Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
  • Access
    Clear
  • Type
  • Year range
  • Field of Science
  • Funder
  • SDG [Beta]
    Clear
  • Country
    Clear
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
46,425 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Closed Access
  • Embargo
  • 13. Climate action
  • 12. Responsible consumption
  • 6. Clean water
  • CN
  • AU
  • JP

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Yasir Habib; orcid Shujahat Haider Hashmi;
    Shujahat Haider Hashmi
    ORCID
    Harvested from ORCID Public Data File

    Shujahat Haider Hashmi in OpenAIRE
    orcid Adeel Riaz;
    Adeel Riaz
    ORCID
    Harvested from ORCID Public Data File

    Adeel Riaz in OpenAIRE
    Hongzhong Fan;

    Abstract This study investigates the non-linear relationship between urbanization paths and CO2 emissions in selected South, South-East, and East Asian countries over the period 1971–2014. Based on the STIRPAT (Stochastic Impacts by Regression on Population, Affluence, and Technology) framework, we applied the advanced and robust methods of dynamic seemingly unrelated regression (DSUR), dynamic OLS (DOLS), and fully modified OLS (FMOLS) to estimate the long-term effects. The empirical findings revealed the inverted U-shaped effects of urbanization and urban agglomeration and the U-shaped impact of the largest city ratio on CO2 emissions. Urbanization and urban agglomerations improve environmental quality in the long-run and support ecological modernization theory. However, excessive concentration in the largest cities have severely affected the environmental quality and violates the notion of compact-city efficiencies. Moreover, energy intensity and economic growth positively affect CO2 emissions, while trade openness negatively influences CO2 emissions. Our robustness analysis at the country-level applies the augmented mean group (AMG) panel ARDL technique, which further supports the non-linear effect of urbanization paths on CO2 emissions except for a few countries. The results of the panel Granger non-causality approach unveil bidirectional causality of energy efficiency, economic growth, urbanization, and largest city ratio with CO2 emissions. In contrast, unidirectional causality runs from urban agglomeration to CO2 emissions. Our findings have important policy implications as we suggest green urban infrastructures, eco-friendly dwellings, smart cities, country-specific trade policies, and renewable energy options to improve the environmental quality.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Urban Climatearrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Urban Climate
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    87
    citations87
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Urban Climatearrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Urban Climate
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Shigang Zhang; Lanbin Liu; Lin Fu;

    Abstract A great deal of heat is wasted in intensive public shower facilities, such as those in schools, barracks and natatoriums, which open up at specified time. It will contribute a lot to energy saving and environmental protection with significant economic benefits to recycle the exhaust heat. In this paper, we propose two different kinds of heat pumps (an electric heat pump and an absorption heat pump) in the heat recovery systems. In both system, the used shower water is drained through a pipe and collected in a gray water pool. When the wastewater reaches certain volume, the heat pump system will begin working and recycling heat. The wastewater is filtered and piped to the heat exchanger to exchange heat with the tap water whose temperature will increase from 12 °C to 25 °C with the wastewater temperature dropping from 30 °C to 17 °C. Then the wastewater is piped to the heat pump evaporator and the tap water is piped to the condenser for farther heating. According to the different characteristics of the electric heat pump and absorption heat pump, we also introduce the processes and control methods of different heat recovery systems in details in this paper. Based on a practical example, this paper analyzes and compares the economic and environmental benefits of three retrofitting schemes, including “exhaust heat recovery using electric heat pump”, “exhaust heat recovery using electric heat pump + gas boiler” and “exhaust heat recovery using direct-fired heat pump”. Then we find out that the heat recovery system using direct-fired absorption heat pump has lower energy consumption, less pollution, lower operating cost, and shorter payback period. And it has a promising practical application.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Energy
    Article . 2014 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    23
    citations23
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Energy
      Article . 2014 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Zhanping Hu;
    Zhanping Hu
    ORCID
    Harvested from ORCID Public Data File

    Zhanping Hu in OpenAIRE

    Abstract As a burgeoning theoretical framework, energy justice has been mostly focused on the energy transition in Western countries, where socio-political settings are largely featured by liberalism and democracy, leaving an obvious gap in its application in other socio-political contexts. As a major energy consumer and a leader of the global low-carbon transition, China is characterized by a distinctive socio-political regime. An array of grand strategies to transform its coal-dominant energy structure have been initiated to ameliorate deteriorating environmental crises in particular and materialize a low-carbon transition in general. Based on extensive evidence, this article incorporates the energy justice framework into the analysis of an ongoing energy transition project in rural Northern China. It contributes to the related research in three dimensions. First, empirically, it demonstrates that the coal-to-gas heating transition project has been swamped with social injustices; the absence of measures to address these would lead this mega-project to profound failure. Second, theoretically, it illustrates that the concerns of justice are even more paramount in an authoritarian context where policy processes are characterized by strong political-administrative intervention and the pursuit of efficiency at all cost. In light of this, it stresses the indispensable role of restorative justice as a core tenet in achieving energy justice in authoritarian socio-political contexts, such as China. Third, this study advocates expanding the evaluation parameters of authoritarian environmentalism to include social consequences.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Research & So...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Research & Social Science
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    44
    citations44
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Research & So...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Research & Social Science
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Chaudry, S.;
    Chaudry, S.
    ORCID
    Harvested from ORCID Public Data File

    Chaudry, S. in OpenAIRE
    orcid Bahri, P.A.;
    Bahri, P.A.
    ORCID
    Harvested from ORCID Public Data File

    Bahri, P.A. in OpenAIRE
    orcid Moheimani, N.R.;
    Moheimani, N.R.
    ORCID
    Harvested from ORCID Public Data File

    Moheimani, N.R. in OpenAIRE

    Microalgae have tremendous potential for producing liquid renewable fuel. Many methods for converting microalgae to biofuel have been proposed; however, an economical and energetically feasible route for algal fuel production is yet to be found. This paper presents a review on the comparison of the most promising conversion pathways of microalgae to liquid fuel: hydrothermal liquefaction (HTL), wet extraction and non-destructive extraction. The comparison is based on important assessment parameters of product quality and yield, nutrient recovery, GHG emissions, energy and the cost associated with the production of fuel from microalgae, in order to better understand the pros and cons of each method. It was found that the HTL pathway produces more oil than the wet extraction pathway; however, higher concentrations of unwanted components are present in the HTL oil produced. Less nutrients (N and P) can be recovered in HTL compared to wet extraction. HTL consumes more fossil energy and generates higher GHG emissions than wet extraction, while the production cost of fuel from HTL pathway is lower than wet extraction pathway. There is considerable uncertainty in the comparison of the energy consumption and economics of the HTL pathway and the wet extraction pathway due to different scenarios analysed in the assessment studies. To be able to appropriately compare methodologies, the conversion methods should be analysed from growth to upgradation of oil utilising sufficiently similar assumptions and scenarios. Based on the data in available literature, wet oil extraction is the more appropriate system for biofuel production than HTL. However, the potential of alternative extraction/conversion technologies, such as, non-destructive extraction, need to be further assessed.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2015 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    59
    citations59
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2015 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Huimin Hou;

    Short term load forecasting plays an increasingly important role in Smart Grid. Short term load forecasting is also an important part of enterprise power system management. Providing accurate load time series data for a certain period of time in the future can enable enterprises to ensure the smooth operation of production while making a reasonable power plan, reducing power consumption and basic electricity charges, thus reducing the production cost of enterprises. In addition, lower electricity consumption means lower carbon dioxide emissions, which has far-reaching implications for sustainable development strategies. This paper presents a short-term load forecasting method based on time series. The model divides the time series data into four parts: trend item, period item, holiday item and error item. In the experiment part, this paper provides a set of preprocessing method flow. Aiming at the problem that the sampling rate of the current smart grid data is not constant, a data smoothing algorithm is proposed.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1109/icwcsg...
    Conference object . 2020 . Peer-reviewed
    License: IEEE Copyright
    Data sources: Crossref
    addClaim
    4
    citations4
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://doi.org/10.1109/icwcsg...
      Conference object . 2020 . Peer-reviewed
      License: IEEE Copyright
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Cristiano S. Funari;
    Cristiano S. Funari
    ORCID
    Harvested from ORCID Public Data File

    Cristiano S. Funari in OpenAIRE
    orcid Renato L. Carneiro;
    Renato L. Carneiro
    ORCID
    Harvested from ORCID Public Data File

    Renato L. Carneiro in OpenAIRE
    orcid Alberto J. Cavalheiro;
    Alberto J. Cavalheiro
    ORCID
    Harvested from ORCID Public Data File

    Alberto J. Cavalheiro in OpenAIRE
    orcid Emily F. Hilder;
    Emily F. Hilder
    ORCID
    Harvested from ORCID Public Data File

    Emily F. Hilder in OpenAIRE

    It is now recognized that analytical chemistry must also be a target for green principles, in particular chromatographic methods which typically use relatively large volumes of hazardous organic solvents. More generally, high performance liquid chromatography (HPLC) is employed routinely for quality control of complex mixtures in various industries. Acetonitrile and methanol are the most commonly used organic solvents in HPLC, but they generate an impact on the environment and can have a negative effect on the health of analysts. Ethanol offers an exciting alternative as a less toxic, biodegradable solvent for HPLC. In this work we demonstrate that replacement of acetonitrile with ethanol as the organic modifier for HPLC can be achieved without significantly compromising analytical performance. This general approach is demonstrated through the specific example analysis of a complex plant extract. A benchmark method employing acetonitrile for the analysis of Bidens pilosa extract was statistically optimized using the Green Chromatographic Fingerprinting Response (GCFR) which includes factors relating to separation performance and environmental parameters. Methods employing ethanol at 30 and 80°C were developed and compared with the reference method regarding their performance of separation (GCFR) as well as by a new metric, Comprehensive Metric to Compare Liquid Chromatography Methods (CM). The fingerprint with ethanol at 80°C was similar to or better than that with MeCN according to GCFR and CM. This demonstrates that temperature may be used to replace harmful solvents with greener ones in HPLC, including for solvents with significantly different physiochemical properties and without loss in separation performance. This work offers a general approach for the chromatographic analysis of complex samples without compromising green analytical chemistry principles.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Chromatog...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Chromatography A
    Article . 2014 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    16
    citations16
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Chromatog...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Chromatography A
      Article . 2014 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Yoshitaka Yamamoto; Kotaro Ohga; orcid Takeshi Komai;
    Takeshi Komai
    ORCID
    Harvested from ORCID Public Data File

    Takeshi Komai in OpenAIRE

    Abstract: The dynamics of reformation and replacement of gas hydrates were studied under nonequilibrium conditions. It was found that the reformation of gas hydrates is largely affected by the state of the gas‐water system and the restarting temperature. This suggests that the effects are caused by changes in the structure of the aqueous solution at a molecular level. Pure samples of CH4 gas hydrate were synthesized from ice crystals and the dissociated solution using the reformation method. Replacement of CO2 gas hydrate is achieved within a short duration in the solid‐phase sample of CH4 gas hydrate, if the pressure and temperature is precisely controlled in a pressure vessel.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Annals of the New Yo...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Annals of the New York Academy of Sciences
    Article . 2000 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim
    29
    citations29
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Annals of the New Yo...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Annals of the New York Academy of Sciences
      Article . 2000 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Yongxiang Zhang; Tao Jiang; Zhuoyin Peng; Jingping Liu; +5 Authors

    Abstract Knocking combustion for spark-ignition engine is related to auto-ignition of a portion of the unburned fuel-air mixture. In this investigation, the detailed chemical kinetic mechanism was engaged to numerically study the auto-ignition characteristics of hydrogen-enriched methane under engine-relevant conditions. Compared with the experimental data, the USC Mech 2.0 mechanism obtained the closest agreement, and it was adopted in the sensitivity analysis, the rate of production (ROP) analysis and the reaction pathway analysis. Results showed that at high temperature and high pressure, the ignition delay times (IDs) of CH4/H2 fuel blends reduce significantly (by two orders of magnitude at most) with rising hydrogen fraction, but the decline rate is not so obvious (within 37.3%) at low temperature. The sensitivity analysis indicated that at high temperature the reaction (R1) and reactions (R2, R3) promote each other while at low temperature only the reaction (R3) unilaterally facilitates the reaction (R12). The ROP analysis implied that the decrease of IDs of methane by hydrogen addition is realized through increasing the H, O, and OH radical production. Interestingly, the IDs for CH4/H2 fuel blends show different trends at different temperature, which decrease (by 47.5% at most) at low temperature but increase (by 132.7% at most) at high temperature as the equivalence ratio rises. The sensitivity analysis showed that the ignition kinetics for CH4/H2 fuel blends more depend on the CH4 concentration at low temperature but oxygen concentration at high temperature. This investigation not only supplements the fundamental combustion studies of CH4/H2 fuel blends in elevated pressures, but also reveals the influence mechanism of hydrogen addition and equivalence ratio on the IDs of CH4/H2 fuel blends at high pressure. More importantly, it may offer fundamental insights for the control of knocking combustion of spark-ignition (SI) engine.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Conversion and Management
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    40
    citations40
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Conversion and Management
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Robert Becker Pickson;
    Robert Becker Pickson
    ORCID
    Harvested from ORCID Public Data File

    Robert Becker Pickson in OpenAIRE
    Peng Gui; Ai Chen; orcid Elliot Boateng;
    Elliot Boateng
    ORCID
    Harvested from ORCID Public Data File

    Elliot Boateng in OpenAIRE

    The Nigerian government is committed to sustaining rice production to meet national demand. Nevertheless, political tension and climate-induced stressors remain crucial constraints in achieving policy targets. This study examines whether climate change and political instability significantly threaten rice production in Nigeria. First, we employed nonparametric methods to estimate the country's rainfall and temperature trends between 1980Q1 and 2015Q4. Second, we employed the autoregressive distributed lag (ARDL) technique to examine the effects of climate change and political instability on rice production. The results show that while temperature has an increasing pattern, rainfall exhibits no significant trend. The findings from the ARDL estimate reveal that rice production responds negatively to temperature changes but is less sensitive to changes in rainfall. In addition, political instability adversely affects rice production in Nigeria. We argue that Nigeria's slow growth in rice production can be traced back to the impact of climate change and political tension in rice farming areas. As a result, reducing the overall degree of conflict to ensure political stability is critical to boosting the country's self-sufficiency in rice production. We also recommend that farmers be supported and trained to adopt improved rice varieties less prone to extreme climate events while supporting them with irrigation facilities to facilitate rice production.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Scienc...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Science and Pollution Research
    Article . 2023 . Peer-reviewed
    License: Springer Nature TDM
    Data sources: Crossref
    addClaim
    6
    citations6
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Scienc...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Science and Pollution Research
      Article . 2023 . Peer-reviewed
      License: Springer Nature TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Tao Yu;
    Tao Yu
    ORCID
    Harvested from ORCID Public Data File

    Tao Yu in OpenAIRE
    orcid Guoqing Guan;
    Guoqing Guan
    ORCID
    Harvested from ORCID Public Data File

    Guoqing Guan in OpenAIRE
    Abuliti Abudula; Akihiro Yoshida; +2 Authors

    Abstract The 2013/2017 Nankai Trough (Japan) and 2017 Shenhu Area (China) offshore methane hydrate production tests showed the world the possibility and feasibility of the oceanic methane hydrate production by depressurization. However, the relatively low gas production rate still remained as one of the critical bottlenecks for the economical utilization. This study chose the Nankai Trough as a target area, and aimed at the gas recovery enhancement from the methane hydrate reservoir using vertical wells. A traditional single-vertical-well system and a new dual-vertical-well system were proposed, and special production strategies of the aggressive depressurization and permeability improvement were applied to these two systems for the effectiveness verification. Based on the 15-year simulation results, it was found that the middle low-permeability silt-dominated layers in the reservoir held the key to the gas recovery enhancement, and for the single-vertical-well system, the permeability improvement in this sublayer seemed more reliable and feasible than the aggressive depressurization. On the other hand, the dual-vertical-well system significantly exceeded the single-vertical-well system due to the synergistic effect of the two wellbores, and could raise the average gas production rate (9.5 × 103 m3/day) by one order of magnitude (to 7.9 × 104 m3/day). Moreover, if this new system was combined with the aggressive depressurization, the average gas production rate could be further raised by one order of magnitude (to 3.4 × 105 m3/day).

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    80
    citations80
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph