- home
- Advanced Search
- Energy Research
- Australian Research Council (ARC)
- CN
- DK
- Energy Research
- Australian Research Council (ARC)
- CN
- DK
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Funded by:ARC | An AZtec electron backsca...ARC| An AZtec electron backscatter diffraction facility for state-of-the-art quantitative microstructural analysisdoi: 10.3390/su131810238
A promising technology for renewable energy is energy piles used to heat and cool buildings. In this research, the effects of bio-cementation via microbially induced calcite precipitation (MICP) using mixed calcium and magnesium sources and the addition of fibres on the thermal conductivity of soil were investigated. Firstly, silica sand specimens were treated with cementation solutions containing different ratios of calcium chloride and magnesium chloride to achieve maximum thermal conductivity improvement. Three treatment cycles were provided, and the corresponding thermal conductivity was measured after each cycle. It was found that using 100% calcium chloride resulted in the highest thermal conductivity. This cementation solution was then used to treat bio-cemented soil samples containing fibres, including polyethylene, steel and glass fibres. The fibre contents used included 0.5%, 1.0% and 1.5% of the dry sand mass. The results show that the glass fibre samples yielded the highest thermal conductivity after three treatment cycles, and SEM imaging was used to support the findings. This research suggests that using MICP as a soil improvement technique can also improve the thermal conductivity of soil surrounding energy piles, which has high potential to effectively improve the efficiency of energy piles.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su131810238&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su131810238&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Royal Society of Chemistry (RSC) Funded by:ARC | Future Fellowships - Gran..., ARC | Future Fellowships - Gran..., ARC | Discovery Projects - Gran... +1 projectsARC| Future Fellowships - Grant ID: FT170100224 ,ARC| Future Fellowships - Grant ID: FT180100585 ,ARC| Discovery Projects - Grant ID: DP170101467 ,ARC| Discovery Projects - Grant ID: DP160103107Chuan Zhao;
Chuan Zhao
Chuan Zhao in OpenAIRESi Zhou;
Si Zhou;Yi Du;
Yi Du; Jincheng Zhuang;Yibing Li;
Yibing Li
Yibing Li in OpenAIREXianjue Chen;
Xianjue Chen
Xianjue Chen in OpenAIREXin Bo;
Rosalie K. Hocking;
Rosalie K. Hocking
Rosalie K. Hocking in OpenAIREdoi: 10.1039/d0ee01609h
handle: 1959.3/458462
The catalytic active sites of NiFe and NiFeCr (oxy)hydroxides are revealed byoperandospectroscopic techonologies for alkaline water oxidation.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ee01609h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ee01609h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Funded by:ARC | Linkage Projects - Grant ..., ARC | Industrial Transformation...ARC| Linkage Projects - Grant ID: LP160100819 ,ARC| Industrial Transformation Research Hubs - Grant ID: IH140100035Authors:Aibing Yu;
Aibing Yu;Aibing Yu
Aibing Yu in OpenAIREZheng Qi;
Tingsheng Qiu; +1 AuthorsZheng Qi
Zheng Qi in OpenAIREAibing Yu;
Aibing Yu;Aibing Yu
Aibing Yu in OpenAIREZheng Qi;
Tingsheng Qiu;Zheng Qi
Zheng Qi in OpenAIREShibo Kuang;
Shibo Kuang
Shibo Kuang in OpenAIREAbstract Non-Newtonian fluid flows through packed beds are common in many industries. Our understanding of this flow system is very limited, and the correlations for describing the fluid-particle interaction are not fully established. To overcome these problems, this paper presents a comprehensive study of this system on a sub-particle scale, with a special reference to the interaction between fluid rheology and bed properties. This is done by conducting about five hundred Lattice Boltzmann simulations under different conditions. The fluid rheology is represented by the power-law model to consider the shear-thinning, shear thickening and Newtonian behaviors of fluids. The simulation condition covers a wide range of bed porosity, particle size distribution and Reynolds number (Re). The results show that the effect of fluid rheology on the fluid behavior is strong. This effect varies significantly with bed porosity which is a function of particle size distribution. The interplay between fluid rheology and bed properties is however not strong in determining the distributions of particle-fluid interaction force. Based on the simulation data, a new drag correlation is established and validated against the experimental data in the literature. This correlation is more accurate and consistent than those reported in the past. It can estimate the mean drag forces on individual particles of different sizes, and is recommended to be used generally in the modeling of particle-fluid flows either for Newtonian fluids or for non-Newtonian fluids obeying the power-law model.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.powtec.2020.05.046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.powtec.2020.05.046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 France, Austria, Poland, Finland, China (People's Republic of), United Kingdom, Italy, Belgium, Norway, France, Netherlands, Italy, United Kingdom, Argentina, Norway, Austria, United Kingdom, Sweden, Argentina, China (People's Republic of), France, Chile, Norway, Australia, Norway, China (People's Republic of), ItalyPublisher:American Association for the Advancement of Science (AAAS) Funded by:RCN | Centre for Experimental R..., NWO | A new approach to fear re..., UKRI | RootDetect: Remote Detect... +13 projectsRCN| Centre for Experimental Research on Fairness, Inequality, and Rationality (FAIR) ,NWO| A new approach to fear reduction by disrupting reconsolidation of threat memories ,UKRI| RootDetect: Remote Detection and Precision Management of Root Health ,EC| AXIS ,SNSF| Global Citizenship Influences Environmental Relevance (GLACIER) ,UKRI| Secret Power: Investigating the Legitimization of Criminal Governance: Group Comparisons and Within-Individual Dynamics ,SNSF| Evidence-based pathways towards sustainable judgment and decision-making: A multi-dimensional perspective ,UKRI| A Biological Framework of Reduced Physical and Social Activity across the Lifespan ,ANR| SCALUP ,ARC| Discovery Projects - Grant ID: DP180102384 ,NSF| Graduate Research Fellowship Program (GRFP) ,WT| Neurocomputational mechanisms of prosocial behaviour in health, development and disorder ,FWF| Effects of Acute Stress on Social Behavior ,SSHRC ,UKRI| Modelling variability in the social brain across the lifespan ,UKRI| Modelling variability in the social brain across the lifespanAuthors:Madalina Vlasceanu;
Madalina Vlasceanu
Madalina Vlasceanu in OpenAIREKimberly C. Doell;
Kimberly C. Doell
Kimberly C. Doell in OpenAIREJoseph B. Bak-Coleman;
Joseph B. Bak-Coleman
Joseph B. Bak-Coleman in OpenAIREBoryana Todorova;
+196 AuthorsBoryana Todorova
Boryana Todorova in OpenAIREMadalina Vlasceanu;
Madalina Vlasceanu
Madalina Vlasceanu in OpenAIREKimberly C. Doell;
Kimberly C. Doell
Kimberly C. Doell in OpenAIREJoseph B. Bak-Coleman;
Joseph B. Bak-Coleman
Joseph B. Bak-Coleman in OpenAIREBoryana Todorova;
Michael M. Berkebile-Weinberg;Boryana Todorova
Boryana Todorova in OpenAIRESamantha J. Grayson;
Samantha J. Grayson
Samantha J. Grayson in OpenAIREYash Patel;
Yash Patel
Yash Patel in OpenAIREDanielle Goldwert;
Yifei Pei; Alek Chakroff;Danielle Goldwert
Danielle Goldwert in OpenAIREEkaterina Pronizius;
Karlijn L. van den Broek;Ekaterina Pronizius
Ekaterina Pronizius in OpenAIREDenisa Vlasceanu;
Denisa Vlasceanu
Denisa Vlasceanu in OpenAIRESara Constantino;
Sara Constantino
Sara Constantino in OpenAIREMichael J. Morais;
Michael J. Morais
Michael J. Morais in OpenAIREPhilipp Schumann;
Steve Rathje;Philipp Schumann
Philipp Schumann in OpenAIREKe Fang;
Salvatore Maria Aglioti;
Salvatore Maria Aglioti
Salvatore Maria Aglioti in OpenAIREMark Alfano;
Mark Alfano
Mark Alfano in OpenAIREAndy J. Alvarado-Yepez;
Andy J. Alvarado-Yepez
Andy J. Alvarado-Yepez in OpenAIREAngélica Andersen;
Angélica Andersen
Angélica Andersen in OpenAIREFrederik Anseel;
Frederik Anseel
Frederik Anseel in OpenAIREMatthew A. J. Apps;
Matthew A. J. Apps
Matthew A. J. Apps in OpenAIREChillar Asadli;
Fonda Jane Awuor;Chillar Asadli
Chillar Asadli in OpenAIREFlavio Azevedo;
Piero Basaglia;Flavio Azevedo
Flavio Azevedo in OpenAIREJocelyn J. Bélanger;
Sebastian Berger;Jocelyn J. Bélanger
Jocelyn J. Bélanger in OpenAIREPaul Bertin;
Paul Bertin
Paul Bertin in OpenAIREMichał Białek;
Michał Białek
Michał Białek in OpenAIREOlga Bialobrzeska;
Olga Bialobrzeska
Olga Bialobrzeska in OpenAIREMichelle Blaya-Burgo;
Michelle Blaya-Burgo
Michelle Blaya-Burgo in OpenAIREDaniëlle N. M. Bleize;
Daniëlle N. M. Bleize
Daniëlle N. M. Bleize in OpenAIRESimen Bø;
Simen Bø
Simen Bø in OpenAIRELea Boecker;
Lea Boecker
Lea Boecker in OpenAIREPaulo S. Boggio;
Paulo S. Boggio
Paulo S. Boggio in OpenAIRESylvie Borau;
Sylvie Borau
Sylvie Borau in OpenAIREBjörn Bos;
Björn Bos
Björn Bos in OpenAIREAyoub Bouguettaya;
Ayoub Bouguettaya
Ayoub Bouguettaya in OpenAIREMarkus Brauer;
Markus Brauer
Markus Brauer in OpenAIRECameron Brick;
Cameron Brick
Cameron Brick in OpenAIRETymofii Brik;
Tymofii Brik
Tymofii Brik in OpenAIRERoman Briker;
Roman Briker
Roman Briker in OpenAIRETobias Brosch;
Tobias Brosch
Tobias Brosch in OpenAIREOndrej Buchel;
Ondrej Buchel
Ondrej Buchel in OpenAIREDaniel Buonauro;
Daniel Buonauro
Daniel Buonauro in OpenAIRERadhika Butalia;
Radhika Butalia
Radhika Butalia in OpenAIREHéctor Carvacho;
Héctor Carvacho
Héctor Carvacho in OpenAIRESarah A. E. Chamberlain;
Sarah A. E. Chamberlain
Sarah A. E. Chamberlain in OpenAIREHang-Yee Chan;
Hang-Yee Chan
Hang-Yee Chan in OpenAIREDawn Chow;
Dawn Chow
Dawn Chow in OpenAIREDongil Chung;
Dongil Chung
Dongil Chung in OpenAIRELuca Cian;
Luca Cian
Luca Cian in OpenAIRENoa Cohen-Eick;
Noa Cohen-Eick
Noa Cohen-Eick in OpenAIRELuis Sebastian Contreras-Huerta;
Luis Sebastian Contreras-Huerta
Luis Sebastian Contreras-Huerta in OpenAIREDavide Contu;
Davide Contu
Davide Contu in OpenAIREVladimir Cristea;
Vladimir Cristea
Vladimir Cristea in OpenAIREJo Cutler;
Silvana D'Ottone;Jo Cutler
Jo Cutler in OpenAIREJonas De Keersmaecker;
Jonas De Keersmaecker
Jonas De Keersmaecker in OpenAIRESarah Delcourt;
Sarah Delcourt
Sarah Delcourt in OpenAIRESylvain Delouvée;
Sylvain Delouvée
Sylvain Delouvée in OpenAIREKathi Diel;
Benjamin D. Douglas;Kathi Diel
Kathi Diel in OpenAIREMoritz A. Drupp;
Moritz A. Drupp
Moritz A. Drupp in OpenAIREShreya Dubey;
Shreya Dubey
Shreya Dubey in OpenAIREJānis Ekmanis;
Jānis Ekmanis
Jānis Ekmanis in OpenAIREChristian T. Elbaek;
Christian T. Elbaek
Christian T. Elbaek in OpenAIREMahmoud Elsherif;
Iris M. Engelhard;Mahmoud Elsherif
Mahmoud Elsherif in OpenAIREYannik A. Escher;
Yannik A. Escher
Yannik A. Escher in OpenAIRETom W. Etienne;
Tom W. Etienne
Tom W. Etienne in OpenAIRELaura Farage;
Laura Farage
Laura Farage in OpenAIREAna Rita Farias;
Ana Rita Farias
Ana Rita Farias in OpenAIREStefan Feuerriegel;
Stefan Feuerriegel
Stefan Feuerriegel in OpenAIREAndrej Findor;
Andrej Findor
Andrej Findor in OpenAIRELucia Freira;
Lucia Freira
Lucia Freira in OpenAIREMalte Friese;
Malte Friese
Malte Friese in OpenAIRENeil Philip Gains;
Neil Philip Gains
Neil Philip Gains in OpenAIREAlbina Gallyamova;
Albina Gallyamova
Albina Gallyamova in OpenAIRESandra J. Geiger;
Sandra J. Geiger
Sandra J. Geiger in OpenAIREOliver Genschow;
Oliver Genschow
Oliver Genschow in OpenAIREBiljana Gjoneska;
Theofilos Gkinopoulos;Biljana Gjoneska
Biljana Gjoneska in OpenAIREBeth Goldberg;
Beth Goldberg
Beth Goldberg in OpenAIREAmit Goldenberg;
Amit Goldenberg
Amit Goldenberg in OpenAIRESarah Gradidge;
Sarah Gradidge
Sarah Gradidge in OpenAIRESimone Grassini;
Kurt Gray; Sonja Grelle;Simone Grassini
Simone Grassini in OpenAIRESiobhán M. Griffin;
Siobhán M. Griffin
Siobhán M. Griffin in OpenAIRELusine Grigoryan;
Lusine Grigoryan
Lusine Grigoryan in OpenAIREAni Grigoryan;
Ani Grigoryan
Ani Grigoryan in OpenAIREDmitry Grigoryev;
Dmitry Grigoryev
Dmitry Grigoryev in OpenAIREJune Gruber;
June Gruber
June Gruber in OpenAIREJohnrev Guilaran;
Johnrev Guilaran
Johnrev Guilaran in OpenAIREBritt Hadar;
Britt Hadar
Britt Hadar in OpenAIREUlf J.J. Hahnel;
Ulf J.J. Hahnel
Ulf J.J. Hahnel in OpenAIREEran Halperin;
Eran Halperin
Eran Halperin in OpenAIREAnnelie J. Harvey;
Annelie J. Harvey
Annelie J. Harvey in OpenAIREChristian A. P. Haugestad;
Christian A. P. Haugestad
Christian A. P. Haugestad in OpenAIREAleksandra M. Herman;
Aleksandra M. Herman
Aleksandra M. Herman in OpenAIREHal E. Hershfield;
Hal E. Hershfield
Hal E. Hershfield in OpenAIREToshiyuki Himichi;
Toshiyuki Himichi
Toshiyuki Himichi in OpenAIREDonald W. Hine;
Wilhelm Hofmann;Donald W. Hine
Donald W. Hine in OpenAIRELauren Howe;
Lauren Howe
Lauren Howe in OpenAIREEnma T. Huaman-Chulluncuy;
Enma T. Huaman-Chulluncuy
Enma T. Huaman-Chulluncuy in OpenAIREGuanxiong Huang;
Guanxiong Huang
Guanxiong Huang in OpenAIRETatsunori Ishii;
Tatsunori Ishii
Tatsunori Ishii in OpenAIREAyahito Ito;
Ayahito Ito
Ayahito Ito in OpenAIREFanli Jia;
Fanli Jia
Fanli Jia in OpenAIREJohn T. Jost;
John T. Jost
John T. Jost in OpenAIREVeljko Jovanović;
Veljko Jovanović
Veljko Jovanović in OpenAIREDominika Jurgiel;
Ondřej Kácha;Dominika Jurgiel
Dominika Jurgiel in OpenAIREReeta Kankaanpää;
Reeta Kankaanpää
Reeta Kankaanpää in OpenAIREJaroslaw Kantorowicz;
Jaroslaw Kantorowicz
Jaroslaw Kantorowicz in OpenAIREElena Kantorowicz-Reznichenko;
Keren Kaplan Mintz;Elena Kantorowicz-Reznichenko
Elena Kantorowicz-Reznichenko in OpenAIREIlker Kaya;
Ilker Kaya
Ilker Kaya in OpenAIREOzgur Kaya;
Ozgur Kaya
Ozgur Kaya in OpenAIRENarine Khachatryan;
Narine Khachatryan
Narine Khachatryan in OpenAIREAnna Klas;
Anna Klas
Anna Klas in OpenAIREColin Klein;
Colin Klein
Colin Klein in OpenAIREChristian A. Klöckner;
Lina Koppel;Christian A. Klöckner
Christian A. Klöckner in OpenAIREAlexandra I. Kosachenko;
Alexandra I. Kosachenko
Alexandra I. Kosachenko in OpenAIREEmily J. Kothe;
Ruth Krebs;Emily J. Kothe
Emily J. Kothe in OpenAIREAmy R. Krosch;
Amy R. Krosch
Amy R. Krosch in OpenAIREAndre P.M. Krouwel;
Andre P.M. Krouwel
Andre P.M. Krouwel in OpenAIREYara Kyrychenko;
Yara Kyrychenko
Yara Kyrychenko in OpenAIREMaria Lagomarsino;
Maria Lagomarsino
Maria Lagomarsino in OpenAIREClaus Lamm;
Claus Lamm
Claus Lamm in OpenAIREFlorian Lange;
Florian Lange
Florian Lange in OpenAIREJulia Lee Cunningham;
Julia Lee Cunningham
Julia Lee Cunningham in OpenAIREJeffrey Lees;
Jeffrey Lees
Jeffrey Lees in OpenAIRETak Yan Leung;
Tak Yan Leung
Tak Yan Leung in OpenAIRENeil Levy;
Neil Levy
Neil Levy in OpenAIREPatricia L. Lockwood;
Patricia L. Lockwood
Patricia L. Lockwood in OpenAIREChiara Longoni;
Chiara Longoni
Chiara Longoni in OpenAIREAlberto López Ortega;
Alberto López Ortega
Alberto López Ortega in OpenAIREDavid D. Loschelder;
David D. Loschelder
David D. Loschelder in OpenAIREJackson G. Lu;
Jackson G. Lu
Jackson G. Lu in OpenAIREYu Luo;
Joseph Luomba;Annika E. Lutz;
Annika E. Lutz
Annika E. Lutz in OpenAIREJohann M. Majer;
Johann M. Majer
Johann M. Majer in OpenAIREEzra Markowitz;
Ezra Markowitz
Ezra Markowitz in OpenAIREAbigail A. Marsh;
Abigail A. Marsh
Abigail A. Marsh in OpenAIREKaren Louise Mascarenhas;
Karen Louise Mascarenhas
Karen Louise Mascarenhas in OpenAIREBwambale Mbilingi;
Bwambale Mbilingi
Bwambale Mbilingi in OpenAIREWinfred Mbungu;
Winfred Mbungu
Winfred Mbungu in OpenAIRECillian McHugh;
Cillian McHugh
Cillian McHugh in OpenAIREMarijn H.C. Meijers;
Marijn H.C. Meijers
Marijn H.C. Meijers in OpenAIREHugo Mercier;
Hugo Mercier
Hugo Mercier in OpenAIREFenant Laurent Mhagama;
Fenant Laurent Mhagama
Fenant Laurent Mhagama in OpenAIREKaterina Michalakis;
Katerina Michalakis
Katerina Michalakis in OpenAIRENace Mikus;
Nace Mikus
Nace Mikus in OpenAIRESarah Milliron;
Sarah Milliron
Sarah Milliron in OpenAIREPanagiotis Mitkidis;
Panagiotis Mitkidis
Panagiotis Mitkidis in OpenAIREFredy S. Monge-Rodríguez;
Fredy S. Monge-Rodríguez
Fredy S. Monge-Rodríguez in OpenAIREYouri L. Mora;
Youri L. Mora
Youri L. Mora in OpenAIREDavid Moreau;
David Moreau
David Moreau in OpenAIREKosuke Motoki;
Kosuke Motoki
Kosuke Motoki in OpenAIREManuel Moyano;
Mathilde Mus;Manuel Moyano
Manuel Moyano in OpenAIREJoaquin Navajas;
Joaquin Navajas
Joaquin Navajas in OpenAIRETam Luong Nguyen;
Tam Luong Nguyen
Tam Luong Nguyen in OpenAIREDung Minh Nguyen;
Dung Minh Nguyen
Dung Minh Nguyen in OpenAIRETrieu Nguyen;
Trieu Nguyen
Trieu Nguyen in OpenAIRELaura Niemi;
Laura Niemi
Laura Niemi in OpenAIRESari R. R. Nijssen;
Sari R. R. Nijssen
Sari R. R. Nijssen in OpenAIREGustav Nilsonne;
Gustav Nilsonne
Gustav Nilsonne in OpenAIREJonas P. Nitschke;
Jonas P. Nitschke
Jonas P. Nitschke in OpenAIRELaila Nockur;
Ritah Okura;Laila Nockur
Laila Nockur in OpenAIRESezin Öner;
Sezin Öner
Sezin Öner in OpenAIREAsil Ali Özdoğru;
Asil Ali Özdoğru
Asil Ali Özdoğru in OpenAIREHelena Palumbo;
Helena Palumbo
Helena Palumbo in OpenAIRECostas Panagopoulos;
Costas Panagopoulos
Costas Panagopoulos in OpenAIREMaria Serena Panasiti;
Maria Serena Panasiti
Maria Serena Panasiti in OpenAIREPhilip Pärnamets;
Philip Pärnamets
Philip Pärnamets in OpenAIREMariola Paruzel-Czachura;
Mariola Paruzel-Czachura
Mariola Paruzel-Czachura in OpenAIREYuri G. Pavlov;
Yuri G. Pavlov
Yuri G. Pavlov in OpenAIRECésar Payán-Gómez;
César Payán-Gómez
César Payán-Gómez in OpenAIREAdam R. Pearson;
Adam R. Pearson
Adam R. Pearson in OpenAIRELeonor Pereira da Costa;
Leonor Pereira da Costa
Leonor Pereira da Costa in OpenAIREHannes M. Petrowsky;
Hannes M. Petrowsky
Hannes M. Petrowsky in OpenAIREStefan Pfattheicher;
Stefan Pfattheicher
Stefan Pfattheicher in OpenAIRENhat Tan Pham;
Nhat Tan Pham
Nhat Tan Pham in OpenAIREVladimir Ponizovskiy;
Clara Pretus;Vladimir Ponizovskiy
Vladimir Ponizovskiy in OpenAIREGabriel G. Rêgo;
Gabriel G. Rêgo
Gabriel G. Rêgo in OpenAIRERitsaart Reimann;
Ritsaart Reimann
Ritsaart Reimann in OpenAIREShawn A. Rhoads;
Shawn A. Rhoads
Shawn A. Rhoads in OpenAIREJulian Riano-Moreno;
Julian Riano-Moreno
Julian Riano-Moreno in OpenAIREdoi: 10.1126/sciadv.adj5778 , 10.31234/osf.io/cr5at , 10.17615/j71a-aj22 , 10.48350/192662 , 10.26181/27048496.v1 , 10.26181/27048496
pmid: 38324680
pmc: PMC10849597
handle: https://repository.ubn.ru.nl/handle/2066/303772 , 11245.1/9babeddd-1bd4-4fd0-9e5c-1ca58a563a68 , 1871.1/d3d71d92-c7c7-4ad6-8fe8-3d0e7b6b85b1 , 11370/ec8f7a32-4bbf-4b3d-b83f-3ef54d6ba264 , 11250/3176791 , 11573/1707992 , 11565/4062583 , 1854/LU-01JPHQY1SMXK9MMQANVYQXZKAM , 11250/3176797 , 11250/3189564 , 11343/340317 , 20.500.13098/12727
doi: 10.1126/sciadv.adj5778 , 10.31234/osf.io/cr5at , 10.17615/j71a-aj22 , 10.48350/192662 , 10.26181/27048496.v1 , 10.26181/27048496
pmid: 38324680
pmc: PMC10849597
handle: https://repository.ubn.ru.nl/handle/2066/303772 , 11245.1/9babeddd-1bd4-4fd0-9e5c-1ca58a563a68 , 1871.1/d3d71d92-c7c7-4ad6-8fe8-3d0e7b6b85b1 , 11370/ec8f7a32-4bbf-4b3d-b83f-3ef54d6ba264 , 11250/3176791 , 11573/1707992 , 11565/4062583 , 1854/LU-01JPHQY1SMXK9MMQANVYQXZKAM , 11250/3176797 , 11250/3189564 , 11343/340317 , 20.500.13098/12727
Effectively reducing climate change requires marked, global behavior change. However, it is unclear which strategies are most likely to motivate people to change their climate beliefs and behaviors. Here, we tested 11 expert-crowdsourced interventions on four climate mitigation outcomes: beliefs, policy support, information sharing intention, and an effortful tree-planting behavioral task. Across 59,440 participants from 63 countries, the interventions’ effectiveness was small, largely limited to nonclimate skeptics, and differed across outcomes: Beliefs were strengthened mostly by decreasing psychological distance (by 2.3%), policy support by writing a letter to a future-generation member (2.6%), information sharing by negative emotion induction (12.1%), and no intervention increased the more effortful behavior—several interventions even reduced tree planting. Last, the effects of each intervention differed depending on people’s initial climate beliefs. These findings suggest that the impact of behavioral climate interventions varies across audiences and target behaviors.
UiS Brage arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2024License: CC BYFull-Text: http://hdl.handle.net/11343/340317Data sources: Bielefeld Academic Search Engine (BASE)Tampere University: TrepoArticle . 2024License: CC BYFull-Text: https://trepo.tuni.fi/handle/10024/210454Data sources: Bielefeld Academic Search Engine (BASE)Repositorio Digital Universidad Torcuato Di TellaArticle . 2024License: CC BY SAData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.31234/osf.i...Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefScience AdvancesArticle . 2024License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryScience AdvancesArticle . 2024Science AdvancesArticle . 2024License: CC BY NCData sources: Maastricht University | MUMC+ Research InformationOxford University Research ArchiveArticle . 2024License: CC BYData sources: Oxford University Research ArchiveServeur académique lausannoisArticle . 2024License: CC BYData sources: Serveur académique lausannoisTrepo - Institutional Repository of Tampere UniversityArticle . 2024 . Peer-reviewedData sources: Trepo - Institutional Repository of Tampere UniversityPublikationer från Linköpings universitetArticle . 2024 . Peer-reviewedData sources: Publikationer från Linköpings universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2024 . Peer-reviewedBergen Open Research Archive - UiBArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBUniversité de Bretagne Occidentale: HALArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Universiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)King's College, London: Research PortalArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca- Università di Roma La SapienzaArticle . 2024Data sources: Archivio della ricerca- Università di Roma La SapienzaArchivio istituzionale della Ricerca - BocconiArticle . 2024Data sources: Archivio istituzionale della Ricerca - BocconiGhent University Academic BibliographyArticle . 2024Data sources: Ghent University Academic BibliographyPontificia Universidad Católica de Chile: Repositorio UCArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.adj5778&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert UiS Brage arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2024License: CC BYFull-Text: http://hdl.handle.net/11343/340317Data sources: Bielefeld Academic Search Engine (BASE)Tampere University: TrepoArticle . 2024License: CC BYFull-Text: https://trepo.tuni.fi/handle/10024/210454Data sources: Bielefeld Academic Search Engine (BASE)Repositorio Digital Universidad Torcuato Di TellaArticle . 2024License: CC BY SAData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.31234/osf.i...Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefScience AdvancesArticle . 2024License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryScience AdvancesArticle . 2024Science AdvancesArticle . 2024License: CC BY NCData sources: Maastricht University | MUMC+ Research InformationOxford University Research ArchiveArticle . 2024License: CC BYData sources: Oxford University Research ArchiveServeur académique lausannoisArticle . 2024License: CC BYData sources: Serveur académique lausannoisTrepo - Institutional Repository of Tampere UniversityArticle . 2024 . Peer-reviewedData sources: Trepo - Institutional Repository of Tampere UniversityPublikationer från Linköpings universitetArticle . 2024 . Peer-reviewedData sources: Publikationer från Linköpings universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2024 . Peer-reviewedBergen Open Research Archive - UiBArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBUniversité de Bretagne Occidentale: HALArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Universiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)King's College, London: Research PortalArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca- Università di Roma La SapienzaArticle . 2024Data sources: Archivio della ricerca- Università di Roma La SapienzaArchivio istituzionale della Ricerca - BocconiArticle . 2024Data sources: Archivio istituzionale della Ricerca - BocconiGhent University Academic BibliographyArticle . 2024Data sources: Ghent University Academic BibliographyPontificia Universidad Católica de Chile: Repositorio UCArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.adj5778&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 AustraliaPublisher:Elsevier BV Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP190103186Authors:Lin, Keng-Te;
Han, Jihong;Lin, Keng-Te
Lin, Keng-Te in OpenAIRELi, Ke;
Guo, Chunsheng; +2 AuthorsLin, Keng-Te;
Han, Jihong;Lin, Keng-Te
Lin, Keng-Te in OpenAIRELi, Ke;
Guo, Chunsheng;Lin, Han;
Lin, Han
Lin, Han in OpenAIREJia, Baohua;
Jia, Baohua
Jia, Baohua in OpenAIREhandle: 1959.3/458660
Abstract This review article aims to provide a comprehensive understanding of radiative cooling technology and their applications, especially on the integration of radiative coolers with devices. Over the past decades, radiative coolers and their applications have been intensively investigated because of their outstanding features for energy saving. The fundamental mechanism and characteristics of radiative cooling, in particular, atmospheric influences, and photothermal manipulation through structural and materials engineering, play essential roles in most of the practical applications. In general, these main factors concomitantly influence the cooling performance of a radiative cooler. However, comprehensive review investigating these main parameters simultaneously remains elusive. In this article, the fundamental features of radiative coolers are discussed, especially the influences of atmospheric conditions at different locations on the radiative coolers, and the photothermal manipulation capability and cooling performance of different types of radiative coolers. The applications, challenges faced in this field and the future trends are also discussed. This article will provide guidance towards integration of radiative coolers with functional devices for both academic researchers and engineers in the fields of energy harvesting, fluidic cooling, energy efficient clothing, and architecture.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nanoen.2020.105517&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nanoen.2020.105517&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:American Chemical Society (ACS) Funded by:NHMRC | Developing a high-through..., ARC | Industrial Transformation..., ARC | Australian Laureate Fello...NHMRC| Developing a high-throughput single-cell exosome screening tool ,ARC| Industrial Transformation Research Hubs - Grant ID: IH150100028 ,ARC| Australian Laureate Fellowships - Grant ID: FL210100180Authors:Yongtao Liu;
Liu Yang;Yongtao Liu
Yongtao Liu in OpenAIREJiayan Liao;
Jiayan Liao
Jiayan Liao in OpenAIREJiajia Zhou;
+12 AuthorsJiajia Zhou
Jiajia Zhou in OpenAIREYongtao Liu;
Liu Yang;Yongtao Liu
Yongtao Liu in OpenAIREJiayan Liao;
Jiayan Liao
Jiayan Liao in OpenAIREJiajia Zhou;
Xiangjun Di;Jiajia Zhou
Jiajia Zhou in OpenAIREYuen Yee Cheng;
Yuen Yee Cheng
Yuen Yee Cheng in OpenAIREDayong Jin;
Dayong Jin;Dayong Jin
Dayong Jin in OpenAIREGuochen Bao;
Guochen Bao
Guochen Bao in OpenAIREXun Zhang;
Xun Zhang
Xun Zhang in OpenAIREGuocheng Fang;
Ming Guan;Guocheng Fang
Guocheng Fang in OpenAIREGuan Huang;
Guan Huang
Guan Huang in OpenAIREYuan Liu;
Dejiang Wang;Yuan Liu
Yuan Liu in OpenAIREGungun Lin;
Gungun Lin
Gungun Lin in OpenAIREpmid: 34714044
Microrobots can expand our abilities to access remote, confined, and enclosed spaces. Their potential applications inside our body are obvious, e.g., to diagnose diseases, deliver medicine, and monitor treatment efficacy. However, critical requirements exist in relation to their operations in gastrointestinal environments, including resistance to strong gastric acid, responsivity to a narrow proton variation window, and locomotion in confined cavities with hierarchical terrains. Here, we report a proton-activatable microrobot to enable real-time, repeated, and site-selective pH sensing and monitoring in physiological relevant environments. This is achieved by stratifying a hydrogel disk to combine a range of functional nanomaterials, including proton-responsive molecular switches, upconversion nanoparticles, and near-infrared (NIR) emitters. By leveraging the 3D magnetic gradient fields and the anisotropic composition, the microrobot can be steered to locomote as a gyrating "Euler's disk", i.e., aslant relative to the surface and along its low-friction outer circumference, exhibiting a high motility of up to 60 body lengths/s. The enhanced magnetomotility can boost the pH-sensing kinetics by 2-fold. The fluorescence of the molecular switch can respond to pH variations with over 600-fold enhancement when the pH decreases from 8 to 1, and the integration of upconversion nanoparticles further allows both the efficient sensitization of NIR light through deep tissue and energy transfer to activate the pH probes. Moreover, the embedded down-shifting NIR emitters provide sufficient contrast for imaging of a single microrobot inside a live mouse. This work suggests great potential in developing multifunctional microrobots to perform generic site-selective tasks in vivo.
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsnano.1c07431&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsnano.1c07431&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Funded by:ARC | Discovery Early Career Re...ARC| Discovery Early Career Researcher Award - Grant ID: DE200100892Authors:Guomin Zhang;
Haihua Zhang; Jiyuan Tu;Guomin Zhang
Guomin Zhang in OpenAIREYao Tao;
+4 AuthorsGuomin Zhang;
Haihua Zhang; Jiyuan Tu;Guomin Zhang
Guomin Zhang in OpenAIREYao Tao;
Yao Tao; Long Shi; Xiang Fang; Xiang Fang;Abstract A type of smart window using thermochromic glazing (TCG) is a promising technology for green buildings owing to the self-regulating feature and low-maintenance need. Its most important feature, thermo-optical properties that regulate the blockage of solar heat, is directly linked to the variation of surface temperatures. However, challenges from the inhomogeneity of thermo-optical properties, the coupled solar radiation and natural convection, and varying outdoor conditions all seriously hinder the understanding of its mechanism. In this paper, a validated Computational Fluid Dynamics (CFD) model achieves the simulation of inhomogeneous tinting of TCG by defining the thermo-optical properties of each finite volume according to the surface temperature. Solar radiation and natural convection at outdoor, indoor and the cavity are solved to reflect glazing temperature more accurately. The case studies compared six different switching temperatures in the range of 20 ∼ 42.5 °C with a transition gradient of 10 °C. Averaged meteorological data for both summer and winter, sunny days and cloudy days are selected to present realistic climate impacts. The result reveals the overall saving in transmitted solar radiation in summer and heating penalties in winter. It suggests the best switching temperatures for each climate condition. With the seasonal operation, the highest saving in solar heat gain is 20.9% when adopting a switching temperature of 25–35 °C, while the lowest saving can be negative, meaning TCG is not suitable for those climate zones. The proposed evaluation criteria help to quantify the applicability of TCG with the input of the summer/winter day ratio and sunny/cloudy ratio. The best region to apply TCG is where summer days are longer and winter solar radiation is significantly lower. The in-depth understanding of this temperature-sensitive process benefits the optimization of TCG in buildings, especially for its seasonal operation needs.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.115058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.115058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Italy, United Kingdom, France, France, United Kingdom, Australia, United Kingdom, Australia, Germany, PortugalPublisher:Springer Science and Business Media LLC Funded by:NSF | COLLABORATIVE RESEARCH: E..., ARC | Shifting rainfall from sp..., NSF | Transformative Behavior o... +3 projectsNSF| COLLABORATIVE RESEARCH: EAGER-NEON: Prototyping Assessment of Ecoclimate Teleconnections Affecting NEON Domains ,ARC| Shifting rainfall from spring to autumn: tree growth and water use under climate change ,NSF| Transformative Behavior of Energy, Water and Carbon in the Critical Zone II: Interactions between Long- and Short-term Processes that Control Delivery of Critical Zone Services ,ARC| Woodland response to elevated CO2 in free air carbon dioxide enrichment: does phosphorus limit the sink for Carbon? ,ARC| Testing climatic, physiological and hydrological assumptions underpinning water yield from montane forests ,NSF| Collaborative Research: Ecoclimate Teleconnections between Amazonia and Temperate North America: Cross-Region Feedbacks among Tree Mortality, Land Use Change, and the AtmosphereAuthors:Jordi Martínez-Vilalta;
Jordi Martínez-Vilalta
Jordi Martínez-Vilalta in OpenAIRETimothy J. Brodribb;
Simon M. Landhäusser;Timothy J. Brodribb
Timothy J. Brodribb in OpenAIREMelanie J. B. Zeppel;
+62 AuthorsMelanie J. B. Zeppel
Melanie J. B. Zeppel in OpenAIREJordi Martínez-Vilalta;
Jordi Martínez-Vilalta
Jordi Martínez-Vilalta in OpenAIRETimothy J. Brodribb;
Simon M. Landhäusser;Timothy J. Brodribb
Timothy J. Brodribb in OpenAIREMelanie J. B. Zeppel;
Melanie J. B. Zeppel;Melanie J. B. Zeppel
Melanie J. B. Zeppel in OpenAIREWilliam T. Pockman;
Thomas Kolb;William T. Pockman
William T. Pockman in OpenAIREHenrik Hartmann;
Andy Hector; Travis E. Huxman; Alison K. Macalady; Darin J. Law;Henrik Hartmann
Henrik Hartmann in OpenAIREL. Turin Dickman;
Matthew J. Germino;L. Turin Dickman
L. Turin Dickman in OpenAIREDanielle A. Way;
Danielle A. Way; Leander D. L. Anderegg; Robert E. Pangle; John S. Sperry;Danielle A. Way
Danielle A. Way in OpenAIREDavid T. Tissue;
David T. Tissue
David T. Tissue in OpenAIRENate G. McDowell;
J. D. Muss;Nate G. McDowell
Nate G. McDowell in OpenAIREBrent E. Ewers;
Honglang Duan; Patrick J. Hudson;Brent E. Ewers
Brent E. Ewers in OpenAIREPatrick J. Mitchell;
Patrick J. Mitchell
Patrick J. Mitchell in OpenAIREFrida I. Piper;
Elizabeth A. Pinkard; Lucía Galiano;Frida I. Piper
Frida I. Piper in OpenAIRETrenton E. Franz;
Trenton E. Franz
Trenton E. Franz in OpenAIREUwe G. Hacke;
Joe Quirk; Greg A. Barron-Gafford; Keith Reinhardt; Adam D. Collins;Uwe G. Hacke
Uwe G. Hacke in OpenAIREArthur Gessler;
David M. Love; Jeffrey M. Kane; Sanna Sevanto;Arthur Gessler
Arthur Gessler in OpenAIREHarald Bugmann;
Harald Bugmann
Harald Bugmann in OpenAIREMaurizio Mencuccini;
David D. Breshears; Henry D. Adams;Maurizio Mencuccini
Maurizio Mencuccini in OpenAIRENúria Garcia-Forner;
David A. Galvez;Núria Garcia-Forner
Núria Garcia-Forner in OpenAIREJames D. Lewis;
James D. Lewis
James D. Lewis in OpenAIREDavid J. Beerling;
David J. Beerling
David J. Beerling in OpenAIREMichael O'Brien;
Michael O'Brien
Michael O'Brien in OpenAIREChonggang Xu;
Michael W. Jenkins; Jennifer A. Plaut; Anna Sala; Craig D. Allen; Monica L. Gaylord; Monica L. Gaylord;Chonggang Xu
Chonggang Xu in OpenAIREEnrico A. Yepez;
Enrico A. Yepez
Enrico A. Yepez in OpenAIREMichel Vennetier;
Jean-Marc Limousin; Anthony P. O'Grady; Richard Cobb;Michel Vennetier
Michel Vennetier in OpenAIREFrancesco Ripullone;
William R. L. Anderegg;Francesco Ripullone
Francesco Ripullone in OpenAIRERodrigo Vargas;
Rodrigo Vargas
Rodrigo Vargas in OpenAIRERodrigo Hakamada;
Rodrigo Hakamada
Rodrigo Hakamada in OpenAIREMichael G. Ryan;
Michael G. Ryan;Michael G. Ryan
Michael G. Ryan in OpenAIREWidespread tree mortality associated with drought has been observed on all forested continents and global change is expected to exacerbate vegetation vulnerability. Forest mortality has implications for future biosphere-atmosphere interactions of carbon, water and energy balance, and is poorly represented in dynamic vegetation models. Reducing uncertainty requires improved mortality projections founded on robust physiological processes. However, the proposed mechanisms of drought-induced mortality, including hydraulic failure and carbon starvation, are unresolved. A growing number of empirical studies have investigated these mechanisms, but data have not been consistently analysed across species and biomes using a standardized physiological framework. Here, we show that xylem hydraulic failure was ubiquitous across multiple tree taxa at drought-induced mortality. All species assessed had 60% or higher loss of xylem hydraulic conductivity, consistent with proposed theoretical and modelled survival thresholds. We found diverse responses in non-structural carbohydrate reserves at mortality, indicating that evidence supporting carbon starvation was not universal. Reduced non-structural carbohydrates were more common for gymnosperms than angiosperms, associated with xylem hydraulic vulnerability, and may have a role in reducing hydraulic function. Our finding that hydraulic failure at drought-induced mortality was persistent across species indicates that substantial improvement in vegetation modelling can be achieved using thresholds in hydraulic function.
Università degli Stu... arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2017Full-Text: http://hdl.handle.net/11563/128322Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2023Institut National de la Recherche Agronomique: ProdINRAArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Nature Ecology & EvolutionArticle . 2017 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-017-0248-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Università degli Stu... arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2017Full-Text: http://hdl.handle.net/11563/128322Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2023Institut National de la Recherche Agronomique: ProdINRAArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Nature Ecology & EvolutionArticle . 2017 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-017-0248-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Funded by:ARC | Discovery Projects - Gran..., ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP220100116 ,ARC| Discovery Projects - Grant ID: DP210103766Authors: Yintang Liang;Jianbo Li;
Xiaofei Long; Xiaofeng Lu; +1 AuthorsJianbo Li
Jianbo Li in OpenAIREYintang Liang;Jianbo Li;
Xiaofei Long; Xiaofeng Lu;Jianbo Li
Jianbo Li in OpenAIREDongke Zhang;
Dongke Zhang
Dongke Zhang in OpenAIREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2022.126501&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2022.126501&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Spain, United States, Sweden, ItalyPublisher:Wiley Funded by:UKRI | Quinquennial (half-decada..., ARC | Discovery Early Career Re..., ARC | Australian Laureate Fello...UKRI| Quinquennial (half-decadal) carbon and nutrient dynamics in temperate forests: Implications for carbon sequestration in a high carbon dioxide world ,ARC| Discovery Early Career Researcher Award - Grant ID: DE210101654 ,ARC| Australian Laureate Fellowships - Grant ID: FL190100003Authors:Anna Gardner;
Anna Gardner
Anna Gardner in OpenAIREMingkai Jiang;
Mingkai Jiang
Mingkai Jiang in OpenAIREDavid S. Ellsworth;
David S. Ellsworth
David S. Ellsworth in OpenAIREA. Robert MacKenzie;
+15 AuthorsA. Robert MacKenzie
A. Robert MacKenzie in OpenAIREAnna Gardner;
Anna Gardner
Anna Gardner in OpenAIREMingkai Jiang;
Mingkai Jiang
Mingkai Jiang in OpenAIREDavid S. Ellsworth;
David S. Ellsworth
David S. Ellsworth in OpenAIREA. Robert MacKenzie;
Jeremy Pritchard;A. Robert MacKenzie
A. Robert MacKenzie in OpenAIREMartin Karl‐Friedrich Bader;
Martin Karl‐Friedrich Bader
Martin Karl‐Friedrich Bader in OpenAIRECraig V. M. Barton;
Carl Bernacchi; Carlo Calfapietra;Craig V. M. Barton
Craig V. M. Barton in OpenAIREKristine Y. Crous;
Kristine Y. Crous
Kristine Y. Crous in OpenAIREMirindi Eric Dusenge;
Mirindi Eric Dusenge
Mirindi Eric Dusenge in OpenAIRETeresa E. Gimeno;
Teresa E. Gimeno
Teresa E. Gimeno in OpenAIREMarianne Hall;
Marianne Hall
Marianne Hall in OpenAIREShubhangi Lamba;
Shubhangi Lamba
Shubhangi Lamba in OpenAIRESebastian Leuzinger;
Sebastian Leuzinger
Sebastian Leuzinger in OpenAIREJohan Uddling;
Jeffrey Warren;Johan Uddling
Johan Uddling in OpenAIREGöran Wallin;
Göran Wallin
Göran Wallin in OpenAIREBelinda E. Medlyn;
Belinda E. Medlyn
Belinda E. Medlyn in OpenAIRESummary Optimal stomatal theory predicts that stomata operate to maximise photosynthesis (Anet) and minimise transpirational water loss to achieve optimal intrinsic water‐use efficiency (iWUE). We tested whether this theory can predict stomatal responses to elevated atmospheric CO2 (eCO2), and whether it can capture differences in responsiveness among woody plant functional types (PFTs). We conducted a meta‐analysis of tree studies of the effect of eCO2 on iWUE and its components Anet and stomatal conductance (gs). We compared three PFTs, using the unified stomatal optimisation (USO) model to account for confounding effects of leaf–air vapour pressure difference (D). We expected smaller gs, but greater Anet, responses to eCO2 in gymnosperms compared with angiosperm PFTs. We found that iWUE increased in proportion to increasing eCO2 in all PFTs, and that increases in Anet had stronger effects than reductions in gs. The USO model correctly captured stomatal behaviour with eCO2 across most datasets. The chief difference among PFTs was a lower stomatal slope parameter (g1) for the gymnosperm, compared with angiosperm, species. Land surface models can use the USO model to describe stomatal behaviour under changing atmospheric CO2 conditions.
IRIS Cnr arrow_drop_down IRIS CnrArticle . 2023License: CC BYFull-Text: https://iris.cnr.it/bitstream/20.500.14243/482421/1/Optimal%20stomatal%20theory%20predicts.pdfData sources: IRIS CnrUniversity of Western Sydney (UWS): Research DirectArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Linnaeus University Kalmar Växjö: Publications (DiVA)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2023Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.18618&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert IRIS Cnr arrow_drop_down IRIS CnrArticle . 2023License: CC BYFull-Text: https://iris.cnr.it/bitstream/20.500.14243/482421/1/Optimal%20stomatal%20theory%20predicts.pdfData sources: IRIS CnrUniversity of Western Sydney (UWS): Research DirectArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Linnaeus University Kalmar Växjö: Publications (DiVA)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2023Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.18618&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu