- home
- Advanced Search
- Energy Research
- Open Access
- Closed Access
- Restricted
- Embargo
- CN
- AU
- CA
- Energy Research
- Open Access
- Closed Access
- Restricted
- Embargo
- CN
- AU
- CA
description Publicationkeyboard_double_arrow_right Article 2016Publisher:Elsevier BV Zhao, Hong; Gao, Yang; Wang, Jian; Chen, Chi; Chen, Dengjie; Wang, Chen; Ciucci, Francesco;Abstract Egg yolk-derived P and N dual doped nano carbon capsules (PNCCs) have been synthesized and used as lithium ion battery anodes. The application of egg yolk as the carbon source is a new and environmental-friendly approach for biomass recycling. The reversible capacity of half cells made of PNCCs is as high as ~770 mA h g−1 at a current density of 0.5 A g−1 with considerable rate capacity and cycling stability. PNCCs show a capsule-like structure, which provide extra edges and active sites for lithium intercalation. The heteroatom doping also introduce defects and disorder, which increases the electrochemical activity and creates more active sites for lithium insertion.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Yong, Wang; Huachao, Xu; Ying, Li; Na, Lin; Peilong, Xu;pmid: 37586484
This study aims to introduce, conceptualize, and design a novel biomass/gasification-driven hybrid energy configuration. The proposed hybrid configuration has four subsystems: reformer solid oxide fuel cell (RSOFC), biomass/gasification, homogeneous charge compression ignition engine (HCCIE) plus waste heat recovery system (WHRS). RSOFC and HCCIE systems are embedded to generate electric energy. The syngas required for these two subsystems is captured from the biomass/gasification subsystem. In addition to generating electrical energy, fuel cell is responsible for providing combustible fuel to the HCCIE subsystem. The embedded engine in the system can improve the proposed configuration efficiency by increasing the rate of electrical energy production. In addition, the dissipated heat of fuel cell and engine subsystems is recovered by WHRS. The proposed energy configuration is evaluated and discussed from energetically, exergetically and exergoeconomic and environmental aspects to obtain a comprehensive feasibility study of the plant. The offered hybrid design has new component's structure and relationships that have not been reported in the publications. The analysis indicated that the proposed hybrid configuration is capable of generating approximately 1100 kW and 366.3 W of electric and thermal power, respectively, with the overall energetic and exergetic efficiencies of 69.4% and 52.1%. Exergoeconomic analysis results revealed that the specific fuel cost of the total proposed configuration was approximately 1.96 USD per GJ. In addition, compared to a coal and petroleum oil-based power generation plants, the proposed hybrid configuration can have approximately 2.75-fold and 97.7% lower CO2 emissions, sequentially. Besides, the proposed system can rival other similar biomass-driven designs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2023Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Hassan Haes Alhelou; Behrooz Bahrani; Jin Ma; David J. Hill;<p>This industry-oriented paper presents an overview and in-depth analysis of previous and current situations of power system frequency response and control in Australia. The evaluation of different services provided by different electricity market players under the supervision of the Australian Energy Market Operator (AEMO) as an independent system operator provides lessons and an understanding of the current operation status with its real challenges and opportunities from frequency stability and security perspectives. Based on the evaluation of the current situation and future national planning, a number of research gaps and industrial technical issues are identified, and some perspectives on future research directions are presented to help move the power system transformation toward almost 100% renewable and more secure energy systems.</p>
https://doi.org/10.3... arrow_drop_down https://doi.org/10.36227/techr...Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.36227/techr...Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefIEEE Transactions on Power SystemsArticle . 2024 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routeshybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.3... arrow_drop_down https://doi.org/10.36227/techr...Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.36227/techr...Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefIEEE Transactions on Power SystemsArticle . 2024 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2014Publisher:Springer Science and Business Media LLC Authors: Lizhen Zeng; Weishan Li; Shao-fei Zhao;pmid: 25547817
Ni3Mo3C was prepared by a modified organic colloid method and explored as anode catalyst for high-performance microbial fuel cell (MFC) based on Klebsiella pneumoniae (K. pneumoniae). The prepared sample was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and Brunauer-Emmett-Teller (BET). The activity of the sample as anode catalyst for MFC based on K. pneumoniae was investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and polarization curve measurement. The results show that the adding of nickel in Mo2C increases the BET surface area of Mo2C and improves the electrocatalytic activity of Mo2C towards the oxidation of microbial fermentation products. The power density of MFC with 3 mg cm(-2) Ni3Mo3C anode is far higher than that of the MFC with carbon felt as anode without any catalyst, which is 19 % higher than that of Mo2C anode and produced 62 % as much as that of Pt anode, indicating that Ni3Mo3C is comparative to noble metal platinum as anode electrocatalyst for MFCs by increasing the loading.
Applied Biochemistry... arrow_drop_down Applied Biochemistry and BiotechnologyArticle . 2014 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Biochemistry... arrow_drop_down Applied Biochemistry and BiotechnologyArticle . 2014 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Zhiqiang Chen; Chengcheng Wang; Wei Jia; Le Cheng; Fan Guo; Linshen Xie; Wei Wu; Wei Chen;doi: 10.3390/en15062202
In order to further improve the insulation performance of fiber reinforce plastic (FRP) materials used in electromagnetic pulse (EMP) simulators, the flashover characteristics of FRP materials with different surface roughness and groove, i.e., those who are easily achieved and have a prominent effect, are investigated in 0.1 MPa SF6 under nanosecond pulse voltage with a rise time of 20–30 ns. The experimental results show that surfaces with different roughness have no significant influence on the flashover voltages of the FRP insulators, and both the convex grooves made of FRP and the convex grooves with nylon rings inlaid to form projections can improve the surface flashover voltage of epoxy FRP insulators under nanosecond pulse, in which the effect of the former surface is more obvious. For the insulators with convex grooves made of FRP, it is found that the root of the FRP protrusions breaks down after a number of shots with the occurrence of carbonization channels and spots, which is nonexistent for the nylon projections. Combined with the test results of surface characteristics, the surface roughness and the secondary electron emission yield (SEEY) are not key factors of flashover characteristics in SF6 under nanosecond pulse, arguably due to the fact that the energy needed for an incident electron to ionize an SF6 molecule is lower than that to excite two secondary electrons. Hence, the flashover performance cannot be improved by adjusting the surface roughness, and the flashover channel is principally governed by the macroscopic distribution of electrical field which can be changed by the convex groove. Breakdown phenomena of FRP protrusions indicate that the bulk insulation performance of resin FRP is weaker compared to pure resin because of its composite structure, as well as the impurities and voids introduced in the manufacturing process. The results are instructive for the design of FRP insulation structures in the compact EMP simulator.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/6/2202/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/6/2202/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Research , Preprint 2021Embargo end date: 01 Jan 2020Publisher:Springer Science and Business Media LLC Publicly fundedFunded by:EC | AMVA4NewPhysics, EC | INSIGHTS, EC | LHCTOPVLQEC| AMVA4NewPhysics ,EC| INSIGHTS ,EC| LHCTOPVLQSirunyan, A. M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Bergauer, T.; Dragicevic, M.; Ero, J.; Del Valle, A. Escalante; Fruhwirth, R.; Jeitler, M.; Krammer, N.; Lechner, L.; Liko, D.; Madlener, T.; Mikulec, I; Pitters, F. M.; Rad, N.; Schieck, J.; Schofbeck, R.; Spanring, M.; Templ, S.; Waltenberger, W.; Wulz, C-E; Zarucki, M.; Chekhovsky, V; Litomin, A.; Makarenko, V; Gonzalez, J. Suarez; Darwish, M. R.; De Wolf, E. A.; Di Croce, D.; Janssen, X.; Kello, T.; Lelek, A.; Pieters, M.; Sfar, H. Rejeb; Van Haevermaet, H.; Van Mechelen, P.; Van Putte, S.; Van Remortel, N.; Blekman, F.; Bols, E. S.; Chhibra, S. S.; D'Hondt, J.; De Clercq, J.; Lontkovskyi, D.; Lowette, S.; Marchesini, I; Moortgat, S.; Morton, A.; Python, Q.; Tavernier, S.; Van Doninck, W.; Van; Mulders, P.; Beghin, D.; Bilin, B.; Clerbaux, B.; De; Lentdecker, G.; Dorney, B.; Favart, L.; Grebenyuk, A.; Kalsi, A. K.; Makarenko, I; Moureaux, L.; Petre, L.; Popov; A.; Postiau, N.; Starling, E.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Vannerom, D.; Wezenbeek, L.; Cornelis, T.; Dobur, D.; Gruchala, M.; Khvastunov, I; Niedziela, M.; Roskas, C.; Skovpen, K.; Tytgat, M.; Verbeke, W.; Vermassen; B.; Vit, M.; Bruno, G.; Bury, F.; Caputo, C.; David, P.; Delaere, C.; Delcourt, M.; Donertas, I. S.; Giammanco, A.; Lemaitre, V; Mondal, K.; Prisciandaro, J.; Taliercio, A.; Teklishyn, M.; Vischia, P.; Wuyckens, S.; Zobec, J.; Alves, G. A.; Correia Silva, G.; Hensel, C.; Moraes, A.; Alda Junior, W. L.; Belchior Batista Das Chagas, E.; Brandao; Malbouisson, H.; Carvalho, W.; Chinellato, J.; Coelho, E.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; Fonseca De Souza, S.; Martins, J.; Matos Figueiredo, D.; Medina; Jaime, M.; Melo De Almeida, M.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Rebello Teles, P.; Sanchez Rosas, L. J.; Santoro, A.; Silva Do Amaral, S. M.; Sznajder, A.; Thiel, M.; Tonelli Manganote, E. J.; Torres Da Silva De Araujo, F.; Vilela Pereira, A.; Bernardes, C. A.; Calligaris, L.; Fernandez; Perez Tomei, T. R.; Gregores, E. M.; Lemos, D. S.; Mercadante; P. G.; Novaes, S. F.; Padula, Sandra S.; Aleksandrov, A.; Antchev, G.; Atanasov, I; Hadjiiska, R.; Iaydjiev, P.; Misheva, M.; Rodozov, M.; Shopova, M.; Sultanov, G.; Bonchev, M.; Dimitrov, A.; Ivanov, T.; Litov, L.; Pavlov, B.; Petkov, P.; Petrov, A.; Fang, W.; Guo, Q.; Wang, H.; Yuan, L.; Ahmad, M.; Hu, Z.; Wang, Y.; Chapon, E.; Chen; G. M.; Chen, H. S.; Chen, M.; Kapoor, A.; Leggat, D.; Liao, H.; Liu, Z.; Sharma, R.; Spiezia, A.; Tao, J.; Thomas-wilsker, J.; Wang, J.; Zhang, H.; Zhang, S.; Zhao, J.; Agapitos, A.; Ban, Y.; Chen, C.; Huang, Q.; Levin, A.; Li, Q.; Lu, M.; Lyu, X.; Mao, Y.; Qian, S. J.; Wang; D.; Wang, Q.; Xiao, J.;doi: 10.1140/epjc/s10052-020-08817-8 , 10.48550/arxiv.2009.01186 , 10.3204/pubdb-2021-01404 , 10.5445/ir/1000133495 , 10.3204/pubdb-2020-03553 , 10.18154/rwth-2021-04402 , 10.18154/rwth-2021-04323
pmid: 33750993
pmc: PMC7921081
handle: 10486/704420 , 10651/61050 , 11588/981266 , 11368/2981217 , 20.500.12960/1096 , 10281/308797 , 10679/8214 , 10067/1775930151162165141 , 11449/210711 , 11492/4967 , 10831/111002 , 11503/974 , 11486/5265 , 11577/3400582 , 11573/1639263 , 11584/420886 , 11567/1050491 , 11568/1134020 , 11589/257781 , 11391/1507393 , 11384/101251 , 11585/853320 , 20.500.11769/526794 , 2158/1297765 , 1854/LU-8702116 , 2318/1841118 , 11579/135374 , 11563/159092 , 10044/1/87583 , 11586/374199 , 11571/1478316
doi: 10.1140/epjc/s10052-020-08817-8 , 10.48550/arxiv.2009.01186 , 10.3204/pubdb-2021-01404 , 10.5445/ir/1000133495 , 10.3204/pubdb-2020-03553 , 10.18154/rwth-2021-04402 , 10.18154/rwth-2021-04323
pmid: 33750993
pmc: PMC7921081
handle: 10486/704420 , 10651/61050 , 11588/981266 , 11368/2981217 , 20.500.12960/1096 , 10281/308797 , 10679/8214 , 10067/1775930151162165141 , 11449/210711 , 11492/4967 , 10831/111002 , 11503/974 , 11486/5265 , 11577/3400582 , 11573/1639263 , 11584/420886 , 11567/1050491 , 11568/1134020 , 11589/257781 , 11391/1507393 , 11384/101251 , 11585/853320 , 20.500.11769/526794 , 2158/1297765 , 1854/LU-8702116 , 2318/1841118 , 11579/135374 , 11563/159092 , 10044/1/87583 , 11586/374199 , 11571/1478316
AbstractThe production of Z boson pairs in proton–proton ($${\mathrm{p}} {\mathrm{p}} $$ p p ) collisions, $${{\mathrm{p}} {\mathrm{p}} \rightarrow ({\mathrm{Z}}/\gamma ^*)({\mathrm{Z}}/\gamma ^*) \rightarrow 2\ell 2\ell '}$$ p p → ( Z / γ ∗ ) ( Z / γ ∗ ) → 2 ℓ 2 ℓ ′ , where $${\ell ,\ell ' = {\mathrm{e}}}$$ ℓ , ℓ ′ = e or $${{\upmu }}$$ μ , is studied at a center-of-mass energy of 13$$\,\text {TeV}$$ TeV with the CMS detector at the CERN LHC. The data sample corresponds to an integrated luminosity of 137$$\,\text {fb}^{-1}$$ fb - 1 , collected during 2016–2018. The $${\mathrm{Z}} {\mathrm{Z}} $$ Z Z production cross section, $$\sigma _{\text {tot}} ({\mathrm{p}} {\mathrm{p}} \rightarrow {\mathrm{Z}} {\mathrm{Z}} ) = 17.4 \pm 0.3 \,\text {(stat)} \pm 0.5 \,\text {(syst)} \pm 0.4 \,\text {(theo)} \pm 0.3 \,\text {(lumi)} \text { pb} $$ σ tot ( p p → Z Z ) = 17.4 ± 0.3 (stat) ± 0.5 (syst) ± 0.4 (theo) ± 0.3 (lumi) pb , measured for events with two pairs of opposite-sign, same-flavor leptons produced in the mass region $${60< m_{\ell ^+\ell ^-} < 120\,\text {GeV}}$$ 60 < m ℓ + ℓ - < 120 GeV is consistent with standard model predictions. Differential cross sections are also measured and agree with theoretical predictions. The invariant mass distribution of the four-lepton system is used to set limits on anomalous $${\mathrm{Z}} {\mathrm{Z}} {\mathrm{Z}} $$ Z Z Z and $${{\mathrm{Z}} {\mathrm{Z}} \gamma }$$ Z Z γ couplings.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAPadua research Archive (Archivio istituzionale della ricerca - Università di Padova)Article . 2021License: CC BYArchivio della ricerca- Università di Roma La SapienzaArticle . 2021License: CC BY NC NDData sources: Archivio della ricerca- Università di Roma La SapienzaArchivio della Ricerca - Università di PisaArticle . 2021License: CC BYData sources: Archivio della Ricerca - Università di PisaBelarusian State University: Electronic Library BSUArticle . 2021License: CC BYFull-Text: https://elib.bsu.by/handle/123456789/289295Data sources: Bielefeld Academic Search Engine (BASE)Brunel University London: Brunel University Research Archive (BURA)Article . 2021License: CC BYFull-Text: https://bura.brunel.ac.uk/handle/2438/22652Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2021License: CC BYFull-Text: https://escholarship.org/uc/item/3804229hData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10044/1/87583Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2021Full-Text: https://hdl.handle.net/11586/374199Data sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2021Full-Text: https://arxiv.org/abs/2009.01186Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)European Physical Journal C: Particles and FieldsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefCroatian Scientific Bibliography - CROSBIArticle . 2021Data sources: Croatian Scientific Bibliography - CROSBIRecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAEuropean Physical Journal C: Particles and FieldsArticle . 2021Data sources: Croatian Research Information SystemPiri Reis Üniversitesi Kurumsal Akademik Arşiv SistemiArticle . 2021Data sources: Piri Reis Üniversitesi Kurumsal Akademik Arşiv SistemiSpiral - Imperial College Digital RepositoryArticle . 2020License: CC BYData sources: Spiral - Imperial College Digital RepositoryInstitutional Repository Universiteit AntwerpenArticle . 2021Data sources: Institutional Repository Universiteit AntwerpenRepositorio Institucional de la Universidad de OviedoArticle . 2021License: CC BYData sources: Repositorio Institucional de la Universidad de OviedoKaramanoğlu Mehmetbey Üniversitesi Akademik Arşiv SistemiArticle . 2021ELTE Digital Institutional Repository (EDIT)Article . 2021Data sources: ELTE Digital Institutional Repository (EDIT)Sirnak University Institutional RepositoryArticle . 2021Data sources: Sirnak University Institutional RepositorySinop Üniversitesi Akademik Arşiv SistemiArticle . 2025Data sources: Sinop Üniversitesi Akademik Arşiv SistemiElectronic archive of Tomsk Polytechnic UniversityArticle . 2023Data sources: Electronic archive of Tomsk Polytechnic UniversityeScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaGhent University Academic BibliographyArticle . 2021Data sources: Ghent University Academic BibliographyPublikationsserver der RWTH Aachen UniversityPreprint . 2020Data sources: Publikationsserver der RWTH Aachen UniversityPublikationsserver der RWTH Aachen UniversityArticle . 2021Data sources: Publikationsserver der RWTH Aachen UniversityBrunel University Research ArchiveArticle . 2021License: CC BYData sources: Brunel University Research ArchiveÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Archivio Istituzionale della Ricerca - Politecnico di BariArticle . 2021IRIS - Università degli Studi di CataniaArticle . 2021Data sources: IRIS - Università degli Studi di CataniaFlore (Florence Research Repository)Article . 2021Data sources: Flore (Florence Research Repository)FEDOA - IRIS Università degli Studi Napoli Federico IIArticle . 2021Data sources: FEDOA - IRIS Università degli Studi Napoli Federico IIUniversità degli Studi del Piemonte Orientale: CINECA IRISArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi della Basilicata: CINECA IRISArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Universidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Brunel University London: Brunel University Research Archive (BURA)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 307visibility views 307 download downloads 254 Powered by
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAPadua research Archive (Archivio istituzionale della ricerca - Università di Padova)Article . 2021License: CC BYArchivio della ricerca- Università di Roma La SapienzaArticle . 2021License: CC BY NC NDData sources: Archivio della ricerca- Università di Roma La SapienzaArchivio della Ricerca - Università di PisaArticle . 2021License: CC BYData sources: Archivio della Ricerca - Università di PisaBelarusian State University: Electronic Library BSUArticle . 2021License: CC BYFull-Text: https://elib.bsu.by/handle/123456789/289295Data sources: Bielefeld Academic Search Engine (BASE)Brunel University London: Brunel University Research Archive (BURA)Article . 2021License: CC BYFull-Text: https://bura.brunel.ac.uk/handle/2438/22652Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2021License: CC BYFull-Text: https://escholarship.org/uc/item/3804229hData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10044/1/87583Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2021Full-Text: https://hdl.handle.net/11586/374199Data sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2021Full-Text: https://arxiv.org/abs/2009.01186Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)European Physical Journal C: Particles and FieldsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefCroatian Scientific Bibliography - CROSBIArticle . 2021Data sources: Croatian Scientific Bibliography - CROSBIRecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAEuropean Physical Journal C: Particles and FieldsArticle . 2021Data sources: Croatian Research Information SystemPiri Reis Üniversitesi Kurumsal Akademik Arşiv SistemiArticle . 2021Data sources: Piri Reis Üniversitesi Kurumsal Akademik Arşiv SistemiSpiral - Imperial College Digital RepositoryArticle . 2020License: CC BYData sources: Spiral - Imperial College Digital RepositoryInstitutional Repository Universiteit AntwerpenArticle . 2021Data sources: Institutional Repository Universiteit AntwerpenRepositorio Institucional de la Universidad de OviedoArticle . 2021License: CC BYData sources: Repositorio Institucional de la Universidad de OviedoKaramanoğlu Mehmetbey Üniversitesi Akademik Arşiv SistemiArticle . 2021ELTE Digital Institutional Repository (EDIT)Article . 2021Data sources: ELTE Digital Institutional Repository (EDIT)Sirnak University Institutional RepositoryArticle . 2021Data sources: Sirnak University Institutional RepositorySinop Üniversitesi Akademik Arşiv SistemiArticle . 2025Data sources: Sinop Üniversitesi Akademik Arşiv SistemiElectronic archive of Tomsk Polytechnic UniversityArticle . 2023Data sources: Electronic archive of Tomsk Polytechnic UniversityeScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaGhent University Academic BibliographyArticle . 2021Data sources: Ghent University Academic BibliographyPublikationsserver der RWTH Aachen UniversityPreprint . 2020Data sources: Publikationsserver der RWTH Aachen UniversityPublikationsserver der RWTH Aachen UniversityArticle . 2021Data sources: Publikationsserver der RWTH Aachen UniversityBrunel University Research ArchiveArticle . 2021License: CC BYData sources: Brunel University Research ArchiveÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Archivio Istituzionale della Ricerca - Politecnico di BariArticle . 2021IRIS - Università degli Studi di CataniaArticle . 2021Data sources: IRIS - Università degli Studi di CataniaFlore (Florence Research Repository)Article . 2021Data sources: Flore (Florence Research Repository)FEDOA - IRIS Università degli Studi Napoli Federico IIArticle . 2021Data sources: FEDOA - IRIS Università degli Studi Napoli Federico IIUniversità degli Studi del Piemonte Orientale: CINECA IRISArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi della Basilicata: CINECA IRISArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Universidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Brunel University London: Brunel University Research Archive (BURA)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2021Publisher:Elsevier BV Authors: Xiangyu Zhu; Xuewei Liu;The accurate morphology identification of gas hydrate-bearing sediments (GHBS) has great significance in practical exploitation and subsequent resource evaluation. Previous studies have disclosed two main morphologies for gas hydrate in sediments: pore- and fracture-filling. However, the existing identification methods of gas hydrate’s morphology rarely consider their intrinsic differences in distribution characteristics. In this paper, a new method is proposed to identify the morphology of hydrate according to the scattered distribution of fracture dips for fracture-filling GHBS. Firstly, numerical simulations are performed to study the relationships between the morphology of hydrate and the sonic velocities. Considering the dip variation is within a certain range for fracture-filling hydrate, the theoretical curves show that the resulting mutation degrees between P- and S-wave velocities are inconsistent in fracture-filling GHBS, which is different from pore-filling GHBS. Then the modified estimation method for pointwise Lipschitz exponent α is introduced to capture their differences. The cross plots of Lipschitz exponent for P-wave velocity, α(Vp), and Lipschitz exponent for S-wave velocity, α(Vs), indicate that most of the dots representing pore-filling GHBS are evenly distributed near the line α(Vp)=α(Vs), while the dots representing fracture-filling GHBS are scattered outside the line α(Vp)=α(Vs). Based on these characteristics, a ratio method is put forward to differentiate the two types of hydrate. These hypotheses and methods are verified using the measured P- and S-wave velocities log data at different sites in Leg 204, Ocean Drilling Program (ODP), in the United States. Finally, the results of this new method agree closely with core data.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2025Publisher:Wiley Jianfeng Hao; Han Liu; Weiji Sun; Runzhi Li; Zhanshan Shi; Shengjie Fang; Chunyu Guo;doi: 10.1002/ese3.2094
ABSTRACTThe multi‐field coupling relationship and temperature evolution mechanism of gas‐containing coal in areas affected by geological structures were investigated, focusing specifically on the engineering aspects of a reverse fault in the No. 3 coal seam at the Xinjing Coal Mine. An analysis was conducted to examine the thermal‐fluid‐solid coupling behavior of gas‐containing coal. A thermal‐fluid‐solid coupling model for gas‐containing coal, accounting for the effects of damage, was developed to simulate the incubation process of coal and gas outbursts within the fault zone during the advancement of the working face. The study has indicated that faults not only degrade the mechanical properties of the surrounding coal‐rock mass, but also disrupt the continuity of coal seam stress. Gas tends to accumulate near fault zones, resulting in differences in the gas pressure and content on either side of the fault, thereby substantially increasing the likelihood of coal and gas outbursts. The primary factors influencing temperature variations include deformation energy, energy from gas expansion, thermal convection, thermal conduction, and the thermal effects associated with adsorption and desorption. Among these factors, the endothermic effect associated with adsorption and desorption significantly influences the temperature fluctuations in coal. The results of this study provide a theoretical foundation for exploring the mechanisms underlying coal and gas outbursts, improving the interdisciplinary coupling theory for coal and gas systems and employing temperature metrics to predict such outbursts.
Energy Science &... arrow_drop_down Energy Science & EngineeringArticle . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energy Science &... arrow_drop_down Energy Science & EngineeringArticle . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2019Publisher:Elsevier BV Authors: Lehtola, Timo; Zahedi, Ahmad;Abstract Solar energy and wind power supply are renewable, decentralised and intermittent electrical power supply methods that require energy storage. Integrating this renewable energy supply to the electrical power grid may reduce the demand for centralised production, making renewable energy systems more easily available to remote regions. Control systems optimise solar energy and wind power sources to supply renewable energy to the power grid. Vehicle to Grid (V2G) operations support intermittent production as battery storage. In V2G operations, electric power flows from the power grid to the battery storage and from the battery storage back to the power grid. The primary goal of this study is to improve the existing renewable energy supply to provide more reliable units in the power grid. We consider the V2G concept as an extension of the smart charging system allowing electric vehicles to be able to inject battery energy into the power grid, acting as distributed generators or energy storage systems. This review shows how parallel V2G storage and battery storage supports the power grid. Further, the review indicates that decentralised V2G battery storages will be included in future renewable energy systems.
Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.138 citations 138 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: Yi Chi; Ning Hu; Dong Lu; Yang Yang;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.83 citations 83 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
description Publicationkeyboard_double_arrow_right Article 2016Publisher:Elsevier BV Zhao, Hong; Gao, Yang; Wang, Jian; Chen, Chi; Chen, Dengjie; Wang, Chen; Ciucci, Francesco;Abstract Egg yolk-derived P and N dual doped nano carbon capsules (PNCCs) have been synthesized and used as lithium ion battery anodes. The application of egg yolk as the carbon source is a new and environmental-friendly approach for biomass recycling. The reversible capacity of half cells made of PNCCs is as high as ~770 mA h g−1 at a current density of 0.5 A g−1 with considerable rate capacity and cycling stability. PNCCs show a capsule-like structure, which provide extra edges and active sites for lithium intercalation. The heteroatom doping also introduce defects and disorder, which increases the electrochemical activity and creates more active sites for lithium insertion.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Yong, Wang; Huachao, Xu; Ying, Li; Na, Lin; Peilong, Xu;pmid: 37586484
This study aims to introduce, conceptualize, and design a novel biomass/gasification-driven hybrid energy configuration. The proposed hybrid configuration has four subsystems: reformer solid oxide fuel cell (RSOFC), biomass/gasification, homogeneous charge compression ignition engine (HCCIE) plus waste heat recovery system (WHRS). RSOFC and HCCIE systems are embedded to generate electric energy. The syngas required for these two subsystems is captured from the biomass/gasification subsystem. In addition to generating electrical energy, fuel cell is responsible for providing combustible fuel to the HCCIE subsystem. The embedded engine in the system can improve the proposed configuration efficiency by increasing the rate of electrical energy production. In addition, the dissipated heat of fuel cell and engine subsystems is recovered by WHRS. The proposed energy configuration is evaluated and discussed from energetically, exergetically and exergoeconomic and environmental aspects to obtain a comprehensive feasibility study of the plant. The offered hybrid design has new component's structure and relationships that have not been reported in the publications. The analysis indicated that the proposed hybrid configuration is capable of generating approximately 1100 kW and 366.3 W of electric and thermal power, respectively, with the overall energetic and exergetic efficiencies of 69.4% and 52.1%. Exergoeconomic analysis results revealed that the specific fuel cost of the total proposed configuration was approximately 1.96 USD per GJ. In addition, compared to a coal and petroleum oil-based power generation plants, the proposed hybrid configuration can have approximately 2.75-fold and 97.7% lower CO2 emissions, sequentially. Besides, the proposed system can rival other similar biomass-driven designs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2023Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Hassan Haes Alhelou; Behrooz Bahrani; Jin Ma; David J. Hill;<p>This industry-oriented paper presents an overview and in-depth analysis of previous and current situations of power system frequency response and control in Australia. The evaluation of different services provided by different electricity market players under the supervision of the Australian Energy Market Operator (AEMO) as an independent system operator provides lessons and an understanding of the current operation status with its real challenges and opportunities from frequency stability and security perspectives. Based on the evaluation of the current situation and future national planning, a number of research gaps and industrial technical issues are identified, and some perspectives on future research directions are presented to help move the power system transformation toward almost 100% renewable and more secure energy systems.</p>
https://doi.org/10.3... arrow_drop_down https://doi.org/10.36227/techr...Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.36227/techr...Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefIEEE Transactions on Power SystemsArticle . 2024 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routeshybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.3... arrow_drop_down https://doi.org/10.36227/techr...Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.36227/techr...Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefIEEE Transactions on Power SystemsArticle . 2024 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2014Publisher:Springer Science and Business Media LLC Authors: Lizhen Zeng; Weishan Li; Shao-fei Zhao;pmid: 25547817
Ni3Mo3C was prepared by a modified organic colloid method and explored as anode catalyst for high-performance microbial fuel cell (MFC) based on Klebsiella pneumoniae (K. pneumoniae). The prepared sample was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and Brunauer-Emmett-Teller (BET). The activity of the sample as anode catalyst for MFC based on K. pneumoniae was investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and polarization curve measurement. The results show that the adding of nickel in Mo2C increases the BET surface area of Mo2C and improves the electrocatalytic activity of Mo2C towards the oxidation of microbial fermentation products. The power density of MFC with 3 mg cm(-2) Ni3Mo3C anode is far higher than that of the MFC with carbon felt as anode without any catalyst, which is 19 % higher than that of Mo2C anode and produced 62 % as much as that of Pt anode, indicating that Ni3Mo3C is comparative to noble metal platinum as anode electrocatalyst for MFCs by increasing the loading.
Applied Biochemistry... arrow_drop_down Applied Biochemistry and BiotechnologyArticle . 2014 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Biochemistry... arrow_drop_down Applied Biochemistry and BiotechnologyArticle . 2014 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Zhiqiang Chen; Chengcheng Wang; Wei Jia; Le Cheng; Fan Guo; Linshen Xie; Wei Wu; Wei Chen;doi: 10.3390/en15062202
In order to further improve the insulation performance of fiber reinforce plastic (FRP) materials used in electromagnetic pulse (EMP) simulators, the flashover characteristics of FRP materials with different surface roughness and groove, i.e., those who are easily achieved and have a prominent effect, are investigated in 0.1 MPa SF6 under nanosecond pulse voltage with a rise time of 20–30 ns. The experimental results show that surfaces with different roughness have no significant influence on the flashover voltages of the FRP insulators, and both the convex grooves made of FRP and the convex grooves with nylon rings inlaid to form projections can improve the surface flashover voltage of epoxy FRP insulators under nanosecond pulse, in which the effect of the former surface is more obvious. For the insulators with convex grooves made of FRP, it is found that the root of the FRP protrusions breaks down after a number of shots with the occurrence of carbonization channels and spots, which is nonexistent for the nylon projections. Combined with the test results of surface characteristics, the surface roughness and the secondary electron emission yield (SEEY) are not key factors of flashover characteristics in SF6 under nanosecond pulse, arguably due to the fact that the energy needed for an incident electron to ionize an SF6 molecule is lower than that to excite two secondary electrons. Hence, the flashover performance cannot be improved by adjusting the surface roughness, and the flashover channel is principally governed by the macroscopic distribution of electrical field which can be changed by the convex groove. Breakdown phenomena of FRP protrusions indicate that the bulk insulation performance of resin FRP is weaker compared to pure resin because of its composite structure, as well as the impurities and voids introduced in the manufacturing process. The results are instructive for the design of FRP insulation structures in the compact EMP simulator.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/6/2202/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/6/2202/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Research , Preprint 2021Embargo end date: 01 Jan 2020Publisher:Springer Science and Business Media LLC Publicly fundedFunded by:EC | AMVA4NewPhysics, EC | INSIGHTS, EC | LHCTOPVLQEC| AMVA4NewPhysics ,EC| INSIGHTS ,EC| LHCTOPVLQSirunyan, A. M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Bergauer, T.; Dragicevic, M.; Ero, J.; Del Valle, A. Escalante; Fruhwirth, R.; Jeitler, M.; Krammer, N.; Lechner, L.; Liko, D.; Madlener, T.; Mikulec, I; Pitters, F. M.; Rad, N.; Schieck, J.; Schofbeck, R.; Spanring, M.; Templ, S.; Waltenberger, W.; Wulz, C-E; Zarucki, M.; Chekhovsky, V; Litomin, A.; Makarenko, V; Gonzalez, J. Suarez; Darwish, M. R.; De Wolf, E. A.; Di Croce, D.; Janssen, X.; Kello, T.; Lelek, A.; Pieters, M.; Sfar, H. Rejeb; Van Haevermaet, H.; Van Mechelen, P.; Van Putte, S.; Van Remortel, N.; Blekman, F.; Bols, E. S.; Chhibra, S. S.; D'Hondt, J.; De Clercq, J.; Lontkovskyi, D.; Lowette, S.; Marchesini, I; Moortgat, S.; Morton, A.; Python, Q.; Tavernier, S.; Van Doninck, W.; Van; Mulders, P.; Beghin, D.; Bilin, B.; Clerbaux, B.; De; Lentdecker, G.; Dorney, B.; Favart, L.; Grebenyuk, A.; Kalsi, A. K.; Makarenko, I; Moureaux, L.; Petre, L.; Popov; A.; Postiau, N.; Starling, E.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Vannerom, D.; Wezenbeek, L.; Cornelis, T.; Dobur, D.; Gruchala, M.; Khvastunov, I; Niedziela, M.; Roskas, C.; Skovpen, K.; Tytgat, M.; Verbeke, W.; Vermassen; B.; Vit, M.; Bruno, G.; Bury, F.; Caputo, C.; David, P.; Delaere, C.; Delcourt, M.; Donertas, I. S.; Giammanco, A.; Lemaitre, V; Mondal, K.; Prisciandaro, J.; Taliercio, A.; Teklishyn, M.; Vischia, P.; Wuyckens, S.; Zobec, J.; Alves, G. A.; Correia Silva, G.; Hensel, C.; Moraes, A.; Alda Junior, W. L.; Belchior Batista Das Chagas, E.; Brandao; Malbouisson, H.; Carvalho, W.; Chinellato, J.; Coelho, E.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; Fonseca De Souza, S.; Martins, J.; Matos Figueiredo, D.; Medina; Jaime, M.; Melo De Almeida, M.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Rebello Teles, P.; Sanchez Rosas, L. J.; Santoro, A.; Silva Do Amaral, S. M.; Sznajder, A.; Thiel, M.; Tonelli Manganote, E. J.; Torres Da Silva De Araujo, F.; Vilela Pereira, A.; Bernardes, C. A.; Calligaris, L.; Fernandez; Perez Tomei, T. R.; Gregores, E. M.; Lemos, D. S.; Mercadante; P. G.; Novaes, S. F.; Padula, Sandra S.; Aleksandrov, A.; Antchev, G.; Atanasov, I; Hadjiiska, R.; Iaydjiev, P.; Misheva, M.; Rodozov, M.; Shopova, M.; Sultanov, G.; Bonchev, M.; Dimitrov, A.; Ivanov, T.; Litov, L.; Pavlov, B.; Petkov, P.; Petrov, A.; Fang, W.; Guo, Q.; Wang, H.; Yuan, L.; Ahmad, M.; Hu, Z.; Wang, Y.; Chapon, E.; Chen; G. M.; Chen, H. S.; Chen, M.; Kapoor, A.; Leggat, D.; Liao, H.; Liu, Z.; Sharma, R.; Spiezia, A.; Tao, J.; Thomas-wilsker, J.; Wang, J.; Zhang, H.; Zhang, S.; Zhao, J.; Agapitos, A.; Ban, Y.; Chen, C.; Huang, Q.; Levin, A.; Li, Q.; Lu, M.; Lyu, X.; Mao, Y.; Qian, S. J.; Wang; D.; Wang, Q.; Xiao, J.;doi: 10.1140/epjc/s10052-020-08817-8 , 10.48550/arxiv.2009.01186 , 10.3204/pubdb-2021-01404 , 10.5445/ir/1000133495 , 10.3204/pubdb-2020-03553 , 10.18154/rwth-2021-04402 , 10.18154/rwth-2021-04323
pmid: 33750993
pmc: PMC7921081
handle: 10486/704420 , 10651/61050 , 11588/981266 , 11368/2981217 , 20.500.12960/1096 , 10281/308797 , 10679/8214 , 10067/1775930151162165141 , 11449/210711 , 11492/4967 , 10831/111002 , 11503/974 , 11486/5265 , 11577/3400582 , 11573/1639263 , 11584/420886 , 11567/1050491 , 11568/1134020 , 11589/257781 , 11391/1507393 , 11384/101251 , 11585/853320 , 20.500.11769/526794 , 2158/1297765 , 1854/LU-8702116 , 2318/1841118 , 11579/135374 , 11563/159092 , 10044/1/87583 , 11586/374199 , 11571/1478316
doi: 10.1140/epjc/s10052-020-08817-8 , 10.48550/arxiv.2009.01186 , 10.3204/pubdb-2021-01404 , 10.5445/ir/1000133495 , 10.3204/pubdb-2020-03553 , 10.18154/rwth-2021-04402 , 10.18154/rwth-2021-04323
pmid: 33750993
pmc: PMC7921081
handle: 10486/704420 , 10651/61050 , 11588/981266 , 11368/2981217 , 20.500.12960/1096 , 10281/308797 , 10679/8214 , 10067/1775930151162165141 , 11449/210711 , 11492/4967 , 10831/111002 , 11503/974 , 11486/5265 , 11577/3400582 , 11573/1639263 , 11584/420886 , 11567/1050491 , 11568/1134020 , 11589/257781 , 11391/1507393 , 11384/101251 , 11585/853320 , 20.500.11769/526794 , 2158/1297765 , 1854/LU-8702116 , 2318/1841118 , 11579/135374 , 11563/159092 , 10044/1/87583 , 11586/374199 , 11571/1478316
AbstractThe production of Z boson pairs in proton–proton ($${\mathrm{p}} {\mathrm{p}} $$ p p ) collisions, $${{\mathrm{p}} {\mathrm{p}} \rightarrow ({\mathrm{Z}}/\gamma ^*)({\mathrm{Z}}/\gamma ^*) \rightarrow 2\ell 2\ell '}$$ p p → ( Z / γ ∗ ) ( Z / γ ∗ ) → 2 ℓ 2 ℓ ′ , where $${\ell ,\ell ' = {\mathrm{e}}}$$ ℓ , ℓ ′ = e or $${{\upmu }}$$ μ , is studied at a center-of-mass energy of 13$$\,\text {TeV}$$ TeV with the CMS detector at the CERN LHC. The data sample corresponds to an integrated luminosity of 137$$\,\text {fb}^{-1}$$ fb - 1 , collected during 2016–2018. The $${\mathrm{Z}} {\mathrm{Z}} $$ Z Z production cross section, $$\sigma _{\text {tot}} ({\mathrm{p}} {\mathrm{p}} \rightarrow {\mathrm{Z}} {\mathrm{Z}} ) = 17.4 \pm 0.3 \,\text {(stat)} \pm 0.5 \,\text {(syst)} \pm 0.4 \,\text {(theo)} \pm 0.3 \,\text {(lumi)} \text { pb} $$ σ tot ( p p → Z Z ) = 17.4 ± 0.3 (stat) ± 0.5 (syst) ± 0.4 (theo) ± 0.3 (lumi) pb , measured for events with two pairs of opposite-sign, same-flavor leptons produced in the mass region $${60< m_{\ell ^+\ell ^-} < 120\,\text {GeV}}$$ 60 < m ℓ + ℓ - < 120 GeV is consistent with standard model predictions. Differential cross sections are also measured and agree with theoretical predictions. The invariant mass distribution of the four-lepton system is used to set limits on anomalous $${\mathrm{Z}} {\mathrm{Z}} {\mathrm{Z}} $$ Z Z Z and $${{\mathrm{Z}} {\mathrm{Z}} \gamma }$$ Z Z γ couplings.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAPadua research Archive (Archivio istituzionale della ricerca - Università di Padova)Article . 2021License: CC BYArchivio della ricerca- Università di Roma La SapienzaArticle . 2021License: CC BY NC NDData sources: Archivio della ricerca- Università di Roma La SapienzaArchivio della Ricerca - Università di PisaArticle . 2021License: CC BYData sources: Archivio della Ricerca - Università di PisaBelarusian State University: Electronic Library BSUArticle . 2021License: CC BYFull-Text: https://elib.bsu.by/handle/123456789/289295Data sources: Bielefeld Academic Search Engine (BASE)Brunel University London: Brunel University Research Archive (BURA)Article . 2021License: CC BYFull-Text: https://bura.brunel.ac.uk/handle/2438/22652Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2021License: CC BYFull-Text: https://escholarship.org/uc/item/3804229hData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10044/1/87583Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2021Full-Text: https://hdl.handle.net/11586/374199Data sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2021Full-Text: https://arxiv.org/abs/2009.01186Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)European Physical Journal C: Particles and FieldsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefCroatian Scientific Bibliography - CROSBIArticle . 2021Data sources: Croatian Scientific Bibliography - CROSBIRecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAEuropean Physical Journal C: Particles and FieldsArticle . 2021Data sources: Croatian Research Information SystemPiri Reis Üniversitesi Kurumsal Akademik Arşiv SistemiArticle . 2021Data sources: Piri Reis Üniversitesi Kurumsal Akademik Arşiv SistemiSpiral - Imperial College Digital RepositoryArticle . 2020License: CC BYData sources: Spiral - Imperial College Digital RepositoryInstitutional Repository Universiteit AntwerpenArticle . 2021Data sources: Institutional Repository Universiteit AntwerpenRepositorio Institucional de la Universidad de OviedoArticle . 2021License: CC BYData sources: Repositorio Institucional de la Universidad de OviedoKaramanoğlu Mehmetbey Üniversitesi Akademik Arşiv SistemiArticle . 2021ELTE Digital Institutional Repository (EDIT)Article . 2021Data sources: ELTE Digital Institutional Repository (EDIT)Sirnak University Institutional RepositoryArticle . 2021Data sources: Sirnak University Institutional RepositorySinop Üniversitesi Akademik Arşiv SistemiArticle . 2025Data sources: Sinop Üniversitesi Akademik Arşiv SistemiElectronic archive of Tomsk Polytechnic UniversityArticle . 2023Data sources: Electronic archive of Tomsk Polytechnic UniversityeScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaGhent University Academic BibliographyArticle . 2021Data sources: Ghent University Academic BibliographyPublikationsserver der RWTH Aachen UniversityPreprint . 2020Data sources: Publikationsserver der RWTH Aachen UniversityPublikationsserver der RWTH Aachen UniversityArticle . 2021Data sources: Publikationsserver der RWTH Aachen UniversityBrunel University Research ArchiveArticle . 2021License: CC BYData sources: Brunel University Research ArchiveÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Archivio Istituzionale della Ricerca - Politecnico di BariArticle . 2021IRIS - Università degli Studi di CataniaArticle . 2021Data sources: IRIS - Università degli Studi di CataniaFlore (Florence Research Repository)Article . 2021Data sources: Flore (Florence Research Repository)FEDOA - IRIS Università degli Studi Napoli Federico IIArticle . 2021Data sources: FEDOA - IRIS Università degli Studi Napoli Federico IIUniversità degli Studi del Piemonte Orientale: CINECA IRISArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi della Basilicata: CINECA IRISArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Universidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Brunel University London: Brunel University Research Archive (BURA)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 307visibility views 307 download downloads 254 Powered by
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAPadua research Archive (Archivio istituzionale della ricerca - Università di Padova)Article . 2021License: CC BYArchivio della ricerca- Università di Roma La SapienzaArticle . 2021License: CC BY NC NDData sources: Archivio della ricerca- Università di Roma La SapienzaArchivio della Ricerca - Università di PisaArticle . 2021License: CC BYData sources: Archivio della Ricerca - Università di PisaBelarusian State University: Electronic Library BSUArticle . 2021License: CC BYFull-Text: https://elib.bsu.by/handle/123456789/289295Data sources: Bielefeld Academic Search Engine (BASE)Brunel University London: Brunel University Research Archive (BURA)Article . 2021License: CC BYFull-Text: https://bura.brunel.ac.uk/handle/2438/22652Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2021License: CC BYFull-Text: https://escholarship.org/uc/item/3804229hData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10044/1/87583Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2021Full-Text: https://hdl.handle.net/11586/374199Data sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2021Full-Text: https://arxiv.org/abs/2009.01186Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)European Physical Journal C: Particles and FieldsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefCroatian Scientific Bibliography - CROSBIArticle . 2021Data sources: Croatian Scientific Bibliography - CROSBIRecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAEuropean Physical Journal C: Particles and FieldsArticle . 2021Data sources: Croatian Research Information SystemPiri Reis Üniversitesi Kurumsal Akademik Arşiv SistemiArticle . 2021Data sources: Piri Reis Üniversitesi Kurumsal Akademik Arşiv SistemiSpiral - Imperial College Digital RepositoryArticle . 2020License: CC BYData sources: Spiral - Imperial College Digital RepositoryInstitutional Repository Universiteit AntwerpenArticle . 2021Data sources: Institutional Repository Universiteit AntwerpenRepositorio Institucional de la Universidad de OviedoArticle . 2021License: CC BYData sources: Repositorio Institucional de la Universidad de OviedoKaramanoğlu Mehmetbey Üniversitesi Akademik Arşiv SistemiArticle . 2021ELTE Digital Institutional Repository (EDIT)Article . 2021Data sources: ELTE Digital Institutional Repository (EDIT)Sirnak University Institutional RepositoryArticle . 2021Data sources: Sirnak University Institutional RepositorySinop Üniversitesi Akademik Arşiv SistemiArticle . 2025Data sources: Sinop Üniversitesi Akademik Arşiv SistemiElectronic archive of Tomsk Polytechnic UniversityArticle . 2023Data sources: Electronic archive of Tomsk Polytechnic UniversityeScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaGhent University Academic BibliographyArticle . 2021Data sources: Ghent University Academic BibliographyPublikationsserver der RWTH Aachen UniversityPreprint . 2020Data sources: Publikationsserver der RWTH Aachen UniversityPublikationsserver der RWTH Aachen UniversityArticle . 2021Data sources: Publikationsserver der RWTH Aachen UniversityBrunel University Research ArchiveArticle . 2021License: CC BYData sources: Brunel University Research ArchiveÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Archivio Istituzionale della Ricerca - Politecnico di BariArticle . 2021IRIS - Università degli Studi di CataniaArticle . 2021Data sources: IRIS - Università degli Studi di CataniaFlore (Florence Research Repository)Article . 2021Data sources: Flore (Florence Research Repository)FEDOA - IRIS Università degli Studi Napoli Federico IIArticle . 2021Data sources: FEDOA - IRIS Università degli Studi Napoli Federico IIUniversità degli Studi del Piemonte Orientale: CINECA IRISArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi della Basilicata: CINECA IRISArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Universidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Brunel University London: Brunel University Research Archive (BURA)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2021Publisher:Elsevier BV Authors: Xiangyu Zhu; Xuewei Liu;The accurate morphology identification of gas hydrate-bearing sediments (GHBS) has great significance in practical exploitation and subsequent resource evaluation. Previous studies have disclosed two main morphologies for gas hydrate in sediments: pore- and fracture-filling. However, the existing identification methods of gas hydrate’s morphology rarely consider their intrinsic differences in distribution characteristics. In this paper, a new method is proposed to identify the morphology of hydrate according to the scattered distribution of fracture dips for fracture-filling GHBS. Firstly, numerical simulations are performed to study the relationships between the morphology of hydrate and the sonic velocities. Considering the dip variation is within a certain range for fracture-filling hydrate, the theoretical curves show that the resulting mutation degrees between P- and S-wave velocities are inconsistent in fracture-filling GHBS, which is different from pore-filling GHBS. Then the modified estimation method for pointwise Lipschitz exponent α is introduced to capture their differences. The cross plots of Lipschitz exponent for P-wave velocity, α(Vp), and Lipschitz exponent for S-wave velocity, α(Vs), indicate that most of the dots representing pore-filling GHBS are evenly distributed near the line α(Vp)=α(Vs), while the dots representing fracture-filling GHBS are scattered outside the line α(Vp)=α(Vs). Based on these characteristics, a ratio method is put forward to differentiate the two types of hydrate. These hypotheses and methods are verified using the measured P- and S-wave velocities log data at different sites in Leg 204, Ocean Drilling Program (ODP), in the United States. Finally, the results of this new method agree closely with core data.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2025Publisher:Wiley Jianfeng Hao; Han Liu; Weiji Sun; Runzhi Li; Zhanshan Shi; Shengjie Fang; Chunyu Guo;doi: 10.1002/ese3.2094
ABSTRACTThe multi‐field coupling relationship and temperature evolution mechanism of gas‐containing coal in areas affected by geological structures were investigated, focusing specifically on the engineering aspects of a reverse fault in the No. 3 coal seam at the Xinjing Coal Mine. An analysis was conducted to examine the thermal‐fluid‐solid coupling behavior of gas‐containing coal. A thermal‐fluid‐solid coupling model for gas‐containing coal, accounting for the effects of damage, was developed to simulate the incubation process of coal and gas outbursts within the fault zone during the advancement of the working face. The study has indicated that faults not only degrade the mechanical properties of the surrounding coal‐rock mass, but also disrupt the continuity of coal seam stress. Gas tends to accumulate near fault zones, resulting in differences in the gas pressure and content on either side of the fault, thereby substantially increasing the likelihood of coal and gas outbursts. The primary factors influencing temperature variations include deformation energy, energy from gas expansion, thermal convection, thermal conduction, and the thermal effects associated with adsorption and desorption. Among these factors, the endothermic effect associated with adsorption and desorption significantly influences the temperature fluctuations in coal. The results of this study provide a theoretical foundation for exploring the mechanisms underlying coal and gas outbursts, improving the interdisciplinary coupling theory for coal and gas systems and employing temperature metrics to predict such outbursts.
Energy Science &... arrow_drop_down Energy Science & EngineeringArticle . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energy Science &... arrow_drop_down Energy Science & EngineeringArticle . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2019Publisher:Elsevier BV Authors: Lehtola, Timo; Zahedi, Ahmad;Abstract Solar energy and wind power supply are renewable, decentralised and intermittent electrical power supply methods that require energy storage. Integrating this renewable energy supply to the electrical power grid may reduce the demand for centralised production, making renewable energy systems more easily available to remote regions. Control systems optimise solar energy and wind power sources to supply renewable energy to the power grid. Vehicle to Grid (V2G) operations support intermittent production as battery storage. In V2G operations, electric power flows from the power grid to the battery storage and from the battery storage back to the power grid. The primary goal of this study is to improve the existing renewable energy supply to provide more reliable units in the power grid. We consider the V2G concept as an extension of the smart charging system allowing electric vehicles to be able to inject battery energy into the power grid, acting as distributed generators or energy storage systems. This review shows how parallel V2G storage and battery storage supports the power grid. Further, the review indicates that decentralised V2G battery storages will be included in future renewable energy systems.
Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.138 citations 138 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: Yi Chi; Ning Hu; Dong Lu; Yang Yang;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.83 citations 83 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
