Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
  • Access
  • Type
  • Year range
  • Field of Science
  • Funder
  • SDG [Beta]
    Clear
  • Country
    Clear
  • Language
    Clear
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
302 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • 11. Sustainability
  • 4. Education
  • CH
  • English

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: University, Dublin City; Smartbay;

    The SmartBay NIAP fund was made available in 2012 through Dublin City University over a two year period to enable researchers to access the SmartBay Ireland National Test and Demonstration Facility in Galway Bay. Research proposals were invited for funding under a number of activity types that are in line with the objectives of the SmartBay PRTLI Cycle 5 programme. This fund provided small awards (typically €2-25K) to research teams through a national competitive process, which was open to all higher education institutions on the island of Ireland. There were both open and biannual calls. The SmartBay NIAP fund was established to enable researchers in academia and industry to access the SmartBay Ireland national test and demonstration infrastructure. Proposals to access the infrastructure were brief and required information on the researcher(s), a description of the proposed research and its potential impact to the research team arising from the access to SmartBay Ireland. Marine Institute

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Marine Institute Ope...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Marine Institute Ope...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Byrne, Edmond P.;

    Modern conceptions of progress, based on the dominant Cartesian reductionist paradigm, are associated with a linear drive towards ever greater ascendancy, order, organisation, homogeneity, hegemony, performance, efficiency, and control. Similarly modern conceptions of progress are associated with positivist approaches to overcoming and extinguishing disorder, inchoateness, uncertainty, redundancy and risk. In this framework, diversity is conceived as a threat to system organisation, efficiency and control. Many contemporary conceptions of sustainability and sustainable development, framed within this paradigm, envisage sustainability as aligning with such ideas of progress. By this narrative, sustainable systems are achievable through ever greater efficiency, through for example, technological prowess, improved organisational structure/control, taming of “big data” and through risk reduction/extinction. Similarly, corporate sustainability would be advanced through growth, mergers and acquisitions, rationalisation, pruning of smaller operations/sites within firms, layoffs, increased corporate control, accountability and managerialism. “Bigger is better” is the apposite maxim. From a complex systems perspective however, a very different picture is evident. In the ecological domain, sustainable ecosystems have been quantitatively shown to be those which maintain an appropriate (context, time and space dependent) dynamic balance between opposing tendencies of ascendancy and efficiency on one hand and diversity and redundancy on the other (Ulanowicz, 2009; Goerner et al., 2009). Ecological biodiversity is an absolute requirement for ecosystem endurance since it facilitates system resilience in the event of significant perturbation (whether sudden shock or longer term stress). For example, a species which can feed on a selection of available prey species is more resilient against partial ecosystem destruction/prey extinction than one which relies on a single species for food. While the latter scenario represents a situation of greater efficiency, it is also more rigid and less resilient. Moreover, while the tendencies of complex systems towards ascendancy (organisation, efficiency) and disorder (redundancy, diversity) are antagonistic at local levels, they are in fact mutually dependent at higher levels (Ulanowicz et al, 2009): “A requisite for the increase in effective orderly performance (ascendency) is the existence of flexibility (reserve) within the system. Conversely, systems that are highly constrained and at peak performance (in the second law sense of the word) dissipate external gradients at ever higher gross rates”. This model has been mirrored across techno-economic and social domains wherein similar sustainability models have been proposed (e.g. Stirling, 2011). This framework has manifested itself in research outputs across virtually every discipline, where in different guises sustainable and persistent systems have been shown to require a balance between tendencies of control, structure and organisation and those of diversity and disorder.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cork Open Research A...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cork Open Research A...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Bataillard, Maxime;

    The rapid growth of clean technologies to address climate change has emphasized the increasing complexity of materials, some of which face criticality and potential supply disruptions. Inte- grated assessment models (IAMs) used for designing illustrative mitigation pathways (IMPs) lack comprehensive information on material annual demand projection. This study focuses on the demand for the rare earth element neodymium (Nd) until 2050 in wind power and transporta- tion sectors. The assessment is based on the three most ambitious IMPs, namely “Low Energy Demand” (LD), “Sustainability Pathways” (SP), and “Rapid Technology Change” (Ren), from the Intergovernmental Panel on Climate Change’s (IPCC) Assessment Report 6 (AR6). The results show that Nd demand steadily increases in all scenarios, but the magnitude and growth rates vary. The LD scenario exhibits the lowest material needs in passenger transport due to shared road transport and rail preferences, consequence of a focus on final energy use changes, while the SP scenario presents the highest growth in material demand. The Ren scenario, char- acterized by fast electrification and energy intensity improvements, represents a middle-ground scenario for material demand with good opportunities for recycling. This study underscores the significance of considering material demand in scenario design and highlights the importance of better assessing crucial external factors used for material stock determination in the future. The findings contribute to improving scenario design precision and the understanding of material use implications, providing valuable insights for climate policies and resource management strategies.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Van Cutsem; Olivier Valentin Henri;

    Today's electrical grid is undergoing deep changes, resulting from the large integration of distributed Renewable Energy Sources (RES) in an effort to decarbonize the generation of electrical energy. In addition to the emergence of this volatile electricity production, the worldwide demand for electricity increases due to a growing population and the intensified electrification of buildings. Smart-buildings represent promising assets for supporting the electrical grid in balancing demand with a supply based on non-dispatchable RES. A smart-building denotes a building equipped with sensor/actuator hardware connected to a federating Building Data Management System (BDMS) which enables high-level applications and services. Tapping into the flexibility inherent to its various entities (load, storage, and generation), a smart-building can provide Demand Response (DR) functionality through the optimization of its energy profile in response to varying electricity prices or commands from the grid.This PhD thesis provides a set of tools, algorithms, and frameworks, revolving around the notion of smart-buildings that foster an enhanced Building-to-Grid (BtG) integration. The tools developed here aim to fill the gap encountered in the literature created by the recent rollout of BDMSs and the ubiquitous Internet of Things (IoT). Furthermore, the mismatch between current DR and the future RES-based smart-grid opens the way to the development of innovative algorithms and frameworks to manage the flexibility offered by smart-buildings for grid-side agents. Built upon BDMSs, two open-source tools have been developed. Firstly, an integrated high-speed emulation and simulation software, dubbed Virtualization Engine (vEngine), allows the simulation of non-existing components of a building directly on-site. The multi-threaded, light architecture of vEngine permits efficient simulations, in a modular environment conceived for developers. Secondly, we describe Open Energy Management System (OpenEMS), a platform that seamlessly connects to any existing BDMS and provides its users with an environment to create their own energy management algorithms, with a focus on Model Predictive Control (MPC). Simulations using a realistic Swiss residential building model demonstrate the effectiveness and modularity of both tools. Additionally, we propose a multi-state load profile identification algorithm tailored to Non-Intrusive Load Monitoring (NILM). Applied to energy disaggregation, it shows promising results for enhanced energy feedbacks to the occupants. To attain daily energy balance within the smart-grid, we propose several algorithms and energy management frameworks, using smart-buildings. An incremental MPC formulation is derived to better balance monthly costs associated to energy and peak demand of large commercial buildings. Simulations data show substantial benefits, for both the building's owner and the grid. Furthermore, we present a decentralized framework for autonomously managing the energy in a community of smart-buildings, with RES. Based on blockchain technology and smart-contracts, the framework optimizes an objective common to the whole community without the need for a central agent. Finally, we suggest a unified BtG model that could benefit grid-side aggregators in both microgrids and electricity markets.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.5075/epf...
    Doctoral thesis . 2020
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.5075/epf...
      Doctoral thesis . 2020
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Marten, Ruby;

    Aerosols are an important part of the atmosphere, they are defined as liquid or solid particles suspended in air, ranging from one nanometer to tens of micrometers in diameter. Aerosols affect the climate directly, via aerosol radiation interactions, and indirectly, via aerosol-cloud interactions. While pollution in cities does not have the largest impact on global climate, it does affect local climate and weather. Aerosols can also be deadly; in 2019 lower respiratory infections were reported as the third leading cause of death globally, which are largely caused by aerosols. Since around 55% of the world’s population live in cities, it is important to understand the key drivers of urban aerosol formation and growth. Ammonium nitrate is an important component of aerosols, but not much is known about its contribution to aerosol formation and early growth. In this thesis, we aim to understand how nitric acid (HNO3) and ammonia (NH3) can impact aerosol formation in urban environments. Previous understanding of urban air conditions led to a puzzle of competing growth rates and loss rates, where it appeared that measured growth rates in cities were not high enough to explain the persistence of particle number concentrations in the face of high loss rates from coagulation with pre-existing large particles. Results from the CLOUD chamber at CERN presented in this thesis show a newly discovered mechanism of rapid growth by formation of ammonium nitrate onto pre-existing particles. We find that in situations of excess NH3 and HNO3, with respect to ammonium nitrate saturation ratios, particles can grow orders of magnitude faster than previously measured in ambient environments. Since this mechanism is consistent with the nano-Köhler theory, there is an activation diameter above which ammonium nitrate can form on the particles, and particles as small as a few nanometers can be affected. Furthermore, this mechanism was found to have a strong temperature dependence where at lower temperatures the same gas phase concentrations result in higher growth rates. At temperatures as low as −25°C, ammonia and nitric acid were found to be able to nucleate even in the absence of sulfuric acid or other known nucleating species. In order to determine whether these rapid growth rates are in fact high enough to overcome high coagulation loss rates, further experiments were undertaken at the CLOUD chamber at CERN at 5°C in the presence of a high condensation sink, analogous to haze. Experimental results showed that in experiments with higher NH3 and HNO3 concentrations, particle number concentrations were sustained with a steady formation of 2.5 nm particles. Newly formed particles are found to be effectively lost to the condensation sink, thus confirming that loss rates have not been over-estimated, and high growth rates are more likely to be the explanation for particle survival in haze conditions. Alongside experimental results, a kinetic model was developed which is capable of quantitatively reproducing growth from ammonium nitrate formation. We used this model to predict particle survival over a wide range of NH3 and HNO3 concentrations and condensation sinks. Results showed that survival of newly formed particles was drastically increased in the presence of supersaturated conditions of NH3 and HNO3.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Research Collectionarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Research Collection
    Doctoral thesis . 2022
    Research Collection
    Doctoral thesis . 2022
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Research Collectionarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Research Collection
      Doctoral thesis . 2022
      Research Collection
      Doctoral thesis . 2022
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Pacheco Rodriguez; Maria Natalia;

    The Paris Agreement, in force since 2016, stipulates the new multilateral foundations for climate actions under the United Nations Convention on Climate Change. This Agreement incorporated Payment for Environmental Services (PES) and Markets for Environmental Services (MES) among its strategies to combat climate change. However, abundant literature has outlined economic, social and environmental equity concerns regarding the implementation of PES and MES under the Kyoto Protocol. How have these concerns been taken into account in the establishment of PES and MES in the Paris Agreement? How can equity considerations be comprehensively assessed in this regard? Through the triangulation of methodologies including literature review, participant observation and interviews with key informants, this thesis explains the consideration of equity in the newly established PES and MES in the Paris Agreement.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archive ouverte UNIG...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Archive ouverte UNIGE
    Doctoral thesis . 2019
    Archive ouverte UNIGE
    Doctoral thesis . 2019
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archive ouverte UNIG...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Archive ouverte UNIGE
      Doctoral thesis . 2019
      Archive ouverte UNIGE
      Doctoral thesis . 2019
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Ligen, Yorick;

    Thermodynamics and heat engines are the core disciplines which enabled the development of the thermo-industrial society during the 20th century. Liquid hydrocarbon fuels are one of the easiest and most convenient solutions offered by the thermophysical constraints of our world. However, an alternative to these dense energy carriers is required to enable a transition to a low carbon transport sector. Climate change mitigation, local air pollution reduction and energy independency are some of the key advantages that hydrogen fuel cell and battery electric vehicles can bring in this context. Beyond a shift from fossil fuels, the entire value chain, from primary energy to powertrains must be reconsidered, redesigned and redeployed to include renewable energies, robust powergrids, charging stations and electric powertrains. The prominent role of the infrastructure in terms of energy efficiency is demonstrated in chapter 2, introducing a grid to mobility segmentation for life cycle studies. In addition, the shortcomings of local and off-grid solutions are highlighted in the same chapter. Nevertheless, the grid integration also requires innovative solutions to comply with the physical constraints of current networks. In particular, the role and the sizing of stationary buffer batteries is detailled in chapter 3. The stochastic nature of charging events is used to develop a battery sizing algorithm including grid tie constraints. This research was intrinsically motivated by the perspective of infrastructure operators. A full scale demonstrator is at the core of the scientific questioning of this thesis. The design, the construction and the operation of a grid to mobility demonstrator is reported in chapter 4. Including a 200 kW / 400 kWh Vanadium redox flow battery, a 50 kW alkaline electrolyser, and a hydrogen refueling station, this demonstrator enabled a better understanding and characterization of process engineering, of control and programming and of electrochemical phenomenons. In particular, the data analysis on the electrolysis side and purification solutions are reported in chapter 5. Finally, the intrinsic characteristics of air driven gas boosters, a robust small scale compression solution, are analyzed in chapter 6 and the challenges for a full scale hydrogen mobility are discussed with an economic and logistics perspective.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.5075/epf...
    Doctoral thesis . 2020
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.5075/epf...
      Doctoral thesis . 2020
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Nouvel, R.; Kaden, R.; Bahu, J. M.; Kaempf, J.; +6 Authors

    The current climate and environmental policy efforts require comprehensive planning regarding the upgrade of the energy supply and infrastructures in cities. Planning comprises e.g. the determination of locations for new power generating facilities like photovoltaic, geothermal and decentralized combined heat and power stations, the widespread introduction of e-mobility solutions and hence the grid development as well as large-scale energetic building refurbishments. A holistic approach integrating extensive complex information is essential for the strategic planning of the different measures. In order to establish interoperability and data exchange between the different planners, stakeholders, and tools, an open information standard is required. To answer this need, an international group of urban energy simulation developers, geo- information scientists and users from 11 European organizations is developing an Application Domain Extension (ADE) Energy for the OGC open standard CityGML. This paper presents the collaborative development of this new open urban information model, including its genesis, objectives, structure and next planned steps.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ MediaTUMarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    MediaTUM
    Article . 2018
    Data sources: MediaTUM
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://dx.doi.org/10.5075/epf...
    Other literature type . 2015
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    19
    citations19
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ MediaTUMarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      MediaTUM
      Article . 2018
      Data sources: MediaTUM
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://dx.doi.org/10.5075/epf...
      Other literature type . 2015
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Nasrazadani, Hossein; id_orcid0000-0001-7620-0672; Bolli, Fabian; Adey, Bryan T.; id_orcid0000-0002-4932-5901;

    This paper proposes a simulation-based approach to conduct stress tests on transportation systems subject to extreme scenarios of rainfall leading to flooding. Stress tests represent situations where at least one part of the system, e.g., hazard intensity, performance of assets, is significantly worse than expected. To conduct them, the proposed approach features a set of interacting models that capture the behavior of the system under the effect of the conditions imposed by the stress tests. These include models that capture the occurrence of hazard events, performance of infrastructure assets and network, and the societal impacts. The proposed approach was used to conduct stress tests on a road network in Switzerland and three types of stress tests were conducted, labeled climate change, which investigates performance with increases in rainfall intensity in the future; travel demand, which investigates increases in demand for travel due to societal developments; and restoration capacity, which investigates decreases in post-hazard restoration capacity. The results provide significant insight into the vulnerabilities of the system under the considered stress tests. This information can be used to better plan measures to improve the resilience of the system. 14th International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP14)

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Research Collectionarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Research Collection
    Conference object . 2023
    License: CC BY NC SA
    Research Collection
    Conference object . 2023
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Research Collectionarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Research Collection
      Conference object . 2023
      License: CC BY NC SA
      Research Collection
      Conference object . 2023
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Monkelbaan, Joachim;

    The main research question in this research project is: What are the essential elements and the organizing logic of an integrative framework that is suitable for analysing sustainability governance from a global perspective and for implementing the related transitions? This transdisciplinary research approaches this question from three main avenues. First, the research is based on the premise that applying a combination of innovative governance theories is needed in order to improve the analysis of sustainability governance. Secondly, this research explores the interests of core actors in one ‘lay of the land' study on climate governance and in two unique case studies on ‘globalisation of sustainable energy technologies' and ‘aviation and climate change'. Thirdly, the research draws inferences on some areas in which the study and practice of sustainability governance need to be expanded. The findings together form the basis for a new approach to sustainability governance: Integrative Sustainability Governance (ISG). The ensuing ISG framework includes indicator frames within the theoretical pillars of power, knowledge and norms. Other main findings are that the transformation of crisis into transitions needs to find a place in risk management; that systems deliberation can complement democracy in addressing wicked problems; and that insights from behavioural science can play a crucial role in successful transitions. This dissertation concludes by demonstrating the applicability of the findings to ‘SDG Hubs' or innovative platforms for collaboration and knowledge exchange on the 2030 Agenda for Sustainable Development.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archive ouverte UNIG...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Archive ouverte UNIGE
    Doctoral thesis . 2015
    Archive ouverte UNIGE
    Doctoral thesis . 2015
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archive ouverte UNIG...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Archive ouverte UNIGE
      Doctoral thesis . 2015
      Archive ouverte UNIGE
      Doctoral thesis . 2015
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
302 Research products
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: University, Dublin City; Smartbay;

    The SmartBay NIAP fund was made available in 2012 through Dublin City University over a two year period to enable researchers to access the SmartBay Ireland National Test and Demonstration Facility in Galway Bay. Research proposals were invited for funding under a number of activity types that are in line with the objectives of the SmartBay PRTLI Cycle 5 programme. This fund provided small awards (typically €2-25K) to research teams through a national competitive process, which was open to all higher education institutions on the island of Ireland. There were both open and biannual calls. The SmartBay NIAP fund was established to enable researchers in academia and industry to access the SmartBay Ireland national test and demonstration infrastructure. Proposals to access the infrastructure were brief and required information on the researcher(s), a description of the proposed research and its potential impact to the research team arising from the access to SmartBay Ireland. Marine Institute

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Marine Institute Ope...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Marine Institute Ope...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Byrne, Edmond P.;

    Modern conceptions of progress, based on the dominant Cartesian reductionist paradigm, are associated with a linear drive towards ever greater ascendancy, order, organisation, homogeneity, hegemony, performance, efficiency, and control. Similarly modern conceptions of progress are associated with positivist approaches to overcoming and extinguishing disorder, inchoateness, uncertainty, redundancy and risk. In this framework, diversity is conceived as a threat to system organisation, efficiency and control. Many contemporary conceptions of sustainability and sustainable development, framed within this paradigm, envisage sustainability as aligning with such ideas of progress. By this narrative, sustainable systems are achievable through ever greater efficiency, through for example, technological prowess, improved organisational structure/control, taming of “big data” and through risk reduction/extinction. Similarly, corporate sustainability would be advanced through growth, mergers and acquisitions, rationalisation, pruning of smaller operations/sites within firms, layoffs, increased corporate control, accountability and managerialism. “Bigger is better” is the apposite maxim. From a complex systems perspective however, a very different picture is evident. In the ecological domain, sustainable ecosystems have been quantitatively shown to be those which maintain an appropriate (context, time and space dependent) dynamic balance between opposing tendencies of ascendancy and efficiency on one hand and diversity and redundancy on the other (Ulanowicz, 2009; Goerner et al., 2009). Ecological biodiversity is an absolute requirement for ecosystem endurance since it facilitates system resilience in the event of significant perturbation (whether sudden shock or longer term stress). For example, a species which can feed on a selection of available prey species is more resilient against partial ecosystem destruction/prey extinction than one which relies on a single species for food. While the latter scenario represents a situation of greater efficiency, it is also more rigid and less resilient. Moreover, while the tendencies of complex systems towards ascendancy (organisation, efficiency) and disorder (redundancy, diversity) are antagonistic at local levels, they are in fact mutually dependent at higher levels (Ulanowicz et al, 2009): “A requisite for the increase in effective orderly performance (ascendency) is the existence of flexibility (reserve) within the system. Conversely, systems that are highly constrained and at peak performance (in the second law sense of the word) dissipate external gradients at ever higher gross rates”. This model has been mirrored across techno-economic and social domains wherein similar sustainability models have been proposed (e.g. Stirling, 2011). This framework has manifested itself in research outputs across virtually every discipline, where in different guises sustainable and persistent systems have been shown to require a balance between tendencies of control, structure and organisation and those of diversity and disorder.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cork Open Research A...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cork Open Research A...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Bataillard, Maxime;

    The rapid growth of clean technologies to address climate change has emphasized the increasing complexity of materials, some of which face criticality and potential supply disruptions. Inte- grated assessment models (IAMs) used for designing illustrative mitigation pathways (IMPs) lack comprehensive information on material annual demand projection. This study focuses on the demand for the rare earth element neodymium (Nd) until 2050 in wind power and transporta- tion sectors. The assessment is based on the three most ambitious IMPs, namely “Low Energy Demand” (LD), “Sustainability Pathways” (SP), and “Rapid Technology Change” (Ren), from the Intergovernmental Panel on Climate Change’s (IPCC) Assessment Report 6 (AR6). The results show that Nd demand steadily increases in all scenarios, but the magnitude and growth rates vary. The LD scenario exhibits the lowest material needs in passenger transport due to shared road transport and rail preferences, consequence of a focus on final energy use changes, while the SP scenario presents the highest growth in material demand. The Ren scenario, char- acterized by fast electrification and energy intensity improvements, represents a middle-ground scenario for material demand with good opportunities for recycling. This study underscores the significance of considering material demand in scenario design and highlights the importance of better assessing crucial external factors used for material stock determination in the future. The findings contribute to improving scenario design precision and the understanding of material use implications, providing valuable insights for climate policies and resource management strategies.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Van Cutsem; Olivier Valentin Henri;

    Today's electrical grid is undergoing deep changes, resulting from the large integration of distributed Renewable Energy Sources (RES) in an effort to decarbonize the generation of electrical energy. In addition to the emergence of this volatile electricity production, the worldwide demand for electricity increases due to a growing population and the intensified electrification of buildings. Smart-buildings represent promising assets for supporting the electrical grid in balancing demand with a supply based on non-dispatchable RES. A smart-building denotes a building equipped with sensor/actuator hardware connected to a federating Building Data Management System (BDMS) which enables high-level applications and services. Tapping into the flexibility inherent to its various entities (load, storage, and generation), a smart-building can provide Demand Response (DR) functionality through the optimization of its energy profile in response to varying electricity prices or commands from the grid.This PhD thesis provides a set of tools, algorithms, and frameworks, revolving around the notion of smart-buildings that foster an enhanced Building-to-Grid (BtG) integration. The tools developed here aim to fill the gap encountered in the literature created by the recent rollout of BDMSs and the ubiquitous Internet of Things (IoT). Furthermore, the mismatch between current DR and the future RES-based smart-grid opens the way to the development of innovative algorithms and frameworks to manage the flexibility offered by smart-buildings for grid-side agents. Built upon BDMSs, two open-source tools have been developed. Firstly, an integrated high-speed emulation and simulation software, dubbed Virtualization Engine (vEngine), allows the simulation of non-existing components of a building directly on-site. The multi-threaded, light architecture of vEngine permits efficient simulations, in a modular environment conceived for developers. Secondly, we describe Open Energy Management System (OpenEMS), a platform that seamlessly connects to any existing BDMS and provides its users with an environment to create their own energy management algorithms, with a focus on Model Predictive Control (MPC). Simulations using a realistic Swiss residential building model demonstrate the effectiveness and modularity of both tools. Additionally, we propose a multi-state load profile identification algorithm tailored to Non-Intrusive Load Monitoring (NILM). Applied to energy disaggregation, it shows promising results for enhanced energy feedbacks to the occupants. To attain daily energy balance within the smart-grid, we propose several algorithms and energy management frameworks, using smart-buildings. An incremental MPC formulation is derived to better balance monthly costs associated to energy and peak demand of large commercial buildings. Simulations data show substantial benefits, for both the building's owner and the grid. Furthermore, we present a decentralized framework for autonomously managing the energy in a community of smart-buildings, with RES. Based on blockchain technology and smart-contracts, the framework optimizes an objective common to the whole community without the need for a central agent. Finally, we suggest a unified BtG model that could benefit grid-side aggregators in both microgrids and electricity markets.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.5075/epf...
    Doctoral thesis . 2020
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.5075/epf...
      Doctoral thesis . 2020
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Marten, Ruby;

    Aerosols are an important part of the atmosphere, they are defined as liquid or solid particles suspended in air, ranging from one nanometer to tens of micrometers in diameter. Aerosols affect the climate directly, via aerosol radiation interactions, and indirectly, via aerosol-cloud interactions. While pollution in cities does not have the largest impact on global climate, it does affect local climate and weather. Aerosols can also be deadly; in 2019 lower respiratory infections were reported as the third leading cause of death globally, which are largely caused by aerosols. Since around 55% of the world’s population live in cities, it is important to understand the key drivers of urban aerosol formation and growth. Ammonium nitrate is an important component of aerosols, but not much is known about its contribution to aerosol formation and early growth. In this thesis, we aim to understand how nitric acid (HNO3) and ammonia (NH3) can impact aerosol formation in urban environments. Previous understanding of urban air conditions led to a puzzle of competing growth rates and loss rates, where it appeared that measured growth rates in cities were not high enough to explain the persistence of particle number concentrations in the face of high loss rates from coagulation with pre-existing large particles. Results from the CLOUD chamber at CERN presented in this thesis show a newly discovered mechanism of rapid growth by formation of ammonium nitrate onto pre-existing particles. We find that in situations of excess NH3 and HNO3, with respect to ammonium nitrate saturation ratios, particles can grow orders of magnitude faster than previously measured in ambient environments. Since this mechanism is consistent with the nano-Köhler theory, there is an activation diameter above which ammonium nitrate can form on the particles, and particles as small as a few nanometers can be affected. Furthermore, this mechanism was found to have a strong temperature dependence where at lower temperatures the same gas phase concentrations result in higher growth rates. At temperatures as low as −25°C, ammonia and nitric acid were found to be able to nucleate even in the absence of sulfuric acid or other known nucleating species. In order to determine whether these rapid growth rates are in fact high enough to overcome high coagulation loss rates, further experiments were undertaken at the CLOUD chamber at CERN at 5°C in the presence of a high condensation sink, analogous to haze. Experimental results showed that in experiments with higher NH3 and HNO3 concentrations, particle number concentrations were sustained with a steady formation of 2.5 nm particles. Newly formed particles are found to be effectively lost to the condensation sink, thus confirming that loss rates have not been over-estimated, and high growth rates are more likely to be the explanation for particle survival in haze conditions. Alongside experimental results, a kinetic model was developed which is capable of quantitatively reproducing growth from ammonium nitrate formation. We used this model to predict particle survival over a wide range of NH3 and HNO3 concentrations and condensation sinks. Results showed that survival of newly formed particles was drastically increased in the presence of supersaturated conditions of NH3 and HNO3.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Research Collectionarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Research Collection
    Doctoral thesis . 2022
    Research Collection
    Doctoral thesis . 2022
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Research Collectionarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Research Collection
      Doctoral thesis . 2022
      Research Collection
      Doctoral thesis . 2022
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Pacheco Rodriguez; Maria Natalia;

    The Paris Agreement, in force since 2016, stipulates the new multilateral foundations for climate actions under the United Nations Convention on Climate Change. This Agreement incorporated Payment for Environmental Services (PES) and Markets for Environmental Services (MES) among its strategies to combat climate change. However, abundant literature has outlined economic, social and environmental equity concerns regarding the implementation of PES and MES under the Kyoto Protocol. How have these concerns been taken into account in the establishment of PES and MES in the Paris Agreement? How can equity considerations be comprehensively assessed in this regard? Through the triangulation of methodologies including literature review, participant observation and interviews with key informants, this thesis explains the consideration of equity in the newly established PES and MES in the Paris Agreement.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archive ouverte UNIG...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Archive ouverte UNIGE
    Doctoral thesis . 2019
    Archive ouverte UNIGE
    Doctoral thesis . 2019
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archive ouverte UNIG...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Archive ouverte UNIGE
      Doctoral thesis . 2019
      Archive ouverte UNIGE
      Doctoral thesis . 2019
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Ligen, Yorick;

    Thermodynamics and heat engines are the core disciplines which enabled the development of the thermo-industrial society during the 20th century. Liquid hydrocarbon fuels are one of the easiest and most convenient solutions offered by the thermophysical constraints of our world. However, an alternative to these dense energy carriers is required to enable a transition to a low carbon transport sector. Climate change mitigation, local air pollution reduction and energy independency are some of the key advantages that hydrogen fuel cell and battery electric vehicles can bring in this context. Beyond a shift from fossil fuels, the entire value chain, from primary energy to powertrains must be reconsidered, redesigned and redeployed to include renewable energies, robust powergrids, charging stations and electric powertrains. The prominent role of the infrastructure in terms of energy efficiency is demonstrated in chapter 2, introducing a grid to mobility segmentation for life cycle studies. In addition, the shortcomings of local and off-grid solutions are highlighted in the same chapter. Nevertheless, the grid integration also requires innovative solutions to comply with the physical constraints of current networks. In particular, the role and the sizing of stationary buffer batteries is detailled in chapter 3. The stochastic nature of charging events is used to develop a battery sizing algorithm including grid tie constraints. This research was intrinsically motivated by the perspective of infrastructure operators. A full scale demonstrator is at the core of the scientific questioning of this thesis. The design, the construction and the operation of a grid to mobility demonstrator is reported in chapter 4. Including a 200 kW / 400 kWh Vanadium redox flow battery, a 50 kW alkaline electrolyser, and a hydrogen refueling station, this demonstrator enabled a better understanding and characterization of process engineering, of control and programming and of electrochemical phenomenons. In particular, the data analysis on the electrolysis side and purification solutions are reported in chapter 5. Finally, the intrinsic characteristics of air driven gas boosters, a robust small scale compression solution, are analyzed in chapter 6 and the challenges for a full scale hydrogen mobility are discussed with an economic and logistics perspective.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.5075/epf...
    Doctoral thesis . 2020
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.5075/epf...
      Doctoral thesis . 2020
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Nouvel, R.; Kaden, R.; Bahu, J. M.; Kaempf, J.; +6 Authors

    The current climate and environmental policy efforts require comprehensive planning regarding the upgrade of the energy supply and infrastructures in cities. Planning comprises e.g. the determination of locations for new power generating facilities like photovoltaic, geothermal and decentralized combined heat and power stations, the widespread introduction of e-mobility solutions and hence the grid development as well as large-scale energetic building refurbishments. A holistic approach integrating extensive complex information is essential for the strategic planning of the different measures. In order to establish interoperability and data exchange between the different planners, stakeholders, and tools, an open information standard is required. To answer this need, an international group of urban energy simulation developers, geo- information scientists and users from 11 European organizations is developing an Application Domain Extension (ADE) Energy for the OGC open standard CityGML. This paper presents the collaborative development of this new open urban information model, including its genesis, objectives, structure and next planned steps.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ MediaTUMarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    MediaTUM
    Article . 2018
    Data sources: MediaTUM
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://dx.doi.org/10.5075/epf...
    Other literature type . 2015
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    19
    citations19
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ MediaTUMarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      MediaTUM
      Article . 2018
      Data sources: MediaTUM
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://dx.doi.org/10.5075/epf...
      Other literature type . 2015
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Nasrazadani, Hossein; id_orcid0000-0001-7620-0672; Bolli, Fabian; Adey, Bryan T.; id_orcid0000-0002-4932-5901;

    This paper proposes a simulation-based approach to conduct stress tests on transportation systems subject to extreme scenarios of rainfall leading to flooding. Stress tests represent situations where at least one part of the system, e.g., hazard intensity, performance of assets, is significantly worse than expected. To conduct them, the proposed approach features a set of interacting models that capture the behavior of the system under the effect of the conditions imposed by the stress tests. These include models that capture the occurrence of hazard events, performance of infrastructure assets and network, and the societal impacts. The proposed approach was used to conduct stress tests on a road network in Switzerland and three types of stress tests were conducted, labeled climate change, which investigates performance with increases in rainfall intensity in the future; travel demand, which investigates increases in demand for travel due to societal developments; and restoration capacity, which investigates decreases in post-hazard restoration capacity. The results provide significant insight into the vulnerabilities of the system under the considered stress tests. This information can be used to better plan measures to improve the resilience of the system. 14th International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP14)

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Research Collectionarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Research Collection
    Conference object . 2023
    License: CC BY NC SA
    Research Collection
    Conference object . 2023
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Research Collectionarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Research Collection
      Conference object . 2023
      License: CC BY NC SA
      Research Collection
      Conference object . 2023
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Monkelbaan, Joachim;

    The main research question in this research project is: What are the essential elements and the organizing logic of an integrative framework that is suitable for analysing sustainability governance from a global perspective and for implementing the related transitions? This transdisciplinary research approaches this question from three main avenues. First, the research is based on the premise that applying a combination of innovative governance theories is needed in order to improve the analysis of sustainability governance. Secondly, this research explores the interests of core actors in one ‘lay of the land' study on climate governance and in two unique case studies on ‘globalisation of sustainable energy technologies' and ‘aviation and climate change'. Thirdly, the research draws inferences on some areas in which the study and practice of sustainability governance need to be expanded. The findings together form the basis for a new approach to sustainability governance: Integrative Sustainability Governance (ISG). The ensuing ISG framework includes indicator frames within the theoretical pillars of power, knowledge and norms. Other main findings are that the transformation of crisis into transitions needs to find a place in risk management; that systems deliberation can complement democracy in addressing wicked problems; and that insights from behavioural science can play a crucial role in successful transitions. This dissertation concludes by demonstrating the applicability of the findings to ‘SDG Hubs' or innovative platforms for collaboration and knowledge exchange on the 2030 Agenda for Sustainable Development.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archive ouverte UNIG...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Archive ouverte UNIGE
    Doctoral thesis . 2015
    Archive ouverte UNIGE
    Doctoral thesis . 2015
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archive ouverte UNIG...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Archive ouverte UNIGE
      Doctoral thesis . 2015
      Archive ouverte UNIGE
      Doctoral thesis . 2015
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph