- home
- Advanced Search
Filters
Clear All- Energy Research
- NL
- CN
- English
- Energies
- Energy Research
- NL
- CN
- English
- Energies
description Publicationkeyboard_double_arrow_right Review 2020 NetherlandsAuthors: van der Male, P. (author); Vergassola, M. (author); van Dalen, K.N. (author);To meet the political goals regarding renewable energy production, offshore wind keeps expanding to waters with larger depths and harsher conditions, while the turbine size continues to grow and ever-larger foundation structures are required. This development can only be successful if further cuts in the levelized cost of energy are established. Regarding the design of the foundation structures, a particular challenge in this respect relates to the reduction of the total computational time required for the design. For both practical and commercial reasons, the decoupled modelling of offshore wind support structures finds a common application, especially during the preliminary design stage. This modelling approach aims at capturing the relevant characteristics of the different environment-structure interactions, while reducing the complexity as much as possible. This paper presents a comprehensive review of the state-of-the-art modelling approaches of environmental interactions with offshore wind support structures. In this respect, the primary focus is on the monopile foundation, as this concept is expected to remain the prominent solution in the years to come. Current challenges in the field are identified, considering as well the engineering practice and the insights obtained from code comparison studies and experimental validations. It is concluded that the decoupled analysis provides valuable modelling perspectives, in particular for the preliminary design stage. In the further development of the different modelling strategies, however, the trade-off with computational costs should always be kept in mind.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::b54d6025b6b8302854dd01478e16daba&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::b54d6025b6b8302854dd01478e16daba&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Review 2020 NetherlandsAuthors: Qi, Y. (author); Qian, QK (author); Meijer, F.M. (author); Visscher, H.J. (author);Building energy renovations can effectively improve the environmental performance and energy sustainability of existing buildings. From 2007 onwards, the Chinese government has promoted energy-saving renovations of existing urban residential buildings. Nevertheless, various quality failures happen during the construction period in energy-saving renovation projects of residential buildings. Yet, the causes and their characters remain largely unknown. Through a literature review, this paper investigates the causes of quality failures. Validated through experts’ interviews, a total of 18 causes were identified in building energy renovation projects. These causes were analyzed from two main aspects: the importance of a cause (related to impact and frequency), and the level of effort required to address a cause (related to origin and scale), using both a questionnaire survey and a focus group. The results indicate that the critical causes of quality failures are working under high-cost and high-time pressure, adverse natural conditions, fraud of construction companies, incomplete construction site survey, poor checking procedures of supervisors, poor operational skilled workers, inadequate equipment performance, lack of experienced project managers, and incomplete building information in projects. The causes were classified as external and internal causes of building energy renovation projects. The outcome of this paper should aid policy makers and project coordinators to focus on critical causes of quality failures, and to develop effective actions and policy interventions to achieve successful renovation projects with high-quality performance
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::d45ae7407d49a9772129e8200c9cee58&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::d45ae7407d49a9772129e8200c9cee58&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2012Publisher:MDPI AG Authors: Xiangzheng Deng; Jianzhi Han; Fang Yin;Bioenergy is currently regarded as a renewable energy source with a high growth potential. Forest-based biodiesel, with the significant advantage of not competing with grain production on cultivated land, has been considered as a promising substitute for diesel fuel by many countries, including China. Consequently, extracting biodiesel from <em>Jatropha</em><em> curcas</em> has become a growing industry. However, many key issues related to the development of this industry are still not fully resolved and the prospects for this industry are complicated. The aim of this paper is to evaluate the net energy, CO<sub>2</sub> emission, and cost efficiency of <em>Jatropha</em> biodiesel as a substitute fuel in China to help resolve some of the key issues by studying data from this region of China that is well suited to growing <em>Jatropha</em>. Our results show that: (1) <em>Jatropha</em> biodiesel is preferable for global warming mitigation over diesel fuel in terms of the carbon sink during <em>Jatropha</em> tree growth. (2) The net energy yield of <em>Jatropha</em> biodiesel is much lower than that of fossil fuel, induced by the high energy consumption during <em>Jatropha</em> plantation establishment and the conversion from seed oil to diesel fuel step. Therefore, the energy efficiencies of the production of <em>Jatropha</em> and its conversion to biodiesel need to be improved. (3) Due to current low profit and high risk in the study area, farmers have little incentive to continue or increase <em>Jatropha</em> production. (4) It is necessary to provide more subsidies and preferential policies for <em>Jatropha</em> plantations if this industry is to grow. It is also necessary for local government to set realistic objectives and make rational plans to choose proper sites for <em>Jatropha</em> biodiesel development and the work reported here should assist that effort. Future research focused on breading high-yield varieties, development of efficient field management systems, and detailed studies lifecycle environmental impacts analysis is required to promote biologically and economically sustainable development of <em>Jatropha</em> biodiesel and to assist government agencies in setting realistic objectives and appropriate and advantageous policies for the regions and the country.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::b15c848dda9446c437e90a0422185fb9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::b15c848dda9446c437e90a0422185fb9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Review 2020 NetherlandsAuthors: Ahmad, Z. (author); Rueda, José L. (author); Veerakumar, Nidarshan (author); Rakhshani, E. (author); +2 AuthorsAhmad, Z. (author); Rueda, José L. (author); Veerakumar, Nidarshan (author); Rakhshani, E. (author); Palensky, P. (author); van der Meijden, M.A.M.M. (author);A task for new power generation technologies, interfaced to the electrical grid by power electronic converters, is to stiffen the rate of change of frequency (RoCoF) at the initial few milliseconds (ms) after any variation of active power balance. This task is defined in this article as fast active power regulation (FAPR), a generic definition of the FAPR is also proposed in this study. Converters equipped with FAPR controls should be tested in laboratory conditions before employment in the actual power system. This paper presents a power hardware-in-the-loop (PHIL) based method for FAPR compliance testing of the wind turbine converter controls. The presented PHIL setup is a generic test setup for the testing of all kinds of control strategies of the grid-connected power electronic converters. Firstly, a generic PHIL testing methodology is presented. Later on, a combined droop- anFd derivative-based FAPR control has been implemented and tested on the proposed PHIL setup for FAPR compliance criteria of the wind turbine converters. The compliance criteria for the FAPR of the wind turbine converter controls have been framed based on the literature survey. Improvement in the RoCoF and and maximum underfrequency deviation (NADIR) has been observed if the wind turbine converter controls abide by the FAPR compliance criteria.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::4f7e0026725339ed7c306b484e21a3f1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::4f7e0026725339ed7c306b484e21a3f1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Review 2020 NetherlandsAuthors: Tsouvalas, A. (author);The growing demand for renewable energy supply stimulates a drastic increase in the deployment rate of offshore wind energy. Offshore wind power generators are usually supported by large foundation piles that are driven into the seabed with hydraulic impact hammers or vibratory devices. The pile installation process, which is key to the construction of every new wind farm, is hindered by a serious by-product: the underwater noise pollution. This paper presents a comprehensive review of the state-of-the-art computational methods to predict the underwater noise emission by the installation of foundation piles offshore including the available noise mitigation strategies. Future challenges in the field are identified under the prism of the ever-increasing size of wind turbines and the emerging pile driving technologies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::758dae0fce12d0f693e25f101e5f90b4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::758dae0fce12d0f693e25f101e5f90b4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Review 2020 NetherlandsAuthors: Sewdien, V.N. (author); Wang, Xiongfei (author); Rueda, José L. (author); van der Meijden, M.A.M.M. (author);The replacement of conventional generation by power electronics-based generation changes the dynamic characteristics of the power system. This results in, among other things, the increased susceptibility to subsynchronous oscillations (SSO). First, this paper discusses three recently emerging SSO phenomena, which arise due to the interactions between (1) a doubly-fed induction generator and a series compensated transmission system; (2) a voltage source converter (VSC) and a weak grid; and (3) nearby VSCs. A fundamental review of these phenomena resulted in the requirement for a reclassification of the existing SSO phenomena. This reclassification is proposed in this work and is based on interacting components identified using participation factor analysis for the distinct phenomena. Second, a critical review of the existing mitigation measures is performed for these phenomena, highlighting the advantages and disadvantages of the solutions. The influence of the wind speed, grid strength, number of wind turbines, and several converter controller parameters are also discussed. To assist equipment manufacturers, control design engineers, and system operators in selecting and designing effective mitigation measures, the existing solutions are categorized in control solutions, hardware solutions, and solutions based on system level coordination. Finally, perspectives on open issues conclude this paper.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::198ba560f586c73a995ba6bfada8eca4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::198ba560f586c73a995ba6bfada8eca4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2012Publisher:MDPI AG Chao Tang; Tuan Liu; Lijun Yang; Ruijin Liao; Yuan Yuan; Fuzhou Zhang;SiO<sub>2</sub> hollow spheres and low relative permittivity insulation paper handsheets composed of these SiO<sub>2</sub> hollow spheres with different weight percentages were successfully prepared. Low-content SiO<sub>2</sub> hollow spheres were uniformly dispersed in the insulation paper handsheets. The relative permittivity of the immersed oil Kraft-SiO<sub>2</sub> hollow sphere handsheets (K-SiO<sub>2</sub>) initially decreased and then increased with increased amount of SiO<sub>2</sub> hollow spheres. K-5% SiO<sub>2</sub> possessed the lowest relative permittivity of approximately 1.68 at 50 Hz. The breakdown voltage of the paper-oil-paper composite insulation system increased from 26.4 kV to 30.5 kV with decreased relative permittivity of the paper from 2.55 to 1.68. The relationship between the relative permittivity and electric field strength of typical samples were also calculated.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::7697ca9a3b87f222d0fd1688a5f11718&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::7697ca9a3b87f222d0fd1688a5f11718&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Review 2020 NetherlandsAuthors: Moghadasi, Hesam (author); Malekian, Navid (author); Saffari, Hamid (author); Mirza Gheytaghi, Amir (author); +1 AuthorsMoghadasi, Hesam (author); Malekian, Navid (author); Saffari, Hamid (author); Mirza Gheytaghi, Amir (author); Zhang, Kouchi (author);Pool boiling is an effective heat transfer process in a wide range of applications related to energy conversion, including power generation, solar collectors, cooling systems, refrigeration and air conditioning. By considering the broad range of applications, any improvement in higher heat-removal yield can ameliorate the ultimate heat usage and delay or even avoid the occurrence of system failures, thus leading to remarkable economic, environmental and energy efficiency outcomes. A century of research on ameliorating critical heat flux (CHF) has focused on altering the boiling surface characteristics, such as its nucleation site density, wettability, wickability and heat transfer area, by many innovative techniques. Due to the remarkable interest of using nanoparticle deposition on boiling surfaces, this review is targeted towards investigating whether or not metal oxide nanoparticles can modify surface characteristics to enhance the CHF. The influence of nanoparticle material, thermo-physical properties, concentration, shape, and size are categorized, and the inconsistency or contradictions of the existing research results are recognized. In the following, nanoparticle deposition methods are presented to provide a worthwhile alternative to deposition rather than nanofluid boiling. Furthermore, possible mechanisms and models are identified to explain the amelioration results. Finally, the present status of nanoparticle deposition for CHF amelioration, along with their future challenges, amelioration potentials, limitations, and their possible industrial implementation, is discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::a5243b9b5bd63e50b7bc07821c342f6f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::a5243b9b5bd63e50b7bc07821c342f6f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Review 2020 NetherlandsAuthors: Alkadri, M.F. (author); De Luca, Francesco (author); Turrin, M. (author); Sariyildiz, I.S. (author);The increasing population density in urban areas simultaneously impacts the trend of energy consumption in building sectors and the urban heat island (UHI) effects of urban infrastructure. Accordingly, passive design strategies to create sustainable buildings play a major role in addressing these issues, while solar envelopes prove to be a relevant concept that specifically considers the environmental performance aspects of a proposed building given their local contexts. As significant advances have been made over the past decades regarding the development and implementation of computational solar envelopes, this study presents a comprehensive review of solar envelopes while specifically taking into account design parameters, digital tools, and the implementation of case studies in various contextual settings. This extensive review is conducted in several stages. First, an investigation of the scope and procedural steps of the review is conducted to frame the boundary of the topic to be analyzed within the conceptual framework of solar envelopes. Second, comparative analyses between categorized design methods in parallel with a database of design parameters are conducted, followed by an in-depth discussion of the criteria for the digital tools and case studies extracted from the selected references. Third, knowledge gaps are identified, and the future development of solar envelopes is discussed to complete the review. This study ultimately provides an inclusive understanding for designers and architects regarding the progressive methods of the development of solar envelopes during the conceptual design stage
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::a701f0748bae3348297d0407ccd4e1a3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::a701f0748bae3348297d0407ccd4e1a3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Review 2020 NetherlandsAuthors: van der Male, P. (author); Vergassola, M. (author); van Dalen, K.N. (author);To meet the political goals regarding renewable energy production, offshore wind keeps expanding to waters with larger depths and harsher conditions, while the turbine size continues to grow and ever-larger foundation structures are required. This development can only be successful if further cuts in the levelized cost of energy are established. Regarding the design of the foundation structures, a particular challenge in this respect relates to the reduction of the total computational time required for the design. For both practical and commercial reasons, the decoupled modelling of offshore wind support structures finds a common application, especially during the preliminary design stage. This modelling approach aims at capturing the relevant characteristics of the different environment-structure interactions, while reducing the complexity as much as possible. This paper presents a comprehensive review of the state-of-the-art modelling approaches of environmental interactions with offshore wind support structures. In this respect, the primary focus is on the monopile foundation, as this concept is expected to remain the prominent solution in the years to come. Current challenges in the field are identified, considering as well the engineering practice and the insights obtained from code comparison studies and experimental validations. It is concluded that the decoupled analysis provides valuable modelling perspectives, in particular for the preliminary design stage. In the further development of the different modelling strategies, however, the trade-off with computational costs should always be kept in mind.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::b54d6025b6b8302854dd01478e16daba&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::b54d6025b6b8302854dd01478e16daba&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Review 2020 NetherlandsAuthors: Qi, Y. (author); Qian, QK (author); Meijer, F.M. (author); Visscher, H.J. (author);Building energy renovations can effectively improve the environmental performance and energy sustainability of existing buildings. From 2007 onwards, the Chinese government has promoted energy-saving renovations of existing urban residential buildings. Nevertheless, various quality failures happen during the construction period in energy-saving renovation projects of residential buildings. Yet, the causes and their characters remain largely unknown. Through a literature review, this paper investigates the causes of quality failures. Validated through experts’ interviews, a total of 18 causes were identified in building energy renovation projects. These causes were analyzed from two main aspects: the importance of a cause (related to impact and frequency), and the level of effort required to address a cause (related to origin and scale), using both a questionnaire survey and a focus group. The results indicate that the critical causes of quality failures are working under high-cost and high-time pressure, adverse natural conditions, fraud of construction companies, incomplete construction site survey, poor checking procedures of supervisors, poor operational skilled workers, inadequate equipment performance, lack of experienced project managers, and incomplete building information in projects. The causes were classified as external and internal causes of building energy renovation projects. The outcome of this paper should aid policy makers and project coordinators to focus on critical causes of quality failures, and to develop effective actions and policy interventions to achieve successful renovation projects with high-quality performance
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::d45ae7407d49a9772129e8200c9cee58&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::d45ae7407d49a9772129e8200c9cee58&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2012Publisher:MDPI AG Authors: Xiangzheng Deng; Jianzhi Han; Fang Yin;Bioenergy is currently regarded as a renewable energy source with a high growth potential. Forest-based biodiesel, with the significant advantage of not competing with grain production on cultivated land, has been considered as a promising substitute for diesel fuel by many countries, including China. Consequently, extracting biodiesel from <em>Jatropha</em><em> curcas</em> has become a growing industry. However, many key issues related to the development of this industry are still not fully resolved and the prospects for this industry are complicated. The aim of this paper is to evaluate the net energy, CO<sub>2</sub> emission, and cost efficiency of <em>Jatropha</em> biodiesel as a substitute fuel in China to help resolve some of the key issues by studying data from this region of China that is well suited to growing <em>Jatropha</em>. Our results show that: (1) <em>Jatropha</em> biodiesel is preferable for global warming mitigation over diesel fuel in terms of the carbon sink during <em>Jatropha</em> tree growth. (2) The net energy yield of <em>Jatropha</em> biodiesel is much lower than that of fossil fuel, induced by the high energy consumption during <em>Jatropha</em> plantation establishment and the conversion from seed oil to diesel fuel step. Therefore, the energy efficiencies of the production of <em>Jatropha</em> and its conversion to biodiesel need to be improved. (3) Due to current low profit and high risk in the study area, farmers have little incentive to continue or increase <em>Jatropha</em> production. (4) It is necessary to provide more subsidies and preferential policies for <em>Jatropha</em> plantations if this industry is to grow. It is also necessary for local government to set realistic objectives and make rational plans to choose proper sites for <em>Jatropha</em> biodiesel development and the work reported here should assist that effort. Future research focused on breading high-yield varieties, development of efficient field management systems, and detailed studies lifecycle environmental impacts analysis is required to promote biologically and economically sustainable development of <em>Jatropha</em> biodiesel and to assist government agencies in setting realistic objectives and appropriate and advantageous policies for the regions and the country.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::b15c848dda9446c437e90a0422185fb9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::b15c848dda9446c437e90a0422185fb9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Review 2020 NetherlandsAuthors: Ahmad, Z. (author); Rueda, José L. (author); Veerakumar, Nidarshan (author); Rakhshani, E. (author); +2 AuthorsAhmad, Z. (author); Rueda, José L. (author); Veerakumar, Nidarshan (author); Rakhshani, E. (author); Palensky, P. (author); van der Meijden, M.A.M.M. (author);A task for new power generation technologies, interfaced to the electrical grid by power electronic converters, is to stiffen the rate of change of frequency (RoCoF) at the initial few milliseconds (ms) after any variation of active power balance. This task is defined in this article as fast active power regulation (FAPR), a generic definition of the FAPR is also proposed in this study. Converters equipped with FAPR controls should be tested in laboratory conditions before employment in the actual power system. This paper presents a power hardware-in-the-loop (PHIL) based method for FAPR compliance testing of the wind turbine converter controls. The presented PHIL setup is a generic test setup for the testing of all kinds of control strategies of the grid-connected power electronic converters. Firstly, a generic PHIL testing methodology is presented. Later on, a combined droop- anFd derivative-based FAPR control has been implemented and tested on the proposed PHIL setup for FAPR compliance criteria of the wind turbine converters. The compliance criteria for the FAPR of the wind turbine converter controls have been framed based on the literature survey. Improvement in the RoCoF and and maximum underfrequency deviation (NADIR) has been observed if the wind turbine converter controls abide by the FAPR compliance criteria.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::4f7e0026725339ed7c306b484e21a3f1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::4f7e0026725339ed7c306b484e21a3f1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Review 2020 NetherlandsAuthors: Tsouvalas, A. (author);The growing demand for renewable energy supply stimulates a drastic increase in the deployment rate of offshore wind energy. Offshore wind power generators are usually supported by large foundation piles that are driven into the seabed with hydraulic impact hammers or vibratory devices. The pile installation process, which is key to the construction of every new wind farm, is hindered by a serious by-product: the underwater noise pollution. This paper presents a comprehensive review of the state-of-the-art computational methods to predict the underwater noise emission by the installation of foundation piles offshore including the available noise mitigation strategies. Future challenges in the field are identified under the prism of the ever-increasing size of wind turbines and the emerging pile driving technologies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::758dae0fce12d0f693e25f101e5f90b4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::758dae0fce12d0f693e25f101e5f90b4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Review 2020 NetherlandsAuthors: Sewdien, V.N. (author); Wang, Xiongfei (author); Rueda, José L. (author); van der Meijden, M.A.M.M. (author);The replacement of conventional generation by power electronics-based generation changes the dynamic characteristics of the power system. This results in, among other things, the increased susceptibility to subsynchronous oscillations (SSO). First, this paper discusses three recently emerging SSO phenomena, which arise due to the interactions between (1) a doubly-fed induction generator and a series compensated transmission system; (2) a voltage source converter (VSC) and a weak grid; and (3) nearby VSCs. A fundamental review of these phenomena resulted in the requirement for a reclassification of the existing SSO phenomena. This reclassification is proposed in this work and is based on interacting components identified using participation factor analysis for the distinct phenomena. Second, a critical review of the existing mitigation measures is performed for these phenomena, highlighting the advantages and disadvantages of the solutions. The influence of the wind speed, grid strength, number of wind turbines, and several converter controller parameters are also discussed. To assist equipment manufacturers, control design engineers, and system operators in selecting and designing effective mitigation measures, the existing solutions are categorized in control solutions, hardware solutions, and solutions based on system level coordination. Finally, perspectives on open issues conclude this paper.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::198ba560f586c73a995ba6bfada8eca4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::198ba560f586c73a995ba6bfada8eca4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2012Publisher:MDPI AG Chao Tang; Tuan Liu; Lijun Yang; Ruijin Liao; Yuan Yuan; Fuzhou Zhang;SiO<sub>2</sub> hollow spheres and low relative permittivity insulation paper handsheets composed of these SiO<sub>2</sub> hollow spheres with different weight percentages were successfully prepared. Low-content SiO<sub>2</sub> hollow spheres were uniformly dispersed in the insulation paper handsheets. The relative permittivity of the immersed oil Kraft-SiO<sub>2</sub> hollow sphere handsheets (K-SiO<sub>2</sub>) initially decreased and then increased with increased amount of SiO<sub>2</sub> hollow spheres. K-5% SiO<sub>2</sub> possessed the lowest relative permittivity of approximately 1.68 at 50 Hz. The breakdown voltage of the paper-oil-paper composite insulation system increased from 26.4 kV to 30.5 kV with decreased relative permittivity of the paper from 2.55 to 1.68. The relationship between the relative permittivity and electric field strength of typical samples were also calculated.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::7697ca9a3b87f222d0fd1688a5f11718&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::7697ca9a3b87f222d0fd1688a5f11718&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Review 2020 NetherlandsAuthors: Moghadasi, Hesam (author); Malekian, Navid (author); Saffari, Hamid (author); Mirza Gheytaghi, Amir (author); +1 AuthorsMoghadasi, Hesam (author); Malekian, Navid (author); Saffari, Hamid (author); Mirza Gheytaghi, Amir (author); Zhang, Kouchi (author);Pool boiling is an effective heat transfer process in a wide range of applications related to energy conversion, including power generation, solar collectors, cooling systems, refrigeration and air conditioning. By considering the broad range of applications, any improvement in higher heat-removal yield can ameliorate the ultimate heat usage and delay or even avoid the occurrence of system failures, thus leading to remarkable economic, environmental and energy efficiency outcomes. A century of research on ameliorating critical heat flux (CHF) has focused on altering the boiling surface characteristics, such as its nucleation site density, wettability, wickability and heat transfer area, by many innovative techniques. Due to the remarkable interest of using nanoparticle deposition on boiling surfaces, this review is targeted towards investigating whether or not metal oxide nanoparticles can modify surface characteristics to enhance the CHF. The influence of nanoparticle material, thermo-physical properties, concentration, shape, and size are categorized, and the inconsistency or contradictions of the existing research results are recognized. In the following, nanoparticle deposition methods are presented to provide a worthwhile alternative to deposition rather than nanofluid boiling. Furthermore, possible mechanisms and models are identified to explain the amelioration results. Finally, the present status of nanoparticle deposition for CHF amelioration, along with their future challenges, amelioration potentials, limitations, and their possible industrial implementation, is discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::a5243b9b5bd63e50b7bc07821c342f6f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::a5243b9b5bd63e50b7bc07821c342f6f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Review 2020 NetherlandsAuthors: Alkadri, M.F. (author); De Luca, Francesco (author); Turrin, M. (author); Sariyildiz, I.S. (author);The increasing population density in urban areas simultaneously impacts the trend of energy consumption in building sectors and the urban heat island (UHI) effects of urban infrastructure. Accordingly, passive design strategies to create sustainable buildings play a major role in addressing these issues, while solar envelopes prove to be a relevant concept that specifically considers the environmental performance aspects of a proposed building given their local contexts. As significant advances have been made over the past decades regarding the development and implementation of computational solar envelopes, this study presents a comprehensive review of solar envelopes while specifically taking into account design parameters, digital tools, and the implementation of case studies in various contextual settings. This extensive review is conducted in several stages. First, an investigation of the scope and procedural steps of the review is conducted to frame the boundary of the topic to be analyzed within the conceptual framework of solar envelopes. Second, comparative analyses between categorized design methods in parallel with a database of design parameters are conducted, followed by an in-depth discussion of the criteria for the digital tools and case studies extracted from the selected references. Third, knowledge gaps are identified, and the future development of solar envelopes is discussed to complete the review. This study ultimately provides an inclusive understanding for designers and architects regarding the progressive methods of the development of solar envelopes during the conceptual design stage
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::a701f0748bae3348297d0407ccd4e1a3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::a701f0748bae3348297d0407ccd4e1a3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu