivers of this decline are still not well understood. Here, we reanalysed 27 years of insect biomass data from Hallmann et al.1, using sample-specific information on weather conditions during sampling and weather anomalies during the insect life cycle. This model explained variation in temporal decline in insect biomass, including an observed increase in biomass in recent years, solely on the basis of these weather variables. Our finding that terrestrial insect biomass is largely driven by complex weather conditions challenges previous assumptions that climate change is more critical in the tropics5,6 or that negative consequences in the temperate zone might only occur in the future7. Despite the recent observed increase in biomass, new combinations of unfavourable multi-annual weather conditions might be expected to further threaten insect populations under continuing climate change. Our findings also highlight the need for more climate change research on physiological mechanisms affected by annual weather conditions and anomalies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-023-06402-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu45 citations 45 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-023-06402-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 Netherlands, SwitzerlandPublisher:Elsevier BV Authors: Shen, L.; Worrell, E.; Patel, M.K.;This study assesses the environmental impact of polyethylene terephthalate (PET) bottle-to-fibre recycling using the methodology of life-cycle assessment (LCA). Four recycling cases, including mechanical recycling, semi-mechanical recycling, back-to-oligomer recycling and back-to-monomer recycling were analysed. Three allocation methods are applied for open-loop recycling, i.e. the “cut-off” approach, the “waste valuation” approach and the “system expansion” approach. Nine environmental impact indicators were analysed, i.e. non-renewable energy use (NREU), global warming potential (GWP), abiotic depletion, acidification, eutrophication, human toxicity, fresh water aquatic ecotoxicity, terrestrial ecotoxicity and photochemical oxidant formation. The LCA results are compared with virgin PET fibre and other commodity fibre products, i.e. cotton, viscose, PP (polypropylene) and PLA (polylactic acid). The LCA results show that recycled PET fibres offer important environmental benefits over virgin PET fibre. Depending on the allocation methods applied for open-loop-recycling, NREU savings of 40–85% and GWP savings of 25–75% can be achieved. Recycled PET fibres produced by mechanical recycling cause lower environmental impacts than virgin PET in at least eight out of a total of nine categories. Recycled fibres produced from chemical recycling allow to reduce impacts in six to seven out of a total of nine categories compared to virgin PET fibres. Note that while mechanical recycling has a better environmental profile than chemical recycling, chemically recycled fibres can be applied in a wider range of applications than mechanically recycled fibres.
Archive ouverte UNIG... arrow_drop_down Resources Conservation and RecyclingArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.resconrec.2010.06.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu382 citations 382 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Archive ouverte UNIG... arrow_drop_down Resources Conservation and RecyclingArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.resconrec.2010.06.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 Netherlands, United Kingdom, NetherlandsPublisher:Springer Science and Business Media LLC Denis Kosmach; Igor Semiletov; Igor Semiletov; A. N. Charkin; B. E. van Dongen; B. E. van Dongen; Jorien E. Vonk; Jorien E. Vonk; Natalia Shakhova; Natalia Shakhova; Per Roos; Laura Sánchez-García; Laura Sánchez-García; Örjan Gustafsson; August Andersson; V. Alling; V. Alling; Oleg V. Dudarev; Timothy I. Eglinton;The future trajectory of greenhouse gas concentrations depends on interactions between climate and the biogeosphere. Thawing of Arctic permafrost could release significant amounts of carbon into the atmosphere in this century. Ancient Ice Complex deposits outcropping along the ~7,000-kilometre-long coastline of the East Siberian Arctic Shelf (ESAS), and associated shallow subsea permafrost, are two large pools of permafrost carbon, yet their vulnerabilities towards thawing and decomposition are largely unknown. Recent Arctic warming is stronger than has been predicted by several degrees, and is particularly pronounced over the coastal ESAS region. There is thus a pressing need to improve our understanding of the links between permafrost carbon and climate in this relatively inaccessible region. Here we show that extensive release of carbon from these Ice Complex deposits dominates (57 ± 2 per cent) the sedimentary carbon budget of the ESAS, the world’s largest continental shelf, overwhelming the marine and topsoil terrestrial components. Inverse modelling of the dual-carbon isotope composition of organic carbon accumulating in ESAS surface sediments, using Monte Carlo simulations to account for uncertainties, suggests that 44 ± 10 teragrams of old carbon is activated annually from Ice Complex permafrost, an order of magnitude more than has been suggested by previous studies. We estimate that about two-thirds (66 ± 16 per cent) of this old carbon escapes to the atmosphere as carbon dioxide, with the remainder being re-buried in shelf sediments. Thermal collapse and erosion of these carbon-rich Pleistocene coastline and seafloor deposits may accelerate with Arctic amplification of climate warming.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature11392&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu325 citations 325 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature11392&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu