- home
- Advanced Search
- Energy Research
- natural sciences
- 7. Clean energy
- 6. Clean water
- 11. Sustainability
- CN
- EU
- Energy Research
- natural sciences
- 7. Clean energy
- 6. Clean water
- 11. Sustainability
- CN
- EU
description Publicationkeyboard_double_arrow_right Article , Journal 2021 Hong Kong, China (People's Republic of)Publisher:Elsevier BV handle: 10397/102724
Abstract With the rapid advancement in wearable electronics, energy harvesting devices based on triboelectric nanogenerators (TENGs) have been intensively investigated for providing sustainable power supply for them. However, the fabrication of wearable TENGs still remains great challenges, such as flexibility, breathability and washability. Here, a route to develop a new kind of woven-structured triboelectric nanogenerator (WS-TENG) with a facile, low-cost, and scalable electrospinning technique is reported. The WS-TENG is fabricated with commercial stainless-steel yarns wrapped by electrospun polyamide 66 nanofiber and poly(vinylidenefluoride-co-trifluoroethylene) nanofiber, respectively. Triggered by diversified friction materials under a working principle of freestanding mode, the open-circuit voltage, short-circuit current and maximum instantaneous power density from the WS-TENG can reach up to 166 V, 8.5 µA and 93 mW/m2, respectively. By virtue of high flexibility, desirable breathability, washability and excellent durability, the fabricated WS-TENG is demonstrated to be a reliable power textile to light up 58 light-emitting diodes (LED) connected serially, charge commercial capacitors and drive portable electronics. A smart glove with stitched WS-TENGs is made to detect finger motion in different circumstances. The work presents a new approach for self-powered textiles with potential applications in biomechanical energy harvesting, wearable electronics and human motion monitoring.
Hong Kong Polytechni... arrow_drop_down Hong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2023License: CC BY NC NDFull-Text: http://hdl.handle.net/10397/102724Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nanoen.2020.105549&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 179 citations 179 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Hong Kong Polytechni... arrow_drop_down Hong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2023License: CC BY NC NDFull-Text: http://hdl.handle.net/10397/102724Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nanoen.2020.105549&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:MDPI AG Jing Ma;
Zhanbin Luo;Fu Chen;
Qianlin Zhu;Shaoliang Zhang;
Shaoliang Zhang
Shaoliang Zhang in OpenAIREGang-Jun Liu;
Gang-Jun Liu
Gang-Jun Liu in OpenAIREdoi: 10.3390/su10082804
A new environmental ban has forced the restructure of open dumps in China since 1 July 2011. A technical process was established in this study that is feasible for the upgrade of open dumps through restructuring. The feasibility of restructuring and the benefit of greenhouse gas emission reductions were assessed according to field surveys of five landfills and four dumps in Nanjing. The results showed that the daily processing capacities of the existing landfills have been unable to meet the growth of municipal solid waste (MSW), making restructuring of the landfills imperative. According to an assessment of the technical process, only four sites in Nanjing were suitable for upgrading. Restructuring the Jiaozishan landfill effectively reduced the leachate generation rate by 5.84% under its scale when expanded by 60.7% in 2015. CO2 emissions were reduced by approximately 55,000–86,000 tons per year, in which biogas power generation replaced fossil fuels Fossil fuels accounted for the largest proportion, up to 45,000–60,000 tons. Photovoltaic power generation on the overlying land has not only reduced CO2 emissions to 26,000–30,000 tons per year but has also brought in continuing income from the sale of electricity. The funds are essential for developing countries such as China, which lack long-term financial support for landfill management after closure.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10082804&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10082804&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Funded by:NSERCNSERCAuthors:Chunbao (Charles) Xu;
Chunbao (Charles) Xu; Shanghuan Feng;Chunbao (Charles) Xu
Chunbao (Charles) Xu in OpenAIREGang Chen;
+5 AuthorsGang Chen
Gang Chen in OpenAIREChunbao (Charles) Xu;
Chunbao (Charles) Xu; Shanghuan Feng;Chunbao (Charles) Xu
Chunbao (Charles) Xu in OpenAIREGang Chen;
An Li; Zhongshun Yuan; Takashi Kuboki; Tao Shui; Hengfu Shui;Gang Chen
Gang Chen in OpenAIREAbstract In this study, crude cellulose derived from cornstalk, after bleaching, was used as raw material for the synthesis of sodium carboxymethyl cellulose (CMC) by reacting with the cellulose with NaOH and chloroacetic acid at 75 °C for 1.5 h. Effects of alkali dosage, concentration of chloroacetic acid on the physical and chemical properties of the CMC products were investigated. It was revealed that the reactants alkali reagent/chloroacetic acid/cellulose at the molar ratio of 4.6:2.8:1and 4:2.5:1, or at the molar ratio of NaOH/ClCH 2 COOH ≈1.6–1.64, resulted in CMC products of relatively high water solubility. The viscosity-average molecular weight M v of these two CMC products obtained at molar ratios of 4.0:2.5:1 and 4.6:2.8:1 is in the range of 1.94 × 10 4 –2.48 × 10 4 g mol −1 , and the average DS of the two products are 0.57 and 0.85, respectively. As the solute concentration is above 2 wt%, the viscosity of the CMC-water solution exhibits nonlinear (exponential) increasing with increasing the solute concentration (typical of non-Newton fluids).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2017.06.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 74 citations 74 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2017.06.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Yanping Hou; Shanshan Chen; Guangli Liu; Renduo Zhang; Yong Luo; Bangyu Qin;pmid: 22608915
The microbial electrolysis desalination and chemical-production cell (MEDCC) is a device to desalinate seawater, and produce acid and alkali. The objective of this study was to enhance the desalination and chemical-production performance of the MEDCC using two types of stack structure. Experiments were conducted with different membrane spacings, numbers of desalination chambers and applied voltages. Results showed that the stack construction in the MEDCC enhanced the desalination and chemical-production rates. The maximal desalination rate of 0.58 ± 0.02 mmol/h, which was 43% higher than that in the MEDCC, was achieved in the four-desalination-chamber MEDCC with the AEM-CEM stack structure and the membrane spacing of 1.5mm. The maximal acid- and alkali-production rates of 0.079 ± 0.006 and 0.13 ± 0.02 mmol/h, which were 46% and 8% higher than that in the MEDCC, respectively, were achieved in the two-desalination-chamber MEDCC with the BPM-AEM-CEM stack structure and the membrane spacing of 3mm.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2012.03.073&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 63 citations 63 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2012.03.073&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United StatesPublisher:MDPI AG Tianyue Zheng; Zhe Jia; Na Lin; Thorsten Langer;Simon Lux;
Isaac Lund; Ann-Christin Gentschev;Simon Lux
Simon Lux in OpenAIREJuan Qiao;
Juan Qiao
Juan Qiao in OpenAIREGao Liu;
Flexible butyl interconnection segments are synthetically incorporated into an electronically conductive poly(pyrene methacrylate) homopolymer and its copolymer. The insertion of butyl segment makes the pyrene polymer more flexible, and can better accommodate deformation. This new class of flexible and conductive polymers can be used as a polymer binder and adhesive to facilitate the electrochemical performance of a silicon/graphene composite anode material for lithium ion battery application. They act like a “spring” to maintain the electrode mechanical and electrical integrity. High mass loading and high areal capacity, which are critical design requirements of high energy batteries, have been achieved in the electrodes composed of the novel binders and silicon/graphene composite material. A remarkable area capacity of over 5 mAh/cm2 and volumetric capacity of over 1700 Ah/L have been reached at a high current rate of 333 mA/g.
Polymers arrow_drop_down eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/polym9120657&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Polymers arrow_drop_down eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/polym9120657&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:MDPI AG Authors:Hao Guo;
Anming Bao;
Anming Bao
Anming Bao in OpenAIRETie Liu;
Tie Liu
Tie Liu in OpenAIREFelix Ndayisaba;
+3 AuthorsFelix Ndayisaba
Felix Ndayisaba in OpenAIREHao Guo;
Anming Bao;
Anming Bao
Anming Bao in OpenAIRETie Liu;
Tie Liu
Tie Liu in OpenAIREFelix Ndayisaba;
Daming He;Felix Ndayisaba
Felix Ndayisaba in OpenAIREAlishir Kurban;
Alishir Kurban
Alishir Kurban in OpenAIREPhilippe De Maeyer;
Philippe De Maeyer
Philippe De Maeyer in OpenAIREdoi: 10.3390/su9060901
Lower Mekong Basin (LMB) experiences a recurrent drought phenomenon. However, few studies have focused on drought monitoring in this region due to lack of ground observations. The newly released Climate Hazards Group Infrared Precipitation with Station data (CHIRPS) with a long-term record and high resolution has a great potential for drought monitoring. Based on the assessment of CHIRPS for capturing precipitation and monitoring drought, this study aims to evaluate the drought condition in LMB by using satellite-based CHIRPS from January 1981 to July 2016. The Standardized Precipitation Index (SPI) at various time scales (1–12-month) is computed to identify and describe drought events. Results suggest that CHIRPS can properly capture the drought characteristics at various time scales with the best performance at three-month time scale. Based on high-resolution long-term CHIRPS, it is found that LMB experienced four severe droughts during the last three decades with the longest one in 1991–1994 for 38 months and the driest one in 2015–2016 with drought affected area up to 75.6%. Droughts tend to occur over the north and south part of LMB with higher frequency, and Mekong Delta seems to experience more long-term and extreme drought events. Severe droughts have significant impacts on vegetation condition.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9060901&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 128 citations 128 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9060901&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Wiley Authors: Lan Xiao; Zhengchun Wang; Tong Wu;Pingli Qin;
+5 AuthorsPingli Qin
Pingli Qin in OpenAIRELan Xiao; Zhengchun Wang; Tong Wu;Pingli Qin;
Xueli Yu; Lun Xiong; Liang Ma; Haixia Li; Xiangbai Chen;Pingli Qin
Pingli Qin in OpenAIREA template‐agent can affect defect formation as well as influence interface properties, due to the rapid growth of perovskite film from the solution. Herein, diethylammonium iodide (DAI) is used as an effective template‐agent to control the perovskite crystallization during preparation. It is found that a very small amount of DAI in chlorobenzene (CB) can slow down the perovskite growth of the CH3NH3PbI3 (MAPbI3) film with more large grain size and compacted crystal‐grains resulting in the lesser grain boundaries (GBs) in favor of carrier transport in perovskite solar cells (PSCs). Moreover, some redundant PbI2 can be digested to form DA2PbI4. One part of DA2PbI4 can form the sub‐grains with the composition of (DA2PbI4)0.2(PbI2)0.8 to passivate the GB defects, and other part can cover the surface to passivate the surface defects in large MAPbI3 grains. Using an optimized DAI concentration of 0.5 mg mL−1 in CB solution, the corrsponding MAPbI3 PSC achieves an increased power conversion efficiency of 20.31% with suppressed current–voltage hysteresis. This DAI passivation strategy provides a simple approach to effectively assist the grain‐growth for improved device performance.
Energy Technology arrow_drop_down Energy TechnologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202000412&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Technology arrow_drop_down Energy TechnologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202000412&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley Authors:Xuefeng Liu;
Xuke Li; Yage Li; Haijun Zhang; +3 AuthorsXuefeng Liu
Xuefeng Liu in OpenAIREXuefeng Liu;
Xuke Li; Yage Li; Haijun Zhang; Quanli Jia; Shaowei Zhang;Xuefeng Liu
Xuefeng Liu in OpenAIREWen Lei;
Wen Lei
Wen Lei in OpenAIREdoi: 10.1002/eom2.12261
AbstractRevolutionary changes in energy storage technology have put forward higher requirements on next‐generation anode materials for lithium‐ion battery. Recently, a new class of materials with complex stoichiometric ratios, high‐entropy oxide (HEO), has gradually emerging into sight and embracing the prosperity. The ideal elemental adjustability and attractive synergistic effect make HEO promising to break through the integrated performance bottleneck of conventional anodes and provide new impetus for the design and development of electrochemical energy storage materials. Here, the research progress of HEO anodes is comprehensively reviewed. The driving force behind phase stability, the role of individual cations, potential mechanisms for controlling properties, as well as state‐of‐the‐art synthetic strategies and modification approaches are critically evaluated. Finally, we envision the future prospects and related challenges in this field, which will bring some enlightening guidance and criteria for researchers to further unlock the mysteries of HEO anodes.image
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eom2.12261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 64 citations 64 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eom2.12261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:Copernicus GmbH Funded by:EC | METLAKE, EC | VERIFY, EC | IMBALANCE-P +4 projectsEC| METLAKE ,EC| VERIFY ,EC| IMBALANCE-P ,EC| CHE ,RCN| Integrated Carbon Observation System (ICOS)-Norway and Ocean Thematic Centre (OTC) ,EC| VISUALMEDIA ,AKA| Novel soil management practices - key for sustainable bioeconomy and climate change mitigation -SOMPA / Consortium: SOMPAAuthors:Ana Maria Roxana Petrescu;
Ana Maria Roxana Petrescu
Ana Maria Roxana Petrescu in OpenAIREChunjing Qiu;
Philippe Ciais;Chunjing Qiu
Chunjing Qiu in OpenAIRERona L. Thompson;
+35 AuthorsRona L. Thompson
Rona L. Thompson in OpenAIREAna Maria Roxana Petrescu;
Ana Maria Roxana Petrescu
Ana Maria Roxana Petrescu in OpenAIREChunjing Qiu;
Philippe Ciais;Chunjing Qiu
Chunjing Qiu in OpenAIRERona L. Thompson;
Philippe Peylin;Rona L. Thompson
Rona L. Thompson in OpenAIREMatthew J. McGrath;
Matthew J. McGrath
Matthew J. McGrath in OpenAIREEfisio Solazzo;
Greet Janssens‐Maenhout;Efisio Solazzo
Efisio Solazzo in OpenAIREFrancesco N. Tubiello;
Francesco N. Tubiello
Francesco N. Tubiello in OpenAIREP. Bergamaschi;
D. Brunner; Glen P. Peters; L. Höglund-Isaksson;P. Bergamaschi
P. Bergamaschi in OpenAIREPierre Regnier;
Pierre Regnier
Pierre Regnier in OpenAIRERonny Lauerwald;
Ronny Lauerwald
Ronny Lauerwald in OpenAIREDavid Bastviken;
David Bastviken
David Bastviken in OpenAIREAki Tsuruta;
Aki Tsuruta
Aki Tsuruta in OpenAIREWilfried Winiwarter;
Wilfried Winiwarter
Wilfried Winiwarter in OpenAIREPrabir K. Patra;
Prabir K. Patra
Prabir K. Patra in OpenAIREMatthias Kuhnert;
Gabriel D. Orregioni;Matthias Kuhnert
Matthias Kuhnert in OpenAIREMonica Crippa;
Monica Crippa
Monica Crippa in OpenAIREMarielle Saunois;
Lucia Perugini;Marielle Saunois
Marielle Saunois in OpenAIRETiina Markkanen;
Tiina Markkanen
Tiina Markkanen in OpenAIRETuula Aalto;
Tuula Aalto
Tuula Aalto in OpenAIREChristine Groot Zwaaftink;
Christine Groot Zwaaftink
Christine Groot Zwaaftink in OpenAIREYuanzhi Yao;
Yuanzhi Yao
Yuanzhi Yao in OpenAIREChris Wilson;
Chris Wilson
Chris Wilson in OpenAIREGiulia Conchedda;
Dirk Günther;Giulia Conchedda
Giulia Conchedda in OpenAIREAdrian Leip;
Adrian Leip
Adrian Leip in OpenAIREPete Smith;
Jean‐Matthieu Haussaire;Pete Smith
Pete Smith in OpenAIREAntti Leppänen;
Alistair J. Manning;Antti Leppänen
Antti Leppänen in OpenAIREJoe McNorton;
Patrick Brockmann; A.J. Dolman;Joe McNorton
Joe McNorton in OpenAIREAbstract. Reliable quantification of the sources and sinks of greenhouse gases, together with trends and uncertainties, is essential to monitoring the progress in mitigating anthropogenic emissions under the Paris Agreement. This study provides a consolidated synthesis of CH4 and N2O emissions with consistently derived state-of-the-art bottom-up (BU) and top-down (TD) data sources for the European Union and UK (EU27+UK). We integrate recent emission inventory data, ecosystem process-based model results, and inverse modelling estimates over the period 1990–2018. BU and TD products are compared with European National GHG Inventories (NGHGI) reported to the UN climate convention secretariat UNFCCC in 2019. For uncertainties, we used for NGHGI the standard deviation obtained by varying parameters of inventory calculations, reported by the Member States following the IPCC guidelines recommendations. For atmospheric inversion models (TD) or other inventory datasets (BU), we defined uncertainties from the spread between different model estimates or model specific uncertainties when reported. In comparing NGHGI with other approaches, a key source of bias is the activities included, e.g. anthropogenic versus anthropogenic plus natural fluxes. In inversions, the separation between anthropogenic and natural emissions is sensitive to the geospatial prior distribution of emissions. Over the 2011–2015 period, which is the common denominator of data availability between all sources, the anthropogenic BU approaches are directly comparable, reporting mean emissions of 20.8 Tg CH4 yr−1 (EDGAR v5.0) and 19.0 Tg CH4 yr−1 (GAINS), consistent with the NGHGI estimates of 18.9 ± 1.7 Tg CH4 yr−1. TD total inversions estimates give higher emission estimates, as they also include natural emissions. Over the same period regional TD inversions with higher resolution atmospheric transport models give a mean emission of 28.8 Tg CH4 yr−1. Coarser resolution global TD inversions are consistent with regional TD inversions, for global inversions with GOSAT satellite data (23.3 Tg CH4yr−1) and surface network (24.4 Tg CH4 yr−1). The magnitude of natural peatland emissions from the JSBACH-HIMMELI model, natural rivers and lakes emissions and geological sources together account for the gap between NGHGI and inversions and account for 5.2 Tg CH4 yr−1. For N2O emissions, over the 2011–2015 period, both BU approaches (EDGAR v5.0 and GAINS) give a mean value of anthropogenic emissions of 0.8 and 0.9 Tg N2O yr−1 respectively, agreeing with the NGHGI data (0.9 ± 0.6 Tg N2O yr−1). Over the same period, the average of the three total TD global and regional inversions was 1.3 ± 0.4 and 1.3 ± 0.1 Tg N2O yr−1 respectively, compared to 0.9 Tg N2O yr−1 from the BU data. The TU and BU comparison method defined in this study can be operationalized for future yearly updates for the calculation of CH4 and N2O budgets both at EU+UK scale and at national scale. The referenced datasets related to figures are visualized at https://doi.org/10.5281/zenodo.4288969 (Petrescu et al., 2020).
https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/essd-2...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2020-367&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/essd-2...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2020-367&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Optica Publishing Group Lin Xu; Jianqiu Xu; Yubai Pan; Shuaiyi Zhang; Benxue Jiang; Xiaojin Cheng; Yan Wang; Yulong Tang; Weibiao Chen; Mingjian Wang;doi: 10.1364/oe.19.000727
pmid: 21263612
Characteristics of Tm:YAG ceramic for high efficient 2-μm lasers are analyzed. Efficient diode end-pumped continuous-wave and Q-switched Tm:YAG ceramic lasers are demonstrated. At the absorbed pump power of 53.2W, the maximum continuous wave (cw) output power of 17.2 W around 2016 nm was obtained with the output transmission of 5%. The optical conversion efficiency is 32.3%, corresponding to a slope efficiency of 36.5%. For Q-switched operation, the shortest width of 69 ns was achieved with the pulse repetition frequency of 500 Hz and single pulse energy of 20.4 mJ, which indicates excellent energy storage capability of the Tm:YAG ceramic.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1364/oe.19.000727&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1364/oe.19.000727&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu