- home
- Advanced Search
- Energy Research
- 2021-2025
- 2. Zero hunger
- CN
- GB
- IT
- AU
- Energy Research
- 2021-2025
- 2. Zero hunger
- CN
- GB
- IT
- AU
Research data keyboard_double_arrow_right Dataset 2022Embargo end date: 30 Jan 2022Publisher:Dryad Authors: Barreaux, Antoine; Higginson, Andrew; Bonsall, Michael; English, Sinead;Here, we investigate how stochasticity and age-dependence in energy dynamics influence maternal allocation in iteroparous females. We develop a state-dependent model to calculate the optimal maternal allocation strategy with respect to maternal age and energy reserves, focusing on allocation in a single offspring at a time. We introduce stochasticity in energetic costs– in terms of the amount of energy required to forage successfully and individual differences in metabolism – and in feeding success. We systematically assess how allocation is influenced by age-dependence in energetic costs, feeding success, energy intake per successful feeding attempt, and environmentally-driven mortality. First, using stochastic dynamic programming, we calculate the optimal amount of reserves M that mothers allocate to each offspring depending on their own reserves R and age A. The optimal life history strategy is then the set of allocation decisions M(R, A) over the whole lifespan which maximizes the total reproductive success of distant descendants. Second, we simulated the life histories of 1000 mothers following the optimisation strategy and the reserves at the start of adulthood R1, the distribution of which was determined, the distribution of which was determined using an iterative procedure as described . For each individual, we calculated maternal allocation Mt, maternal reserves Rt, and relative allocation Mt⁄Rt at each time period t. The relative allocation helps us to understand how resources are partitioned between mother and offspring. Third, we consider how the optimal strategy varies when there is age-dependence in resource acquisition, energetic costs and survival. Specifically, we include varying scenarios with an age-dependent increase or a decrease with age in energetic costs (c_t), feeding success (q_t), energy intake per successful feeding attempt (y_t), and environmentally-driven extrinsic mortality rate (d_t) (Table 2). We consider the age-dependence of parameters one at a time or in pairs, altering the slope, intercept, or asymptote of the age-dependence (linear or asymptotic function). Our aim is to identify whether the observed reproductive senescence can arise from optimal maternal allocation. As such, we do not impose a decline in selection in later life as all offspring are equally valuable at all ages (for a given maternal allocation), and there are no mutations. For each scenario, we run the backward iteration process with these age-dependent functions, obtain the allocation strategy, and simulate the life history of 1000 individuals based on the novel strategy. We then fit quadratic and linear models to the reproduction of these 1000 individuals using the lme function, nlme package in R. For these models, the response variable is the maternal allocation Mt and explanatory variables are the time period t and t2 (for the quadratic fit only), with individual identity as a random term. We use likelihood ratio tests to compare linear and quadratic models using the anova function (package nlme) with the maximum-likelihood method. If the comparison is significant (p-value <0.05), we considered the quadratic model to have a better fit, otherwise the linear model is considered more parsimonious. We were particularly interested in identifying scenarios where the fit was quadratic with a negative quadratic term. For each scenario, the pseudo R2 conditional value (proportion of variance explained by the fixed and random terms, accounting for individual identity) is calculated to assess the goodness-of-fit of the lme model, on a scale from 0 to 1, using the “r.squared” function, package gabtool. All calculations and coding are done in R. Iteroparous parents face a trade-off between allocating current resources to reproduction versus maximizing survival to produce further offspring. Optimal allocation varies across age, and follows a hump-shaped pattern across diverse taxa, including mammals, birds and invertebrates. This non-linear allocation pattern lacks a general theoretical explanation, potentially because most studies focus on offspring number rather than quality and do not incorporate uncertainty or age-dependence in energy intake or costs. Here, we develop a life history model of maternal allocation in iteroparous animals. We identify the optimal allocation strategy in response to stochasticity when energetic costs, feeding success, energy intake, and environmentally-driven mortality risk are age-dependent. As a case study, we use tsetse, a viviparous insect that produces one offspring per reproductive attempt and relies on an uncertain food supply of vertebrate blood. Diverse scenarios generate a hump-shaped allocation: when energetic costs and energy intake increase with age; and also when energy intake decreases, and energetic costs increase or decrease. Feeding success and mortality risk have little influence on age-dependence in allocation. We conclude that ubiquitous evidence for age-dependence in these influential traits can explain the prevalence of non-linear maternal allocation across diverse taxonomic groups.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.v41ns1rxr&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 47visibility views 47 download downloads 60 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.v41ns1rxr&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Science Data Bank Authors: Shuai ZHANG;Climate trends during maize growing period and their impacts on spring maize yield in North China was investigated. This dataset contains: 1) information of stations in cultivation region for spring maize in North China; 2) Trend in temperature and its effect on yield in cultivation region for spring maize in North China; 3) Trend in radiation and its effect on yield in cultivation region for spring maize in North China; 4) Trend in precipitation and its effect on yield in cultivation region for spring maize in North China. Climate trends during maize growing period and their impacts on spring maize yield in North China was investigated. This dataset contains: 1) information of stations in cultivation region for spring maize in North China; 2) Trend in temperature and its effect on yield in cultivation region for spring maize in North China; 3) Trend in radiation and its effect on yield in cultivation region for spring maize in North China; 4) Trend in precipitation and its effect on yield in cultivation region for spring maize in North China.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.06747&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.06747&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 07 Dec 2022Publisher:Dryad Shao, Junjiong; Zhou, Xuhui; van Groenigen, Kees; Zhou, Guiyao; Zhou, Huimin; Zhou, Lingyan; Lu, Meng; Xia, Jianyang; Jiang, Lin; Hungate, Bruce; Luo, Yiqi; He, Fangliang; Thakur, Madhav;Aim: Climate warming and biodiversity loss both alter plant productivity, yet we lack an understanding of how biodiversity regulates the responses of ecosystems to warming. In this study, we examine how plant diversity regulates the responses of grassland productivity to experimental warming using meta-analytic techniques. Location: Global Major taxa studied: Grassland ecosystems Methods: Our meta-analysis is based on warming responses of 40 different plant communities obtained from 20 independent studies on grasslands across five continents. Results: Our results show that plant diversity and its responses to warming were the most important factors regulating the warming effects on plant productivity, among all the factors considered (plant diversity, climate and experimental settings). Specifically, warming increased plant productivity when plant diversity (indicated by effective number of species) in grasslands was lesser than 10, whereas warming decreased plant productivity when plant diversity was greater than 10. Moreover, the structural equation modelling showed that the magnitude of warming enhanced plant productivity by increasing the performance of dominant plant species in grasslands of diversity lesser than 10. The negative effects of warming on productivity in grasslands with plant diversity greater than 10 were partly explained by diversity-induced decline in plant dominance. Main Conclusions: Our findings suggest that the positive or negative effect of warming on grassland productivity depends on how biodiverse a grassland is. This could mainly owe to differences in how warming may affect plant dominance and subsequent shifts in interspecific interactions in grasslands of different plant diversity levels.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.gtht76hms&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 14visibility views 14 download downloads 1 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.gtht76hms&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Science Data Bank Authors: Shuai ZHANG;Changes in late rice phenology during 1981–2009 were investigated using observed phenological data from agro-meteorological stations across China. This dataset contains 1) details of late rice agrometeorological experiment stations; 2) mean date of late rice phenology date and trend in phenology date during the period of 1981–2009; 3) trends in length of late rice growing period during the period of 1981-2009. Changes in late rice phenology during 1981–2009 were investigated using observed phenological data from agro-meteorological stations across China. This dataset contains 1) details of late rice agrometeorological experiment stations; 2) mean date of late rice phenology date and trend in phenology date during the period of 1981–2009; 3) trends in length of late rice growing period during the period of 1981-2009.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.04998&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.04998&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 26 May 2022Publisher:Dryad Zhu, Yankun; Shen, Haihua; Akinyemi, Damilare Stephen; Zhang, Pujin; Feng, Yinping; Zhao, Mengying; Kang, Jie; Zhao, Xia; Hu, Huifeng; Fang, Jingyun;Widespread shrub encroachment is profoundly impacting the structures and functions of global drylands, and precipitation change is assumed to be one of the most critical factors affecting this phenomenon. However, there is little evidence to show how precipitation changes will affect the process. In this study, we conducted a 6-year precipitation manipulation experiment (-30%, ambient, +30%, and +50%) to investigate the effects of precipitation changes on the growth of shrubs and herbaceous plants in a shrub-encroached grassland in Inner Mongolia. We found that the increasing precipitation significantly increased the mean height, coverage, and aboveground biomass of herbaceous species, while the growth of shrub species did not exhibit a significant response to precipitation changes. With increasing precipitation, the relative coverage of shrubs decreased, while that of herbs increased. The native dominant herbaceous plant (Leymus chinensis) with more sensitive maximum photosynthetic rate to the precipitation change, showed higher photosynthetic nitrogen use efficiency and water use efficiency than those of the encroached shrub species (Caragana microphylla) at high soil moisture contents, reflecting that the ecophysiological characteristics of L. chinensis might provide it a competitive advantage under increased precipitation. Our findings suggest that increasing precipitation may slow down shrub encroachment by facilitating herbaceous growth in Mongolian grasslands, and consequently affect the forage value and carbon budget in these ecosystems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.9ghx3ffkn&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 17visibility views 17 download downloads 4 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.9ghx3ffkn&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Giovanna Battipaglia; Francesco Niccoli; Jerzy Piotr Kabala; Rossana Marzaioli; Teresa Di Santo; Sandro Strumia; Simona Castaldi; Milena Petriccione; Lucio Zaccariello; Daniele Battaglia; Maria Laura Mastellone; Elio Coppola; Flora Angela Rutigliano;doi: 10.3390/f14040658
Hydrochar, carbon-rich material produced during the thermochemical processing of biomass, is receiving increased attention due to its potential value as soil amendment. It can increase agroforestry systems’ productivity through direct and indirect effects on growth and soil quality. Hydrochar may also directly help mitigate climate change by sequestering stable carbon compounds in the soil and perhaps indirectly through increased C uptake by trees. In this research, we aim to evaluate how the application of hydrochar produced by two feedstock types, Cynara cardunculus L. (Hc) residuals and sewage sludge (Hs), and in two different doses (3 and 6 kg m−2) could improve the growth and water use efficiency of Populus alba L., a fast-growing tree species largely used in agroforestry as bioenergy crops and in C sequestration. We considered five plants per treatment, and we measured apical growth, secondary growth, leaf area and intrinsic water use efficiency in each plant for the whole growing season from February to October 2022. Our results highlighted that hydrochar applications stimulate the growth and water use efficiency of plants and that the double dose (6 kg m−2) of both hydrochars, and particularly Hc, had positive effects on plant performance, especially during extremely hot periods. Indeed, the year 2022 was characterized by a heat wave during the summer period, and this condition allowed us to evaluate how plants, growing in soils amended with hydrochar, could perform under climate extremes. Our findings showed that the control plants experienced severe damage in terms of dried stems and dried leaves during summer 2022, while hydrochar applications reduced these effects.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/f14040658&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/f14040658&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Funded by:MIURMIURCarla Zarbà; Gaetano Chinnici; Giovanni La Via; Salvatore Bracco; Biagio Pecorino; Mario D’Amico;doi: 10.3390/su13158350
In the transition from linear production systems, unsustainable from the point of view of resources, to a model that finds strength in environmental, social and economic sustainability, the circular economy paradigm is the foundation that facilitates the planetary agro-ecological transition. The European Union has taken a number of steps (including the Circular Economy Package of Directives) shaping circularity as a wide-ranging driver measure involving many sectors. The paper intends to provide a regulatory framework on the current general situation regarding circularity in European Union, in order to extrapolate and give evidence to the aspects that intersect the agri-food sector. This is not only because they are poorly addressed in the literature, but also because there is a lack of regulatory instruments on the circular economy specifically addressing this area of interest. For this purpose, the analysis focuses on waste and residue/scrap management issues, recognized by law as by-products and end-of-waste status, as they are covered by circular economy legislation and as they can be applied to the agri-food sector. The latter allow the implementation of circularity strategies in the agri-food sector and, given the numerousness of production chains and the peculiarities of each of them, various regeneration and/or reuse processes of specific resources may be depicted. The intent is to provide useful knowledge on how to implement sustainable waste management, also proposing a concrete case on a by-product of olive oil processing, through which it is possible to highlight how the correct application of regulations favors the adoption of circular economic and management models in the firms involved, as well as informing the relevant economic operators on the possible profiles of legal liability that may arise from insufficient knowledge. Furthermore, this paper delves into the European Green Deal’s Strategy as it enriches the circular economy paradigm with new facets. NextGenerationEU and the National Recovery and Resilience Plan financially support this strategy in the aftermath of the socioeconomic crisis from COVID-19 in the EU Member States. This is in order to achieve the objective of achieving the agro-ecological transition.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13158350&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 15visibility views 15 download downloads 29 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13158350&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Science Data Bank Yucui Zhang; Huimin Lei; Wenguang Zhao; Yanjun Shen; Dengpan Xia;Comparison of the water budget for the typical cropland and pear orchard ecosystems in the North China Plain Comparison of the water budget for the typical cropland and pear orchard ecosystems in the North China Plain
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.06165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.06165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:NERC EDS Environmental Information Data Centre Greenfield, L.M.; Graf, M.; Rengaraj, S.; Bargiela, R.; Williams, G.B.; Golyshin, P.N.; Chadwick, D.R.; Jones, D.L.;Data was either measured in situ in the field (N2O flux, soil moisture, rainfall and air temperature) or samples were taken, processed, and analysed in the laboratory (soil pH, electrical conductivity (EC), ammonium, nitrate, microbial community composition and crop yield). N2O flux data was measured on a mobile gas chromatograph (GC) system and integrated to obtain peak areas on Peak490Win10Canabis programme. The times, peak areas and sample ID were then exported into a .CHR file and imported into Flux.NET.3.3 which calculated N2O flux as an output in Excel which was exported as .csv file for deposit in EIDC. N2O flux was used to calculate cumulative N2O flux using trapezoidal integration in Excel and saved in a separate .csv file for deposit in EIDC. Soil moisture was measured on Accilmas with data stored as a .csv on a DataSnap that was downloaded and sorted by treatment and saved as a .csv file. Rainfall and air temperature were downloaded from the weather station as .csv file. Soil pH and EC were recorded manually into a notebook and input into an Excel spreadsheet and exported as a .csv file. Soil ammonium and nitrate content was measured using the microplate method using a programme called Gen5. Date was exported into an Excel spreadsheet and absorbance units used to calculate ammonium/nitrate content in milligrams per kilogram using a calibration curve from a set of standards in an Excel spreadsheet. This was exported as a .csv file. Crop growth data was recorded in the field in a notebook and input into an Excel spreadsheet and exported as a .csv file. Crop yield was recorded in a notebook and input into an Excel spreadsheet and exported as a .csv file. Microbial community composition was measured using 16S gene sequencing on an Illumina MiSeq. This generated raw sequencing reads which were processed using Python and filtered using QIIME v1.3.1. creating asv.count.table.csv of counts of each Amplicon Sequence Variants (ASVs) per sample and taxa.table.csv of the taxonomic lineage for each ASVs. This dataset contains field data on nitrous oxide (N2O) emissions, microbial community composition, crop yield and growth and soil biochemical properties. The field trial consisted of three different treatments of control, conventional microplastic addition and biodegradable microplastic addition where winter barley was grown. The data presented are from field and laboratory measurements. Data was collected by the data authors. The field trial was carried out from September 2020 to July 2021 at Henfaes Field Centre, UK. Research was funded through NERC Grant NE/V005871/1. Do agricultural microplastics undermine food security and sustainable development in developing countries?
https://dx.doi.org/1... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5285/a5410834-1c38-455b-a850-3fb3434d4bb0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5285/a5410834-1c38-455b-a850-3fb3434d4bb0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 18 Sep 2023Publisher:bonndata Authors: awit Diriba, Dawit;doi: 10.60507/fk2/bonuq0
Household Surveys performed in four villages selected from Oromia, Amhara and Southern Nations, Nationalities, and Peoples’ Region (SNNPR) following from the ‘Ethiopian Rural Household Survey’ (ERHS) conducted in 2004.It contains detailed data on household consumption and expenditures, assets, income, agricultural activities, land allocation, demographic characteristics, and other variables. From September 2011 to January 2012 another survey of 221 households was conducted in three major regions of central and southern Ethiopia. At the time of this latest survey effort the most recent ERHS survey data available was from 2004. The selection of respondents, determination of sample size, and apportionment of the sample were based on a proportional sampling technique.In addition to addressing important questions from the ERHS survey data, the field survey was designed to generate detailed information on household biomass energy production and consumption practices; as well as farming activities; labour and land allocation; economic and demographic characteristics; and expenditures on food, non-food items, and energy. The 2011 survey effort collected detailed household biomass energy use data. The measurement of household biomass energy use was obtained in traditional units and later converted into kilograms. The conversion factors for each of the biomass were collected from the closest urban centre of each of the study areas. Information obtained on household biomass energy use was collected for a time period of one week before the survey was conducted. It was then aggregated into annual figures, although household biomass energy use may vary seasonally. Quality/Lineage: The data was collected by qualified enumerators who had participated in previous ERHS survey. In addition to myself I recruited assistant supervisor to check the accuracy and quality of data on daily basis and followup interview process closely. Before the survey commenced a pilot survey was conducted in each of the study areas to identify the different types of energy households are using and other critical variables of interest for the research. This information was used to revise and improve questionnaire. Moreover, a one day in-depth training was given to enumerators and assistant supervisor to enrich their deeper understanding of each the question in the survey and to further improve questionnaire from their earlier experiences in those villages. Purpose: Over 90% of Ethiopian rural population rely on biomass energy. However, biomass energy utilization is linked to household livelihood as in rural households produce and consume biomass energy simultaneously with other (on and off-farm)activities. With the rampant rate of deforestation that Ethiopia is facing it is important to investigate the effect of deforestation or fuelwood scarcity which is assumed affect household welfare through influence on wage and price. In light of this, the survey effort collected information on household use of biomass energy sources, expenditure and labour allocation choices and amount of labour time used for each activities.This helped me to investigate the effect of fuelwood scarcity on household welfare from three aspects: labour allocation decision, energy expenditure and fuel choice and biomass energy consumption behavior to better understand the related linkage of household production and utilization of biomass with livelihoods or food security. This dataset was first published on the institutional Repository "Zentrum für Entwicklungsforschung: ZEF Data Portal" with ID={c08e08aa-3055-4651-801b-0383610c1987}.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60507/fk2/bonuq0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60507/fk2/bonuq0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2022Embargo end date: 30 Jan 2022Publisher:Dryad Authors: Barreaux, Antoine; Higginson, Andrew; Bonsall, Michael; English, Sinead;Here, we investigate how stochasticity and age-dependence in energy dynamics influence maternal allocation in iteroparous females. We develop a state-dependent model to calculate the optimal maternal allocation strategy with respect to maternal age and energy reserves, focusing on allocation in a single offspring at a time. We introduce stochasticity in energetic costs– in terms of the amount of energy required to forage successfully and individual differences in metabolism – and in feeding success. We systematically assess how allocation is influenced by age-dependence in energetic costs, feeding success, energy intake per successful feeding attempt, and environmentally-driven mortality. First, using stochastic dynamic programming, we calculate the optimal amount of reserves M that mothers allocate to each offspring depending on their own reserves R and age A. The optimal life history strategy is then the set of allocation decisions M(R, A) over the whole lifespan which maximizes the total reproductive success of distant descendants. Second, we simulated the life histories of 1000 mothers following the optimisation strategy and the reserves at the start of adulthood R1, the distribution of which was determined, the distribution of which was determined using an iterative procedure as described . For each individual, we calculated maternal allocation Mt, maternal reserves Rt, and relative allocation Mt⁄Rt at each time period t. The relative allocation helps us to understand how resources are partitioned between mother and offspring. Third, we consider how the optimal strategy varies when there is age-dependence in resource acquisition, energetic costs and survival. Specifically, we include varying scenarios with an age-dependent increase or a decrease with age in energetic costs (c_t), feeding success (q_t), energy intake per successful feeding attempt (y_t), and environmentally-driven extrinsic mortality rate (d_t) (Table 2). We consider the age-dependence of parameters one at a time or in pairs, altering the slope, intercept, or asymptote of the age-dependence (linear or asymptotic function). Our aim is to identify whether the observed reproductive senescence can arise from optimal maternal allocation. As such, we do not impose a decline in selection in later life as all offspring are equally valuable at all ages (for a given maternal allocation), and there are no mutations. For each scenario, we run the backward iteration process with these age-dependent functions, obtain the allocation strategy, and simulate the life history of 1000 individuals based on the novel strategy. We then fit quadratic and linear models to the reproduction of these 1000 individuals using the lme function, nlme package in R. For these models, the response variable is the maternal allocation Mt and explanatory variables are the time period t and t2 (for the quadratic fit only), with individual identity as a random term. We use likelihood ratio tests to compare linear and quadratic models using the anova function (package nlme) with the maximum-likelihood method. If the comparison is significant (p-value <0.05), we considered the quadratic model to have a better fit, otherwise the linear model is considered more parsimonious. We were particularly interested in identifying scenarios where the fit was quadratic with a negative quadratic term. For each scenario, the pseudo R2 conditional value (proportion of variance explained by the fixed and random terms, accounting for individual identity) is calculated to assess the goodness-of-fit of the lme model, on a scale from 0 to 1, using the “r.squared” function, package gabtool. All calculations and coding are done in R. Iteroparous parents face a trade-off between allocating current resources to reproduction versus maximizing survival to produce further offspring. Optimal allocation varies across age, and follows a hump-shaped pattern across diverse taxa, including mammals, birds and invertebrates. This non-linear allocation pattern lacks a general theoretical explanation, potentially because most studies focus on offspring number rather than quality and do not incorporate uncertainty or age-dependence in energy intake or costs. Here, we develop a life history model of maternal allocation in iteroparous animals. We identify the optimal allocation strategy in response to stochasticity when energetic costs, feeding success, energy intake, and environmentally-driven mortality risk are age-dependent. As a case study, we use tsetse, a viviparous insect that produces one offspring per reproductive attempt and relies on an uncertain food supply of vertebrate blood. Diverse scenarios generate a hump-shaped allocation: when energetic costs and energy intake increase with age; and also when energy intake decreases, and energetic costs increase or decrease. Feeding success and mortality risk have little influence on age-dependence in allocation. We conclude that ubiquitous evidence for age-dependence in these influential traits can explain the prevalence of non-linear maternal allocation across diverse taxonomic groups.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.v41ns1rxr&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 47visibility views 47 download downloads 60 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.v41ns1rxr&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Science Data Bank Authors: Shuai ZHANG;Climate trends during maize growing period and their impacts on spring maize yield in North China was investigated. This dataset contains: 1) information of stations in cultivation region for spring maize in North China; 2) Trend in temperature and its effect on yield in cultivation region for spring maize in North China; 3) Trend in radiation and its effect on yield in cultivation region for spring maize in North China; 4) Trend in precipitation and its effect on yield in cultivation region for spring maize in North China. Climate trends during maize growing period and their impacts on spring maize yield in North China was investigated. This dataset contains: 1) information of stations in cultivation region for spring maize in North China; 2) Trend in temperature and its effect on yield in cultivation region for spring maize in North China; 3) Trend in radiation and its effect on yield in cultivation region for spring maize in North China; 4) Trend in precipitation and its effect on yield in cultivation region for spring maize in North China.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.06747&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.06747&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 07 Dec 2022Publisher:Dryad Shao, Junjiong; Zhou, Xuhui; van Groenigen, Kees; Zhou, Guiyao; Zhou, Huimin; Zhou, Lingyan; Lu, Meng; Xia, Jianyang; Jiang, Lin; Hungate, Bruce; Luo, Yiqi; He, Fangliang; Thakur, Madhav;Aim: Climate warming and biodiversity loss both alter plant productivity, yet we lack an understanding of how biodiversity regulates the responses of ecosystems to warming. In this study, we examine how plant diversity regulates the responses of grassland productivity to experimental warming using meta-analytic techniques. Location: Global Major taxa studied: Grassland ecosystems Methods: Our meta-analysis is based on warming responses of 40 different plant communities obtained from 20 independent studies on grasslands across five continents. Results: Our results show that plant diversity and its responses to warming were the most important factors regulating the warming effects on plant productivity, among all the factors considered (plant diversity, climate and experimental settings). Specifically, warming increased plant productivity when plant diversity (indicated by effective number of species) in grasslands was lesser than 10, whereas warming decreased plant productivity when plant diversity was greater than 10. Moreover, the structural equation modelling showed that the magnitude of warming enhanced plant productivity by increasing the performance of dominant plant species in grasslands of diversity lesser than 10. The negative effects of warming on productivity in grasslands with plant diversity greater than 10 were partly explained by diversity-induced decline in plant dominance. Main Conclusions: Our findings suggest that the positive or negative effect of warming on grassland productivity depends on how biodiverse a grassland is. This could mainly owe to differences in how warming may affect plant dominance and subsequent shifts in interspecific interactions in grasslands of different plant diversity levels.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.gtht76hms&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 14visibility views 14 download downloads 1 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.gtht76hms&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Science Data Bank Authors: Shuai ZHANG;Changes in late rice phenology during 1981–2009 were investigated using observed phenological data from agro-meteorological stations across China. This dataset contains 1) details of late rice agrometeorological experiment stations; 2) mean date of late rice phenology date and trend in phenology date during the period of 1981–2009; 3) trends in length of late rice growing period during the period of 1981-2009. Changes in late rice phenology during 1981–2009 were investigated using observed phenological data from agro-meteorological stations across China. This dataset contains 1) details of late rice agrometeorological experiment stations; 2) mean date of late rice phenology date and trend in phenology date during the period of 1981–2009; 3) trends in length of late rice growing period during the period of 1981-2009.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.04998&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.04998&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 26 May 2022Publisher:Dryad Zhu, Yankun; Shen, Haihua; Akinyemi, Damilare Stephen; Zhang, Pujin; Feng, Yinping; Zhao, Mengying; Kang, Jie; Zhao, Xia; Hu, Huifeng; Fang, Jingyun;Widespread shrub encroachment is profoundly impacting the structures and functions of global drylands, and precipitation change is assumed to be one of the most critical factors affecting this phenomenon. However, there is little evidence to show how precipitation changes will affect the process. In this study, we conducted a 6-year precipitation manipulation experiment (-30%, ambient, +30%, and +50%) to investigate the effects of precipitation changes on the growth of shrubs and herbaceous plants in a shrub-encroached grassland in Inner Mongolia. We found that the increasing precipitation significantly increased the mean height, coverage, and aboveground biomass of herbaceous species, while the growth of shrub species did not exhibit a significant response to precipitation changes. With increasing precipitation, the relative coverage of shrubs decreased, while that of herbs increased. The native dominant herbaceous plant (Leymus chinensis) with more sensitive maximum photosynthetic rate to the precipitation change, showed higher photosynthetic nitrogen use efficiency and water use efficiency than those of the encroached shrub species (Caragana microphylla) at high soil moisture contents, reflecting that the ecophysiological characteristics of L. chinensis might provide it a competitive advantage under increased precipitation. Our findings suggest that increasing precipitation may slow down shrub encroachment by facilitating herbaceous growth in Mongolian grasslands, and consequently affect the forage value and carbon budget in these ecosystems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.9ghx3ffkn&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 17visibility views 17 download downloads 4 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.9ghx3ffkn&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Giovanna Battipaglia; Francesco Niccoli; Jerzy Piotr Kabala; Rossana Marzaioli; Teresa Di Santo; Sandro Strumia; Simona Castaldi; Milena Petriccione; Lucio Zaccariello; Daniele Battaglia; Maria Laura Mastellone; Elio Coppola; Flora Angela Rutigliano;doi: 10.3390/f14040658
Hydrochar, carbon-rich material produced during the thermochemical processing of biomass, is receiving increased attention due to its potential value as soil amendment. It can increase agroforestry systems’ productivity through direct and indirect effects on growth and soil quality. Hydrochar may also directly help mitigate climate change by sequestering stable carbon compounds in the soil and perhaps indirectly through increased C uptake by trees. In this research, we aim to evaluate how the application of hydrochar produced by two feedstock types, Cynara cardunculus L. (Hc) residuals and sewage sludge (Hs), and in two different doses (3 and 6 kg m−2) could improve the growth and water use efficiency of Populus alba L., a fast-growing tree species largely used in agroforestry as bioenergy crops and in C sequestration. We considered five plants per treatment, and we measured apical growth, secondary growth, leaf area and intrinsic water use efficiency in each plant for the whole growing season from February to October 2022. Our results highlighted that hydrochar applications stimulate the growth and water use efficiency of plants and that the double dose (6 kg m−2) of both hydrochars, and particularly Hc, had positive effects on plant performance, especially during extremely hot periods. Indeed, the year 2022 was characterized by a heat wave during the summer period, and this condition allowed us to evaluate how plants, growing in soils amended with hydrochar, could perform under climate extremes. Our findings showed that the control plants experienced severe damage in terms of dried stems and dried leaves during summer 2022, while hydrochar applications reduced these effects.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/f14040658&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/f14040658&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Funded by:MIURMIURCarla Zarbà; Gaetano Chinnici; Giovanni La Via; Salvatore Bracco; Biagio Pecorino; Mario D’Amico;doi: 10.3390/su13158350
In the transition from linear production systems, unsustainable from the point of view of resources, to a model that finds strength in environmental, social and economic sustainability, the circular economy paradigm is the foundation that facilitates the planetary agro-ecological transition. The European Union has taken a number of steps (including the Circular Economy Package of Directives) shaping circularity as a wide-ranging driver measure involving many sectors. The paper intends to provide a regulatory framework on the current general situation regarding circularity in European Union, in order to extrapolate and give evidence to the aspects that intersect the agri-food sector. This is not only because they are poorly addressed in the literature, but also because there is a lack of regulatory instruments on the circular economy specifically addressing this area of interest. For this purpose, the analysis focuses on waste and residue/scrap management issues, recognized by law as by-products and end-of-waste status, as they are covered by circular economy legislation and as they can be applied to the agri-food sector. The latter allow the implementation of circularity strategies in the agri-food sector and, given the numerousness of production chains and the peculiarities of each of them, various regeneration and/or reuse processes of specific resources may be depicted. The intent is to provide useful knowledge on how to implement sustainable waste management, also proposing a concrete case on a by-product of olive oil processing, through which it is possible to highlight how the correct application of regulations favors the adoption of circular economic and management models in the firms involved, as well as informing the relevant economic operators on the possible profiles of legal liability that may arise from insufficient knowledge. Furthermore, this paper delves into the European Green Deal’s Strategy as it enriches the circular economy paradigm with new facets. NextGenerationEU and the National Recovery and Resilience Plan financially support this strategy in the aftermath of the socioeconomic crisis from COVID-19 in the EU Member States. This is in order to achieve the objective of achieving the agro-ecological transition.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13158350&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 15visibility views 15 download downloads 29 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13158350&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Science Data Bank Yucui Zhang; Huimin Lei; Wenguang Zhao; Yanjun Shen; Dengpan Xia;Comparison of the water budget for the typical cropland and pear orchard ecosystems in the North China Plain Comparison of the water budget for the typical cropland and pear orchard ecosystems in the North China Plain
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.06165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.06165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:NERC EDS Environmental Information Data Centre Greenfield, L.M.; Graf, M.; Rengaraj, S.; Bargiela, R.; Williams, G.B.; Golyshin, P.N.; Chadwick, D.R.; Jones, D.L.;Data was either measured in situ in the field (N2O flux, soil moisture, rainfall and air temperature) or samples were taken, processed, and analysed in the laboratory (soil pH, electrical conductivity (EC), ammonium, nitrate, microbial community composition and crop yield). N2O flux data was measured on a mobile gas chromatograph (GC) system and integrated to obtain peak areas on Peak490Win10Canabis programme. The times, peak areas and sample ID were then exported into a .CHR file and imported into Flux.NET.3.3 which calculated N2O flux as an output in Excel which was exported as .csv file for deposit in EIDC. N2O flux was used to calculate cumulative N2O flux using trapezoidal integration in Excel and saved in a separate .csv file for deposit in EIDC. Soil moisture was measured on Accilmas with data stored as a .csv on a DataSnap that was downloaded and sorted by treatment and saved as a .csv file. Rainfall and air temperature were downloaded from the weather station as .csv file. Soil pH and EC were recorded manually into a notebook and input into an Excel spreadsheet and exported as a .csv file. Soil ammonium and nitrate content was measured using the microplate method using a programme called Gen5. Date was exported into an Excel spreadsheet and absorbance units used to calculate ammonium/nitrate content in milligrams per kilogram using a calibration curve from a set of standards in an Excel spreadsheet. This was exported as a .csv file. Crop growth data was recorded in the field in a notebook and input into an Excel spreadsheet and exported as a .csv file. Crop yield was recorded in a notebook and input into an Excel spreadsheet and exported as a .csv file. Microbial community composition was measured using 16S gene sequencing on an Illumina MiSeq. This generated raw sequencing reads which were processed using Python and filtered using QIIME v1.3.1. creating asv.count.table.csv of counts of each Amplicon Sequence Variants (ASVs) per sample and taxa.table.csv of the taxonomic lineage for each ASVs. This dataset contains field data on nitrous oxide (N2O) emissions, microbial community composition, crop yield and growth and soil biochemical properties. The field trial consisted of three different treatments of control, conventional microplastic addition and biodegradable microplastic addition where winter barley was grown. The data presented are from field and laboratory measurements. Data was collected by the data authors. The field trial was carried out from September 2020 to July 2021 at Henfaes Field Centre, UK. Research was funded through NERC Grant NE/V005871/1. Do agricultural microplastics undermine food security and sustainable development in developing countries?
https://dx.doi.org/1... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5285/a5410834-1c38-455b-a850-3fb3434d4bb0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5285/a5410834-1c38-455b-a850-3fb3434d4bb0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 18 Sep 2023Publisher:bonndata Authors: awit Diriba, Dawit;doi: 10.60507/fk2/bonuq0
Household Surveys performed in four villages selected from Oromia, Amhara and Southern Nations, Nationalities, and Peoples’ Region (SNNPR) following from the ‘Ethiopian Rural Household Survey’ (ERHS) conducted in 2004.It contains detailed data on household consumption and expenditures, assets, income, agricultural activities, land allocation, demographic characteristics, and other variables. From September 2011 to January 2012 another survey of 221 households was conducted in three major regions of central and southern Ethiopia. At the time of this latest survey effort the most recent ERHS survey data available was from 2004. The selection of respondents, determination of sample size, and apportionment of the sample were based on a proportional sampling technique.In addition to addressing important questions from the ERHS survey data, the field survey was designed to generate detailed information on household biomass energy production and consumption practices; as well as farming activities; labour and land allocation; economic and demographic characteristics; and expenditures on food, non-food items, and energy. The 2011 survey effort collected detailed household biomass energy use data. The measurement of household biomass energy use was obtained in traditional units and later converted into kilograms. The conversion factors for each of the biomass were collected from the closest urban centre of each of the study areas. Information obtained on household biomass energy use was collected for a time period of one week before the survey was conducted. It was then aggregated into annual figures, although household biomass energy use may vary seasonally. Quality/Lineage: The data was collected by qualified enumerators who had participated in previous ERHS survey. In addition to myself I recruited assistant supervisor to check the accuracy and quality of data on daily basis and followup interview process closely. Before the survey commenced a pilot survey was conducted in each of the study areas to identify the different types of energy households are using and other critical variables of interest for the research. This information was used to revise and improve questionnaire. Moreover, a one day in-depth training was given to enumerators and assistant supervisor to enrich their deeper understanding of each the question in the survey and to further improve questionnaire from their earlier experiences in those villages. Purpose: Over 90% of Ethiopian rural population rely on biomass energy. However, biomass energy utilization is linked to household livelihood as in rural households produce and consume biomass energy simultaneously with other (on and off-farm)activities. With the rampant rate of deforestation that Ethiopia is facing it is important to investigate the effect of deforestation or fuelwood scarcity which is assumed affect household welfare through influence on wage and price. In light of this, the survey effort collected information on household use of biomass energy sources, expenditure and labour allocation choices and amount of labour time used for each activities.This helped me to investigate the effect of fuelwood scarcity on household welfare from three aspects: labour allocation decision, energy expenditure and fuel choice and biomass energy consumption behavior to better understand the related linkage of household production and utilization of biomass with livelihoods or food security. This dataset was first published on the institutional Repository "Zentrum für Entwicklungsforschung: ZEF Data Portal" with ID={c08e08aa-3055-4651-801b-0383610c1987}.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60507/fk2/bonuq0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60507/fk2/bonuq0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu