Advanced search in Research products
Research products
arrow_drop_down
unfold_less Compact
1and
Any field
arrow_drop_down
includes
arrow_drop_down
or
  • Access
    Clear
  • Type
  • Year range
  • Field of Science
  • Funder
  • Country
    Clear
  • Language
  • Source
  • Research community
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
64 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Restricted
  • Open Source
  • GB
  • CN
  • CA

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao

    This paper examines the implications of the mutual causality between environmental quality and economic growth. While economic growth deteriorates the environment through increasing amounts of pollution, the deteriorated environment in turn limits the possibility of further economic growth. In a less developed country, this link, which we call “limits to growth,” emerges as the “poverty-environment trap,” which explains the persistent international inequality both in terms of income and environment. This link also threatens the sustainability of the world’s economic growth, particularly when the emission of greenhouse gases raises the risk of natural disasters. Stronger environmental policies are required to overcome this link. While there is a trade-off between the environment and growth in the short run, we show that an appropriate policy can improve both in the long run.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao University of Southe...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    SSRN Electronic Journal
    Article . 2014 . Peer-reviewed
    Data sources: Crossref
    EconStor
    Research . 2014
    Data sources: EconStor
    addClaim
    6
    citations6
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Zhang, Junyan; Wang, Mengmeng; Yin, Changbin; Dogot, Thomas;

    The global dairy farming sector has markedly expanded and intensified over the past decades due to the growing demand for milk and dairy products. The interest in implementing life cycle assessments of various manure and sewage management (MSM) strategies is increasing on a global scale, which is motivated by the concerns of environmental degradation caused by unsustainable MSM and growing awareness of circular economy. Life cycle thinking concept has been widely introduced to favor the comparative studies of different MSM strategies, with the aim of identifying suitable MSM strategies and formulating related policies. This meta-analysis presented comparative results of publicly available dairy MSM pathways, including waste-to-energy, composting, recycling, and other management pathways, aiming to explore potential benefits towards a circular economy. Results showed a consensus that waste-to-energy pathway significantly reduced global warming, eutrophication, and ecotoxicity potential. More specifically, the comparative performances of various detailed technologies belonging to a specified pathway were analyzed. Results indicated that anaerobic mono-digestion decreased global warming and eutrophication remarkably; its integrated management technologies reduced global warming considerably and an obvious decrease in eutrophication potential was observed. It revealed that most of current MSM strategies had limited potential and uncertain consequences to reduce environmental impacts and costs. In terms of influence factors, besides the intrinsic factor (pathway type), key extrinsic determinants including location, country income level, and farm scale were proved to affect mitigation potential of some specific impacts. Overall, it is necessary for the scientific community and policy-makers to focus on more possible trade-offs of different life cycle performances towards sustainability and circularity.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Open Repository and ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    The Science of The Total Environment
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    15
    citations15
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Open Repository and ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      The Science of The Total Environment
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid SPIGARELLI, Francesca;
    SPIGARELLI, Francesca
    ORCID
    Harvested from ORCID Public Data File

    SPIGARELLI, Francesca in OpenAIRE
    orcid Louise Curran;
    Louise Curran
    ORCID
    Harvested from ORCID Public Data File

    Louise Curran in OpenAIRE
    Ping Lv;

    Abstract This paper addresses three questions: how have trade and investment in wind and solar sectors evolved between the EU and China in recent years? Is there a link between rising trade conflicts and trade and investment trends? And what wider motivations and synergies can be identified in Chinese investments in the EU's RE sector? To address these questions we analyze trade and investment data, as well as qualitative data, including information from media and company reports. Large increases in trade and investment were followed by rapid falls since 2012–13. Trade tensions have not led to increases in investment, rather the inverse. We find that Chinese investment in these two sectors is very concentrated in Germany. The key motivation for investment is market seeking, although R+D is also important, especially for wind. Most investments are greenfield, a preference that has persisted over time. Our qualitative analysis of several key acquisitions indicates that technology integration and the consolidation of capacities across the supply chain were key motivations in most of the cases studied. We conclude with some policy orientations.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio istituziona...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Policy
    Article . 2017 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    54
    citations54
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Kostoglou, N.;
    Kostoglou, N.
    ORCID
    Harvested from ORCID Public Data File

    Kostoglou, N. in OpenAIRE
    orcid Koczwara, C.;
    Koczwara, C.
    ORCID
    Harvested from ORCID Public Data File

    Koczwara, C. in OpenAIRE
    orcid Prehal, C.;
    Prehal, C.
    ORCID
    Harvested from ORCID Public Data File

    Prehal, C. in OpenAIRE
    Terziyska, V.; +30 Authors

    Abstract The efficient storage of energy combined with a minimum carbon footprint is still considered one of the major challenges towards the transition to a progressive, sustainable and environmental friendly society on a global scale. The energy storage in pure chemical form using gas carriers with high heating values, including H 2 and CH 4 , as well as via electrochemical means using state-of-the-art devices, such as batteries or supercapacitors, are two of the most attractive alternatives for the combustion of finite, carbon-rich and environmentally harmful fossil fuels, such as diesel and gasoline. A few-step, reproducible and scalable method is presented in this study for the preparation of an ultra-microporous (average pore size around 0.6 nm) activated carbon cloth (ACC) with large specific area (> 1200 m 2 /g) and pore volume (~ 0.5 cm 3 /g) upon combining chemical impregnation, carbonization and CO 2 activation of a low-cost cellulose-based polymeric fabric. The ACC material shows a versatile character towards three different applications, including H 2 storage via cryo-adsorption, separation of energy-dense CO 2 /CH 4 mixtures via selective adsorption and electrochemical energy storage using supercapacitor technology. Fully reversible H 2 uptake capacities in excess of 3.1 wt% at 77 K and ~ 72 bar along with a significant heat of adsorption value of up to 8.4 kJ/mol for low surface coverage have been found. Upon incorporation of low-pressure sorption data in the ideal adsorbed solution theory model, the ACC is predicted to selectively adsorb about 4.5 times more CO 2 than CH 4 in ambient conditions and thus represents an appealing adsorbent for the purification of such gaseous mixtures. Finally, an electric double-layer capacitor device was assembled and tested for its electrochemical performance, constructed of binder-free and flexible ACC electrodes and aqueous CsCl electrolyte. The full-cell exhibits a gravimetric capacitance of ~ 121 F/g for a specific current of 0.02 A/g, which relative to the ACC's specific area, is superior to commercially available activated carbons. A capacitance retention of more than 97% was observed after 10,000 charging/discharging cycles, thus indicating the ACC's suitability for demanding and high-performance energy storage on a commercial scale. The enhanced performance in all tested applications seems to be attributed to the mean ultra-micropore size of the ACC material instead of the available specific area and/or pore volume.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao VinaR - Repository o...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Nano Energy
    Article . 2017 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    Ktisis
    Article . 2017
    Data sources: Ktisis
    addClaim
    135
    citations135
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    visibility52
    visibilityviews52
    downloaddownloads1
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao VinaR - Repository o...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Nano Energy
      Article . 2017 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      Ktisis
      Article . 2017
      Data sources: Ktisis
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Kuo Zeng; Kuo Zeng; orcid Jose Miguel Soria;
    Jose Miguel Soria
    ORCID
    Harvested from ORCID Public Data File

    Jose Miguel Soria in OpenAIRE
    Gilles Flamant; +2 Authors

    Abstract Solar pyrolysis of a carbonaceous feedstock (coal, biomass and wastes) is a process in which carbon-containing feedstocks are used as chemical reactants and solar energy is supplied as high-temperature process heat. This process has the potential to produce higher calorific value products with lower CO 2 emissions than conventional pyrolysis processes. As a consequence, the intermittent solar energy is chemically stored in the form of solar fuels. Solar pyrolysis was first demonstrated in an indoor environment using a solar simulator (image furnace) for exploring the fundamental mechanisms of carbonaceous feedstock pyrolysis under severe radiative conditions (high temperatures and heating rates) in comparison to conventional pyrolysis. More recently, low-temperature solar pyrolysis has been demonstrated to be a good technology for bio-oil production. Our high-temperature solar pyrolysis process produces more combustible gas products than other processes. This paper reviews developments in the field of solar pyrolysis processing by considering fundamental mechanisms, experimental demonstrations, models and challenges.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CONICET Digitalarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CONICET Digital
    Article . 2017
    License: CC BY NC SA
    Data sources: CONICET Digital
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Solar Energy
    Article . 2017 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    127
    citations127
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CONICET Digitalarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CONICET Digital
      Article . 2017
      License: CC BY NC SA
      Data sources: CONICET Digital
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Solar Energy
      Article . 2017 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Shiyu Tan; orcid Jingzheng Ren;
    Jingzheng Ren
    ORCID
    Harvested from ORCID Public Data File

    Jingzheng Ren in OpenAIRE
    Jingzheng Ren; orcid Alessandro Manzardo;
    Alessandro Manzardo
    ORCID
    Harvested from ORCID Public Data File

    Alessandro Manzardo in OpenAIRE
    +4 Authors

    The purpose of this paper is to develop a model for designing the most sustainable bioethanol supply chain. Taking into consideration of the possibility of multiple-feedstock, multiple transportation modes, multiple alternative technologies, multiple transport patterns and multiple waste disposal manners in bioethanol systems, this study developed a model for designing the most sustainable bioethanol supply chain by minimizing the total ecological footprint under some prerequisite constraints including satisfying the goal of the stakeholders', the limitation of resources and energy, the capacity of warehouses, the market demand and some technological constraints. And an illustrative case of multiple-feedstock bioethanol system has been studied by the proposed method, and a global best solution by which the total ecological footprint is the minimal has been obtained.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS - Università de...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Bioresource Technology
    Article . 2013 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    40
    citations40
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Manuel Montesino San Martin; Jørgen E. Olesen; John R. Porter; John R. Porter;

    a b s t r a c t Wheat yields in Europe have shown stagnating trends during the last two decades, partly attributed to climate change. Such developments challenge the needs for increased production, in particular at higher latitudes, to meet increasing global demands and expected productivity reductions at lower latitudes. Cli- mate change projections from three General Circulation Models or GCMs (UKMO-HadGEM1, INM-GM3.0 and CSIRO-Mk3.1) for the A1FI SRES emission scenario for 2000 to 2100 were downscaled at a northern latitude location (Foulum, Denmark) using LARS-WG5.3. The scenarios accounted for changes in tem- perature, precipitation and atmospheric CO2 concentration. In addition, three temperature-variability scenarios were included assuming different levels of decreased temperature variability in winter and increased in summer. Crop yield was simulated for the different climate change scenarios by a cali- brated version of AFRCWHEAT2 to model several combinations of genotypes (varying in crop growth, development and tolerance to water and nitrogen scarcity) and management (sowing dates and nitro- gen fertilization rate). The simulations showed a slight improvement of grain yields (0.3-1.2 Mg ha−1) in the medium-term (2030-2050), but not enough to cope with expected increases in demand for food and feed. Optimum management added up to 1.8 Mg ha−1. Genetic modifications regarding winter wheat crop development exhibit the greatest sensitivity to climate and larger potential for improvement (+3.8 Mg ha −1 ). The results consistently points towards need for cultivars with a longer reproductive phases (2.9-7.5% per 1

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PURE Aarhus Universi...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Agricultural and Forest Meteorology
    Article . 2014 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    57
    citations57
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PURE Aarhus Universi...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Agricultural and Forest Meteorology
      Article . 2014 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Morten Olsen;
    Morten Olsen
    ORCID
    Harvested from ORCID Public Data File

    Morten Olsen in OpenAIRE
    orcid David Hémous;
    David Hémous
    ORCID
    Harvested from ORCID Public Data File

    David Hémous in OpenAIRE
    David Hémous;

    It is increasingly evident that the direction of technological change responds to economic incentives. We review the literature on directed technical change in the context of environmental economics and labor economics, and we show that these fields have much in common both theoretically and empirically. We emphasize the importance of a balanced growth path and show that the lack of such a path is closely related to the slow development of green technologies in environmental economics and to growing inequality in labor economics. We discuss whether the direction of innovation is efficient.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Zurich Open Reposito...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Annual Review of Economics
    Article . 2021 . Peer-reviewed
    Data sources: Crossref
    SSRN Electronic Journal
    Article . 2021 . Peer-reviewed
    Data sources: Crossref
    https://dx.doi.org/10.5167/uzh...
    Other literature type . 2021
    Data sources: Datacite
    Annual Review of Economics
    Article . 2021 . Peer-reviewed
    addClaim
    21
    citations21
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Helming, K.;
    Helming, K.
    ORCID
    Harvested from ORCID Public Data File

    Helming, K. in OpenAIRE
    orcid bw Pérez-Soba, M.;
    Pérez-Soba, M.
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Pérez-Soba, M. in OpenAIRE
    Tabbush, P.;

    List of Authors.- List of Authors.- Sustainability Impact Assessment: concepts and approaches.- Ex-ante Impact Assessments (IA) in the European Commission - an overview.- Impact Assessment in the European Commission in relation to Multifunctional Land Use.- An institutional analysis of land use modelling in the European Commission.- Ex ante impact assessment of land use changes in European regions - the SENSOR approach.- Transfer into decision support: The Sustainability Impact Assessment Tool (SIAT).- Scenario modelling of land use changes.- Scenarios: Driving forces and policies.- Cross sector land use modelling framework.- Tourism geography in Europe.- Landscape level simulation of land use change.- Spatial representation and data issues for European regions.- Regional socio-economic profiles for assessment of European land use related policies: the SENSOR experience.- A Spatial Regional Reference Framework for Sustainability Assessment in Europe.- Requirements for data management and maintenance to support regional land use research.- European level indicator framework.- An indicator framework for analysing sustainability impacts of land use change.- Indicators for assessing the environmental impacts of land use change across Europe.- Reflections on Social and Economic Indicators for Land Use Change.- Weighting and aggregation of indicators for sustainability impact assessment in the SENSOR context.- Regional and local evaluation.- Land use functions - a multifunctionality approach to assess the impact of land use changes on land use sustainability.- Limits and targets for a regional sustainability assessment: an interdisciplinary exploration of the threshold concept.- Sustainability Impact Assessments: limits, thresholds and the Sustainability Choice Space.- Key sustainability issues in European sensitive areas - a participatory approach.- Key sustainability issues and the spatial classification of sensitive regions in Europe.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Research@WURarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Research@WUR
    Book . 2008
    Data sources: Research@WUR
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1007/978-3-...
    Book . 2008 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim
    176
    citations176
    popularityTop 1%
    influenceTop 1%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Research@WURarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Research@WUR
      Book . 2008
      Data sources: Research@WUR
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://doi.org/10.1007/978-3-...
      Book . 2008 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Eduard Oró;
    Eduard Oró
    ORCID
    Harvested from ORCID Public Data File

    Eduard Oró in OpenAIRE
    orcid Laia Miró;
    Laia Miró
    ORCID
    Harvested from ORCID Public Data File

    Laia Miró in OpenAIRE
    orcid Mohammed M. Farid;
    Mohammed M. Farid
    ORCID
    Harvested from ORCID Public Data File

    Mohammed M. Farid in OpenAIRE
    orcid Viktoria Martin;
    Viktoria Martin
    ORCID
    Harvested from ORCID Public Data File

    Viktoria Martin in OpenAIRE
    +1 Authors

    Low temperature sensitive products transport and storage is an issue worldwide due to changes of the lifestyle population increase. Thermal energy storage (TES) is nowadays one of the most feasible solutions in facing the challenge of achieving energy savings. Many researchers have investigated energy efficiency of different cold units by applying TES systems using phase change materials (PCM). This paper provides an overview of the existing Spanish and European potential energy savings and CO2 mitigation by incorporating TES systems to cold storage and transportationsystems.Data onenergy savingswerecompiled fromdifferent case studies. Results depend on the scenarios studied and the extent of TES systems implementation; in the case of Europe for instance, yearly CO2 emissionsmay be cut downbetween 5% and 22% in reference to 2008 CO2 emissions from cold production considering that the proposed implementation of PCM TES in the case studies found in the literature is done. The work partially funded by the Spanish government (ENE2011-22722). The authors would like to thank the Catalan Government for the quality accreditation given to their research group (2009 SGR 534). Eduard Oro´ would like to thank the University of Lleida for his research fellowship. Laia Miro´ would like to thank the Spanish Government for her research fellowship (BES-2012-051861). The work leading to this invention has received funding from the European Union’s

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Publikationer från KTH
    Article . 2014 . Peer-reviewed
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    International Journal of Refrigeration
    Article . 2014 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    74
    citations74
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Publikationer från KTH
      Article . 2014 . Peer-reviewed
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      International Journal of Refrigeration
      Article . 2014 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph
We use cookies
This website uses essential cookies to ensure its proper operation and tracking cookies to understand how you interact with it. The latter will be set only upon approval.

Read more about our Cookies policy.