- home
- Advanced Search
- Energy Research
- 7. Clean energy
- 12. Responsible consumption
- CH
- Energy Procedia
- Energy Research
- 7. Clean energy
- 12. Responsible consumption
- CH
- Energy Procedia
description Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Ulf Christian Müller; Jonas Hurter; Lukas Gasser; Adrian Rettig;Abstract In many European countries the production of combined heat and power based on renewable energies is well established though the efficient and economical operation of such plants remains a challenging task. This also applies to the existing district heating network at Baden-Dattwil (Switzerland) where a conventional gas boiler is substituted by a wood-fired boiler comprising an Organic Rankine Cycle. An overall control strategy that allows fully exploring governmental incentives is therefore of paramount importance. In addition, the highly fluctuating heat demands combined with the thermal inertia of the different plant components impose demanding requirements to the control system to guarantee a stable as well as highly efficient operation. The overall control concept is successfully tested and verified by means of dynamic simulations of the overall plant with a simplified model for the district heating network. The models are implemented using the object oriented modeling language Modelica. The overall model is based on open source Modelica libraries such as ThermoCycle, Modelica Standard Library and StateGraph2 as well as on own Modelica models. The overall model is prepared to be coupled to the real plant control system which will allow virtual commissioning in the next step. This allows pre-tuning of control parameters as well as a weakness analysis which again helps to speed up the commissioning process. In General, the dynamic simulations proved to be a useful tool that deepened the insight and understanding of the plant operation at an early project phase and therefore greatly supported the making of design decisions. After commissioning, the calibrated simulation models will be used for monitoring purposes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.09.129&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.09.129&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 GermanyPublisher:Elsevier BV Pinaccia, P.; Louradourb, E.; Wimbertc, L.; Gindratd, M.; Jarligoe, M. O.; Vassene, R.; Comitef, A.; Serrag, J. M.; Jewulskih, J.; Mancusoi, L.; Chiesaj, P.; Prestatk, M.; Ivers-Tifféel, E.;This paper provides an overview of objectives, structure and first results of the DEMOYS project, financially supported by the European Commission in the frame of the 7th FP Energy. The project started on May 1, 2010 and brings together fifteen Partners, including three Universities, five Research Organizations and seven Industries. The objective of DEMOYS is the development of thin mixed conducting membranes for O-2 and H-2 separation by using a new deposition technique "Plasma Spraying - Thin Film" (PS-TF) in combination with nano-porous, highly catalytic layers. (C) 2013 The Authors. Published by Elsevier Ltd. Open access under CC BY-NC-ND license. Selection and/or peer-review under responsibility of GHGT DEMOYS receives funding from the European Community's Seventh Framework Programme, FP7/2007-2013, under grant agreement no 241309.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2013License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.05.199&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 196visibility views 196 download downloads 397 Powered bymore_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2013License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.05.199&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2014Embargo end date: 01 Jan 2014 SwitzerlandPublisher:Elsevier BV Authors:Zavattoni, Simone A.;
Gaetano, Antonio;Zavattoni, Simone A.
Zavattoni, Simone A. in OpenAIREBarbato, Maurizio C.;
Barbato, Maurizio C.
Barbato, Maurizio C. in OpenAIREAmbrosetti, Gianluca;
+3 AuthorsAmbrosetti, Gianluca
Ambrosetti, Gianluca in OpenAIREZavattoni, Simone A.;
Gaetano, Antonio;Zavattoni, Simone A.
Zavattoni, Simone A. in OpenAIREBarbato, Maurizio C.;
Barbato, Maurizio C.
Barbato, Maurizio C. in OpenAIREAmbrosetti, Gianluca;
Good, Philipp; Malnati, Fabio; Pedretti, Andrea;Ambrosetti, Gianluca
Ambrosetti, Gianluca in OpenAIREThe aim of this work was to study, by means of accurate 3D steady-state CFD simulations, the thermo-fluid dynamics behavior of a helically coiled heat exchanger (HCHE) constituting the receiving cavity of the novel CSP receiver based on Airlight Energy technology. In this innovative receiver design, air is used as heat transfer fluid (HTF), which, besides being inexpensive and environmentally friendly, is optimally suited for high temperature operation well beyond the limit of conventional HTFs. According to preliminary information related to the collectors orientation of the first 3.9 MWth Airlight Energy pilot plant, under construction in Ait Baha (Morocco), two reference skew angles of the incoming solar radiation were considered and the receiving cavity performance were evaluated in terms of thermal efficiency and pressure drop. Among all, one of the main requirements was to achieve, at the outlet section of the HCHE, an air temperature of 650 °C; hence the mass flow rate was tuned accordingly. In order to minimize the pumping power requirements, the HCHE was designed to guarantee a laminar flow regime under all the operating conditions. Navier-Stokes, energy and radiation transport equations, the latter accounted for by the Discrete Ordinates (DO) model, were numerically solved, using the finite-volume method approach, with Fluent code from ANSYS. A meticulous experimental proof of concept was then carried out in Biasca (Switzerland) by the Swiss company Airlight Energy Manufacturing SA. The analysis of the experimental results, detailed in this paper, allowed to assess the reliability and effectiveness of this novel CSP receiver design in the solar energy harvesting. Proceedings of the SolarPACES 2013 International Conference Energy Procedia, 49 ISSN:1876-6102
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.03.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.03.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2015 SwitzerlandPublisher:Elsevier BV Authors:Chinazzo, Giorgia;
Rastogi, Parag; Andersen, Marilyne;Chinazzo, Giorgia
Chinazzo, Giorgia in OpenAIREAbstractConventionally, building energy performance is evaluated through energy simulations using a single input weather file referring to present weather conditions. However, the analysis shown in this study demonstrates the high sensitivity of calculated energy consumption to weather files chosen for simulation. Thus, we propose that multiple present and future weather files must be incorporated as random instances of an unknown population, i.e. the climate. This paper describes a methodology to assess the robustness of different energy efficient refurbishments over possible climate projections, by taking into account uncertainties in weather files. The innovation consists in the discussion of energy outcomes in terms of ranges instead of single values.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 17 citations 17 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2017 SwitzerlandPublisher:Elsevier BV Authors: Siraganyan, Karni;Mauree, Dasaraden;
Mauree, Dasaraden
Mauree, Dasaraden in OpenAIREPerera, A.T.D.;
Scartezzini, Jean-Louis;Perera, A.T.D.
Perera, A.T.D. in OpenAIREAbstract Energy storage is generally considered as a means to bridge a period between when/where energy is available and when/where it is in demand. Storage plays an important role by providing flexibility to energy systems, increasing the potential to accommodate variable renewables generation and improving management of electricity networks. However, currently it remains unclear when and under which conditions energy storage can be profitably operated at a district level. The present study aims to quantify the level of integration of solar energy and storage in the Junction district of Geneva. A simulation tool is developed to investigate the techno-economical and environmental assessment under different scenarios. For a given investment over 20 years, the model calculates the levelized cost of electricity (LCOE), the autonomy level as well as the CO2 emissions. Given the assumptions of the model, four scenarios are analysed based on the combination of solar PV, storage, solar thermal and heat pump to find out an economically optimal configuration in terms of system size. A comparison with the Homer software is performed to test the robustness of the solar PV and battery model. The economic profitability of solar PV and battery system is in very good agreement with Homer and the autonomy level is validated by using a simulation tool created by SI-REN (Services Industriels des Energies Renouvelables de Lausanne). However, combining solar PV with battery system doesn’t bring additional autonomy to the model for Geneva study case. Under the assumptions of the model, to foster investments in solar PV and battery installations, falling investments costs seem necessary for the future. A reduction gap between buying and selling price in grid for solar panel is recommended to increase solar installations. A validated simulation tool has been developed in this work and provide a reliable based that will be extended in the future to include the thermal demand and production. The availability of thermal storage at a large scale as well as the production over a district should further increase the autonomy of the district.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.07.464&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.07.464&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2014Embargo end date: 01 Jan 2014 SwitzerlandPublisher:Elsevier BV Ralph Evins; Ralph Evins; Jan Carmeliet; Jan Carmeliet; Viktor Dorer;Kristina Orehounig;
Kristina Orehounig;Kristina Orehounig
Kristina Orehounig in OpenAIREThe built environment represents a major share of global energy consumption. To effectively reduce the energy consumption of urban conglomerations, concepts to sufficiently integrate and manage energy from renewables are necessary. In this paper the energy-hub concept will be applied, which describes the relation between input and output energy flows and can be used to optimize the energy consumption during planning and operation. The concept will be used to evaluate a number of future energy scenarios for a village in Switzerland which has the goal of eliminating the consumption of fossil fuels. As a starting point the existing situation concerning the energy demand of the village with respect to different uses, the different energy carriers, their origin, their distribution and networks is captured and analyzed. In the next step the potential for different means of decentralized energy production is evaluated. Decentralized energy production includes building integrated or local renewable energy production by photovoltaics, biomass, or small hydro power. In the third step, different future energy scenarios for an energy sustainable community are defined. These different scenarios are distinguished by their scale of implementation. Finally an energy hub model of the village is developed and used to evaluate the different energy scenarios. 2013 ISES Solar World Congress Energy Procedia, 57 ISSN:1876-6102
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.10.076&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.10.076&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Paolo Gabriellissx;Matteo Gazzani;
Marco Mazzotti;Matteo Gazzani
Matteo Gazzani in OpenAIREThis contribution investigates how different technology modeling methodologies affect the design of decentralized multi-energy systems, especially when fuel cell and energy storage are considered. First, thermoelectric models based on a first-principle approach are implemented to determine the performance and dynamic behavior of a set of conversion technologies. Then, as such nonlinear models are intractable within mixed-integer linear programming for the optimal design of multi-energy systems, simplified linear models suitable are developed. In particular, an affine and a piecewise affine approximations of the conversion efficiency are compared, and a linear description of the system dynamics is implemented. An optimization problem is formulated to investigate the impact of these modeling approximations on the design of integrated residential systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.12.527&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.12.527&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2017Embargo end date: 01 Jan 2017 SwitzerlandPublisher:Elsevier BV Funded by:EC | CEMCAPEC| CEMCAPAuthors:José-Francisco Pérez-Calvo;
Daniel Sutter;José-Francisco Pérez-Calvo
José-Francisco Pérez-Calvo in OpenAIREMatteo Gazzani;
Marco Mazzotti;Matteo Gazzani
Matteo Gazzani in OpenAIREThe chilled ammonia process (CAP) is considered one of the most promising alternatives to amine-based absorption processes for post-combustion carbon capture applied to power plants. This work provides an insight on the CAP adaptations required to meet the conditions found in the flue gas emitted in cement plants, where CO2 generation is inherent to the manufacturing process. A rate-based model has been validated to simulate the CO2 absorber of the CAP for cement plant-like flue gas composition in order to obtain the Murphree efficiencies to be used in full CAP simulations in Aspen Plus. A preliminary minimum exergy need of 0.92 MJ/kgCO2 has been found for the CAP applied to the cement plant case making use of an optimization algorithm and capturing 85.2% of the emitted CO2. Higher temperatures (> 45 °C) are found in the CO2 absorber of the CAP when applied to cement plant-like flue gas conditions in comparison to the power plant case (< 40 °C), requiring a lower pumparound temperature in order to control the ammonia slip in the CO2-depleted flue gas exiting the column. 13th International Conference on Greenhouse Gas Control Technologies, GHGT-13 Energy Procedia, 114 ISSN:1876-6102
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.03.1757&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.03.1757&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: Salim Bouziri;Francesco Frontini;
Gianluca Corbellini;Francesco Frontini
Francesco Frontini in OpenAIREVasco Medici;
Vasco Medici
Vasco Medici in OpenAIREAbstractBIPV technologies applied to façades are strongly affected by complex and dynamic shadings especially when located in dense urban environments. In this case, the shading effects need to be evaluated in detail in order to properly estimate the energy yield and optimise the energy harvest of such PV systems.The S.M.O (String Matching Optimisation) solution represents a new approach, entirely based on open-source software, which allows a very accurate study of the shading effects on façades and the investigation of electrical behaviour of BIPV strings under complex irradiation patterns. This solution has been validated with a real pilot BIPV façade located in southern Switzerland and the model was simulated on other theoretical PV façades with different levels of complexity. The presented method allows an accurate evaluation and optimisation of the energy yield of BIPV facades in complex urban environments.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2016.06.261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2016.06.261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2017 SwitzerlandPublisher:Elsevier BV Authors:Florio, Pietro;
Munari Probst, Maria Cristina; Schueler, Andreas; Scartezzini, Jean-Louis;Florio, Pietro
Florio, Pietro in OpenAIREAbstract Architectural integration of solar technologies in the built environment is a challenge: one of the key tasks is the identification of homogeneous zones of intervention as a function of the solar energy potential and “criticity”, a combination of the socio-cultural value of the urban context (sensitivity) and the visibility from the public space [1]. This paper explores possible relations between highly sensitive urban areas and their visual prominence in the public interest: a study is performed, as an example, in the city of Geneva. A false-color “heat map” is built through GIS techniques by extracting photo shooting locations from the Flickr public repository, and overlapped on the ISOS Swiss cartography. This method can be used to establish a hierarchy of the viewpoints in the public space.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.07.437&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.07.437&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu