- home
- Advanced Search
- Energy Research
- Open Access
- Restricted
- CN
- FR
- DK
- Energy Research
- Open Access
- Restricted
- CN
- FR
- DK
description Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Authors: Li Zhang;
Jianhui Ruan; Zhe Zhang; Ziyu Qin; +4 AuthorsJianhui Ruan
Jianhui Ruan in OpenAIRELi Zhang;
Jianhui Ruan; Zhe Zhang; Ziyu Qin; Zhongyi Lei; Bofeng Cai; Shouyang Wang; Ling Tang;Jianhui Ruan
Jianhui Ruan in OpenAIRESummary: Chinese cities need independent but synergetic dual-carbon abatement roadmaps to mitigate climate change and achieve carbon neutrality. Using source-level data, we develop a time-series, full-scale emission inventory for all Chinese cities from 2005 to 2020, exploring associated heterogeneous and homogeneous patterns. We find that 31% of cities have had a significant carbon emission peak, with the main driver being carbon intensity reductions through efficiency gains and structural improvements. Despite discrepant emission levels and socioeconomic determinants, a uniform trajectory in emission changes exists across cities via four emission phases: growth of 8%–9% annually (95% confidence interval) before peaking; plateau and decline by 9%–13% for 5–7 years; and plain with slower declines. We project that if cities follow their early-peaked counterparts’ mitigation pathways, China will reach a carbon peak in 2026 at 13 Gt and carbon neutrality during 2051–2058, revealing the feasibility of Chinese climate goals and the importance of long-reaching, city-targeted planning. Science for society: China established its dual-carbon goals to achieve a carbon peak before 2030 and carbon neutrality by 2060. It is important for cities to identify their distinctive patterns and define individual dual-carbon roadmaps to achieve carbon neutrality in China. In this study, we conduct a carbon inventory for all Chinese cities from 2005 to 2020 to quantitatively define the emission phases in the process of carbon peak. We find that 31% of cities have had a significant carbon emission peak, with the main driver being carbon intensity reductions. A uniform trajectory in emission changes exists across cities, despite significant differences in emission levels and socioeconomic determinants. We project that if cities follow their early-peaked counterparts’ mitigation pathways, China could achieve its climate change goals ahead of the policy deadlines.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors:
Jian Liao; Haojie Wang; Shaojun Xiao; Zhaoying Guan; +3 AuthorsJian Liao
Jian Liao in OpenAIRE
Jian Liao; Haojie Wang; Shaojun Xiao; Zhaoying Guan; Haomiao Zhang; Henri J. Dumont;Jian Liao
Jian Liao in OpenAIRE
Bo-Ping Han; Bo-Ping Han
Bo-Ping Han in OpenAIRENeurobasis chinensis is widely distributed in eastern tropical Asia. Its only congener in China, the N. anderssoni, has not been observed for decades. To protect N. chinensis, it is necessary to understand the ecological properties of its habitats and specie’s range shift under climate change. In the present study, we modeled its potential distribution under one historical, current, and four future scenarios. We evaluated the importance of the factors that shape its distribution and habitats and predicted the historical and current core spatial distributions and their shifting in the future. Two historical core distribution areas were identified: the inland region of the Bay of Bengal and south-central Vietnam. The current potential distribution includes south China, Vietnam, Laos, Thailand, Myanmar, Luzon of Philippines, Malaysia, southwest and northeast India, Sri Lanka, Indonesia (Java, Sumatera), Bangladesh, Nepal, Bhutan, and foothills of the Himalayas, in total, ca. 3.59 × 106 km2. Only one core distribution remained, concentrated in south-central Vietnam. In a warming future, the core distribution, high suitable habitats, and even the whole range of N. chinensis will expand and shift northwards. Currently, N. chinensis mainly resides in forest ecosystems below 1200 m above sea level (preferred 500 m to 1200 m a.s.l.). Annual precipitation, mean temperature of driest quarter, and seasonality of precipitation are important factors shaping the species distribution. Our study provides systematic information on habitats and geographical distribution, which is useful for the conservation of N. chinensis.
Biology arrow_drop_down BiologyOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2079-7737/11/6/868/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Biology arrow_drop_down BiologyOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2079-7737/11/6/868/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Fu, Xiaotong;
Yan, Shuai; Chen, Zhifu;Yan, Shuai
Yan, Shuai in OpenAIRE
Xu, Xiaoyu; +1 AuthorsXu, Xiaoyu
Xu, Xiaoyu in OpenAIREFu, Xiaotong;
Yan, Shuai; Chen, Zhifu;Yan, Shuai
Yan, Shuai in OpenAIRE
Xu, Xiaoyu; Xu, Xiaoyu
Xu, Xiaoyu in OpenAIRE
Ren, Zhuoxiang; Ren, Zhuoxiang
Ren, Zhuoxiang in OpenAIREdoi: 10.3390/en17102326
Accurately calculating the losses of ferromagnetic materials is crucial for optimizing the design and ensuring the safe operation of electrical equipment such as motors and power transformers. Commonly used loss calculation models include the Bertotti empirical formula and hysteresis models. In this paper, a new hybrid hysteresis model method is proposed to calculate losses—namely, the combination of the Jiles–Atherton hysteresis model (J–A) and the Fourier hysteresis model. The traditional Jiles–Atherton hysteresis model is mainly suitable for fitting the saturation hysteresis loop, but the fitting error is relatively large for internal minor hysteresis loops. In contrast, the Fourier hysteresis model is suitable for fitting the minor hysteresis loops because the corresponding magnetic induction strength or magnetic field is lower and the waveform distortion is small. Moreover, Fourier series expansion can be expressed with fewer terms, which is convenient for parameter fitting. Through examples, the results show that the hybrid hysteresis model can take advantage of the strengths of each model, not only reducing computational complexity, but also ensuring high fitting accuracy and loss calculation accuracy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Funded by:MESTD | Ministry of Education, Sc..., DFG | Biological Responses to N..., UKRI | ForeSight: Predicting and...MESTD| Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200169 (University of Belgrade, Faculty of Forestry) ,DFG| Biological Responses to Novel and Changing Environments ,UKRI| ForeSight: Predicting and monitoring drought-linked forest growth decline across EuropeAuthors: Leifsson, Christopher; Buras, Allan;
Klesse, Stefan; Baittinger, Claudia; +52 AuthorsKlesse, Stefan
Klesse, Stefan in OpenAIRELeifsson, Christopher; Buras, Allan;
Klesse, Stefan; Baittinger, Claudia; Bat-Enerel, Banzragch; Battipaglia, Giovanna;Klesse, Stefan
Klesse, Stefan in OpenAIRE
Biondi, Franco; Stajić, Branko;Biondi, Franco
Biondi, Franco in OpenAIRE
Budeanu, Marius; Čada, Vojtěch; Cavin, Liam;Budeanu, Marius
Budeanu, Marius in OpenAIRE
Claessens, Hugues; Claessens, Hugues
Claessens, Hugues in OpenAIRE
Čufar, Katarina; de Luis, Martin; Dorado-Liñán, Isabel; Dulamsuren, Choimaa; Garamszegi, Balázs; Grabner, Michael; Hacket-Pain, Andrew;Čufar, Katarina
Čufar, Katarina in OpenAIRE
Hansen, Jon Kehlet; Hartl, Claudia;Hansen, Jon Kehlet
Hansen, Jon Kehlet in OpenAIRE
Huang, Weiwei; Janda, Pavel; Jump, Alistair;Huang, Weiwei
Huang, Weiwei in OpenAIRE
Kazimirović, Marko; Knutzen, Florian; Kreyling, Jürgen; Land, Alexander;Kazimirović, Marko
Kazimirović, Marko in OpenAIRE
Latte, Nicolas; Latte, Nicolas
Latte, Nicolas in OpenAIRE
Lebourgeois, François; Leuschner, Christoph;Lebourgeois, François
Lebourgeois, François in OpenAIRE
Longares, Luis; Longares, Luis
Longares, Luis in OpenAIRE
Martinez del Castillo, Edurne; Martinez del Castillo, Edurne
Martinez del Castillo, Edurne in OpenAIRE
Menzel, Annette; Menzel, Annette
Menzel, Annette in OpenAIRE
Motta, Renzo; Motta, Renzo
Motta, Renzo in OpenAIRE
Muffler-Weigel, Lena; Nola, Paola; Panayatov, Momchil;Muffler-Weigel, Lena
Muffler-Weigel, Lena in OpenAIRE
Petritan, Any Mary; Petritan, Ion Catalin; Popa, Ionel;Petritan, Any Mary
Petritan, Any Mary in OpenAIRE
Roibu, Cǎtǎlin-Constantin; Roibu, Cǎtǎlin-Constantin
Roibu, Cǎtǎlin-Constantin in OpenAIRE
Rubio-Cuadrado, Álvaro; Rydval, Miloš; Scharnweber, Tobias;Rubio-Cuadrado, Álvaro
Rubio-Cuadrado, Álvaro in OpenAIRE
Camarero, J. Julio; Svoboda, Miroslav;Camarero, J. Julio
Camarero, J. Julio in OpenAIRE
Toromani, Elvin; Trotsiuk, Volodymyr;Toromani, Elvin
Toromani, Elvin in OpenAIRE
van der Maaten-Theunissen, Marieke; van der Maaten-Theunissen, Marieke
van der Maaten-Theunissen, Marieke in OpenAIRE
van der Maaten, Ernst; Weigel, Robert;van der Maaten, Ernst
van der Maaten, Ernst in OpenAIRE
Wilmking, Martin; Wilmking, Martin
Wilmking, Martin in OpenAIRE
Zlatanov, Tzvetan; Rammig, Anja; Zang, Christian;Zlatanov, Tzvetan
Zlatanov, Tzvetan in OpenAIREpmid: 38782287
The future performance of the widely abundant European beech (Fagus sylvatica L.) across its ecological amplitude is uncertain. Although beech is considered drought-sensitive and thus negatively affected by drought events, scientific evidence indicating increasing drought vulnerability under climate change on a cross-regional scale remains elusive. While evaluating changes in climate sensitivity of secondary growth offers a promising avenue, studies from productive, closed-canopy forests suffer from knowledge gaps, especially regarding the natural variability of climate sensitivity and how it relates to radial growth as an indicator of tree vitality. Since beech is sensitive to drought, we in this study use a drought index as a climate variable to account for the combined effects of temperature and water availability and explore how the drought sensitivity of secondary growth varies temporally in dependence on growth variability, growth trends, and climatic water availability across the species' ecological amplitude. Our results show that drought sensitivity is highly variable and non-stationary, though consistently higher at dry sites compared to moist sites. Increasing drought sensitivity can largely be explained by increasing climatic aridity, especially as it is exacerbated by climate change and trees' rank progression within forest communities, as (co-)dominant trees are more sensitive to extra-canopy climatic conditions than trees embedded in understories. However, during the driest periods of the 20th century, growth showed clear signs of being decoupled from climate. This may indicate fundamental changes in system behavior and be early-warning signals of decreasing drought tolerance. The multiple significant interaction terms in our model elucidate the complexity of European beech's drought sensitivity, which needs to be taken into consideration when assessing this species' response to climate change.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2025 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Freiburg: FreiDokArticle . 2024Full-Text: https://freidok.uni-freiburg.de/data/261433Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of Zaragoza (ZAGUAN)Article . 2024License: CC BYFull-Text: http://zaguan.unizar.es/record/135789Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2024License: CC BYFull-Text: http://hdl.handle.net/1893/36046Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2024Data sources: Digital Repository of University of ZaragozaPublikationenserver der Georg-August-Universität GöttingenArticle . 2024Copenhagen University Research Information SystemArticle . 2024Data sources: Copenhagen University Research Information SystemRepository of the University of LjubljanaArticle . 2024Data sources: Repository of the University of LjubljanaMinistry of Culture Research PortalArticle . 2024License: CC BYData sources: Ministry of Culture Research PortalUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Omorika - Repository of the Faculty of Forestry, BelgradeArticle . 2024Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 21visibility views 21 download downloads 28 Powered by
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2025 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Freiburg: FreiDokArticle . 2024Full-Text: https://freidok.uni-freiburg.de/data/261433Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of Zaragoza (ZAGUAN)Article . 2024License: CC BYFull-Text: http://zaguan.unizar.es/record/135789Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2024License: CC BYFull-Text: http://hdl.handle.net/1893/36046Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2024Data sources: Digital Repository of University of ZaragozaPublikationenserver der Georg-August-Universität GöttingenArticle . 2024Copenhagen University Research Information SystemArticle . 2024Data sources: Copenhagen University Research Information SystemRepository of the University of LjubljanaArticle . 2024Data sources: Repository of the University of LjubljanaMinistry of Culture Research PortalArticle . 2024License: CC BYData sources: Ministry of Culture Research PortalUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Omorika - Repository of the Faculty of Forestry, BelgradeArticle . 2024Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors:
Lechuan Piao; Fei Xue;Lechuan Piao
Lechuan Piao in OpenAIRE
Shaofeng Lu; Lin Jiang; +2 AuthorsShaofeng Lu
Shaofeng Lu in OpenAIRE
Lechuan Piao; Fei Xue;Lechuan Piao
Lechuan Piao in OpenAIRE
Shaofeng Lu; Lin Jiang;Shaofeng Lu
Shaofeng Lu in OpenAIRE
Bing Han; Xu Xu;Bing Han
Bing Han in OpenAIREdoi: 10.3390/en17102391
In this paper, the notion of a cohesive and self-sufficient grid is proposed. Based on a cohesive and self-sufficient virtual microgrid, an active distribution network is optimally planned, and an optimal configuration of demand-side resources, distributed generations, and energy storage systems are generated. To cope with stochastic uncertainty from forecast error in wind speed and load, flexibility reserves are needed. In this paper, the supply relation between flexibility and uncertainty is quantified and integrated in an innovative index which is defined as cohesion. The optimization objectives are a minimized operational cost and system net-ability cohesion as well as self-sufficiency, which is defined as the abilities both to supply local load and to deal with potential uncertainty. After testing the optimal configuration in the PG&E 69 bus system, it is found that with a more cohesive VM partition, the self-sufficiency of VMs is also increased. Also, a case study on uncertainty-caused system imbalance is carried out to show how flexibility resources are utilized in real-time operational balance.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2019Publisher:Elsevier BV Funded by:UKRI | UK Carbon Capture and Sto...UKRI| UK Carbon Capture and Storage Research Centre 2017 (UKCCSRC 2017)Authors: Nilay Shah; Minh T. Ho;
Husain Bahzad; Niall Mac Dowell; +4 AuthorsHusain Bahzad
Husain Bahzad in OpenAIRENilay Shah; Minh T. Ho;
Husain Bahzad; Niall Mac Dowell; Paul S. Fennell; Matthew E. Boot-Handford;Husain Bahzad
Husain Bahzad in OpenAIRE
Salman Masoudi Soltani; Salman Masoudi Soltani;Salman Masoudi Soltani
Salman Masoudi Soltani in OpenAIREhandle: 10044/1/72189
Abstract In this work, a novel hydrogen production process (Integrated Chemical Looping Water Splitting “ICLWS”) has been developed. The modelled process has been optimised via heat integration between the main process units. The effects of the key process variables (i.e. the oxygen carrier-to-fuel ratio, steam flow rate and discharged gas temperature) on the behaviour of the reducer and oxidiser reactors were investigated. The thermal and exergy efficiencies of the process were studied and compared against a conventional steam-methane reforming (SMR) process. Finally, the economic feasibility of the process was evaluated based on the corresponding CAPEX, OPEX and first-year plant cost per kg of the hydrogen produced. The thermal efficiency of the ICLWS process was improved by 31.1% compared to the baseline (Chemical Looping Water Splitting without heat integration) process. The hydrogen efficiency and the effective efficiencies were also higher by 11.7% and 11.9%, respectively compared to the SMR process. The sensitivity analysis showed that the oxygen carrier–to-methane and -steam ratios enhanced the discharged gas and solid conversions from both the reducer and oxidiser. Unlike for the oxidiser, the temperature of the discharged gas and solids from the reducer had an impact on the gas and solid conversion. The economic evaluation of the process indicated hydrogen production costs of $1.41 and $1.62 per kilogram of hydrogen produced for Fe-based oxygen carriers supported by ZrO2 and MgAl2O4, respectively - 14% and 1.2% lower for the SMR process H2 production costs respectively.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2019License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/72189Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2019Data sources: Spiral - Imperial College Digital RepositoryInternational Journal of Hydrogen EnergyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefBrunel University London: Brunel University Research Archive (BURA)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen bronze 50 citations 50 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2019License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/72189Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2019Data sources: Spiral - Imperial College Digital RepositoryInternational Journal of Hydrogen EnergyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefBrunel University London: Brunel University Research Archive (BURA)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2018Publisher:Wiley Funded by:SNSF | Population Genomic Basis ..., EC | APODYNA, NSF | Costs and Benefits of Bip... +8 projectsSNSF| Population Genomic Basis of Evolutionary Change in Drosophila Aging and Life History ,EC| APODYNA ,NSF| Costs and Benefits of Biparental Care in Monogamous Owl Monkeys ,NIH| EXTERNAL INNOVATIVE NETWORK CORE ,EC| LEED ,NIH| Mechanisms and Consequences of Social Connectedness in a Wild Primate Population ,NIH| SEX DIFFERENCES IN HEALTH AND SURVIVAL IN A WILD PRIMATE POPULATION ,NSF| RAPID Twinning in Monogamous Owl Monkeys of the Argentinean Chaco: Developmental and Behavioral Consequences ,NSF| LTREB: Long-term behavioral and genetic analyses of a wild primate population ,DFG ,NSF| Social Monogamy in Free-ranging Owl Monkeys (Aotus azarai azarai) of ArgentinaAuthors: Peter H. Becker;
Henri Weimerskirch; Henri Weimerskirch
Henri Weimerskirch in OpenAIRE
Kristel M. De Vleeschouwer; Kristel M. De Vleeschouwer
Kristel M. De Vleeschouwer in OpenAIRE
Fernando Colchero; +30 AuthorsFernando Colchero
Fernando Colchero in OpenAIREPeter H. Becker;
Henri Weimerskirch; Henri Weimerskirch
Henri Weimerskirch in OpenAIRE
Kristel M. De Vleeschouwer; Kristel M. De Vleeschouwer
Kristel M. De Vleeschouwer in OpenAIRE
Fernando Colchero; Fernando Colchero
Fernando Colchero in OpenAIRE
Craig Packer; Craig Packer
Craig Packer in OpenAIRE
Owen R. Jones; Owen R. Jones
Owen R. Jones in OpenAIRE
Aurelio F. Malo; Aurelio F. Malo; Richard J. Delahay;Aurelio F. Malo
Aurelio F. Malo in OpenAIRE
Jennifer McDonald; Jennifer McDonald
Jennifer McDonald in OpenAIRE
Martin Hesselsøe; Martin Hesselsøe
Martin Hesselsøe in OpenAIRE
Jean-François Lemaître; Becky E. Raboy; Chris J. Reading;Jean-François Lemaître
Jean-François Lemaître in OpenAIRE
Dalia Amor Conde; David Miller; Colin O'Donnell;Dalia Amor Conde
Dalia Amor Conde in OpenAIRE
Felix Zajitschek; Anne M. Bronikowski;Felix Zajitschek
Felix Zajitschek in OpenAIRE
Jean-Michel Gaillard; Sam M. Larson;Jean-Michel Gaillard
Jean-Michel Gaillard in OpenAIRE
Sandra Bouwhuis; Sandra Bouwhuis
Sandra Bouwhuis in OpenAIRE
Annette Baudisch; Annette Baudisch
Annette Baudisch in OpenAIRE
Thomas Flatt; Thomas Flatt
Thomas Flatt in OpenAIRE
Eduardo Fernandez-Duque; David J. Hodgson; Stefan Dummermuth;Eduardo Fernandez-Duque
Eduardo Fernandez-Duque in OpenAIRE
Benedikt R. Schmidt; Benedikt R. Schmidt
Benedikt R. Schmidt in OpenAIRE
Geoffrey M. While; Geoffrey M. While; John Frisenvænge; Susan C. Alberts;Geoffrey M. While
Geoffrey M. While in OpenAIRE
Tim Coulson; Tim Coulson
Tim Coulson in OpenAIRE
Erik Wapstra; Erik Wapstra
Erik Wapstra in OpenAIREAbstractThe current extinction and climate change crises pressure us to predict population dynamics with ever‐greater accuracy. Although predictions rest on the well‐advanced theory of age‐structured populations, two key issues remain poorly explored. Specifically, how the age‐dependency in demographic rates and the year‐to‐year interactions between survival and fecundity affect stochastic population growth rates. We use inference, simulations and mathematical derivations to explore how environmental perturbations determine population growth rates for populations with different age‐specific demographic rates and when ages are reduced to stages. We find that stage‐ vs. age‐based models can produce markedly divergent stochastic population growth rates. The differences are most pronounced when there are survival‐fecundity‐trade‐offs, which reduce the variance in the population growth rate. Finally, the expected value and variance of the stochastic growth rates of populations with different age‐specific demographic rates can diverge to the extent that, while some populations may thrive, others will inevitably go extinct.
Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10871/36423Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAOxford University Research ArchiveArticle . 2018License: CC BYData sources: Oxford University Research ArchiveEcology LettersArticle . 2019License: CC BYData sources: University of Southern Denmark Research OutputUniversity of Southern Denmark Research OutputArticle . 2019Data sources: University of Southern Denmark Research OutputBiblioteca Digital de la Universidad de AlcaláArticle . 2019License: CC BY NC NDData sources: Biblioteca Digital de la Universidad de AlcaláInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 52 citations 52 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 190visibility views 190 download downloads 39 Powered by
more_vert Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10871/36423Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAOxford University Research ArchiveArticle . 2018License: CC BYData sources: Oxford University Research ArchiveEcology LettersArticle . 2019License: CC BYData sources: University of Southern Denmark Research OutputUniversity of Southern Denmark Research OutputArticle . 2019Data sources: University of Southern Denmark Research OutputBiblioteca Digital de la Universidad de AlcaláArticle . 2019License: CC BY NC NDData sources: Biblioteca Digital de la Universidad de AlcaláInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2024Publisher:Informa UK Limited Sustainable cities, as an effective response to global climate aberrations, have increasingly garnered the attention of researchers. However, due to the wide range of interpretations and applications associated with sustainable cities, diverse methodologies can yield starkly contrasting results. This paper adopts ecological and low-carbon perspectives to evaluate and discuss urban sustainability. The core of this investigation involves quantitatively measuring a city’s sustainability based on the lifecycle metrics of emergy and carbon footprint. The findings reveal that Yangzhou, recognized as a model ecological city by authorities, exhibits an emergy sustainability index below the standard benchmark (ESI = 0.02 < 1). GIS mapping reveals that the city’s largest ecological service system is situated in the northwest water region. Both the emergy and carbon footprint analyses indicate that urbanized areas exert a detrimental influence on the city’s overall sustainability. Additionally, the administrative authorities in Yangzhou have implemented proactive measures to transition the city towards sustainability. Currently, the impacts of clean energy adoption and urban wetland restoration are particularly pronounced. The application of lifecycle emergy and carbon footprint methods offers a holistic approach for urban managers, enabling sustainable urban planning that harmoniously integrates ecological emergy and low-carbon considerations. This approach is instrumental in the realization of sustainable cities.
Journal of Asian Arc... arrow_drop_down Journal of Asian Architecture and Building EngineeringArticle . 2024 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Asian Arc... arrow_drop_down Journal of Asian Architecture and Building EngineeringArticle . 2024 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2016Publisher:Springer Science and Business Media LLC Funded by:DFG, ANR | GC-INVAMOFECTDFG ,ANR| GC-INVAMOFECTAuthors: Cunze, Sarah;
Koch, Lisa Katharina; Koch, Lisa Katharina
Koch, Lisa Katharina in OpenAIRE
Kochmann, Judith; Klimpel, Sven;Kochmann, Judith
Kochmann, Judith in OpenAIREAedes albopictus and Ae. japonicus are two of the most widespread invasive mosquito species that have recently become established in western Europe. Both species are associated with the transmission of a number of serious diseases and are projected to continue their spread in Europe.In the present study, we modelled the habitat suitability for both species under current and future climatic conditions by means of an Ensemble forecasting approach. We additionally compared the modelled MAXENT niches of Ae. albopictus and Ae. japonicus regarding temperature and precipitation requirements.Both species were modelled to find suitable habitat conditions in distinct areas within Europe: Ae. albopictus within the Mediterranean regions in southern Europe, Ae. japonicus within the more temperate regions of central Europe. Only in few regions, suitable habitat conditions were projected to overlap for both species. Whereas Ae. albopictus is projected to be generally promoted by climate change in Europe, the area modelled to be climatically suitable for Ae. japonicus is projected to decrease under climate change. This projection of range reduction under climate change relies on the assumption that Ae. japonicus is not able to adapt to warmer climatic conditions. The modelled MAXENT temperature niches of Ae. japonicus were found to be narrower with an optimum at lower temperatures compared to the niches of Ae. albopictus.Species distribution models identifying areas with high habitat suitability can help improving monitoring programmes for invasive species currently in place. However, as mosquito species are known to be able to adapt to new environmental conditions within the invasion range quickly, niche evolution of invasive mosquito species should be closely followed upon in future studies.
Parasites & Vect... arrow_drop_down Hochschulschriftenserver - Universität Frankfurt am MainArticle . 2016Data sources: Hochschulschriftenserver - Universität Frankfurt am MainPublication Server of Goethe University Frankfurt am MainArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 77 citations 77 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Parasites & Vect... arrow_drop_down Hochschulschriftenserver - Universität Frankfurt am MainArticle . 2016Data sources: Hochschulschriftenserver - Universität Frankfurt am MainPublication Server of Goethe University Frankfurt am MainArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2023Publisher:Springer Science and Business Media LLC Authors:
Zining Xiang; Zining Xiang
Zining Xiang in OpenAIRE
Yuyu Liu; Yongfei Fu; Yixiong Gao; +2 AuthorsYuyu Liu
Yuyu Liu in OpenAIRE
Zining Xiang; Zining Xiang
Zining Xiang in OpenAIRE
Yuyu Liu; Yongfei Fu; Yixiong Gao; Luxia Liu; Fuqiang Wang;Yuyu Liu
Yuyu Liu in OpenAIREAbstract Exploring the spatiotemporal variation characteristics of vegetation in the confluent area of water systems in western Jinan and its response mechanism to climatic factors is of great significance for the scientific evaluation of the benefits of the water system connectivity project and eco-environmental protection and can provide a reference for ecotourism development in the Jixi wetland park. Based on the Landsat series of images and meteorological data, this study used ENVI to interpret the normalized difference vegetation index (NDVI) of the confluent area from 2010 to 2021 and the spatiotemporal change characteristics and trends of NDVI were quantitatively analysed. The response of the growing-season NDVI (GSN) to climate factors and its time-lag effect were explored. The results showed that the overall change in the interannual NDVI in the confluent area from 2010 to 2021 was stable. The GSN in the confluent area was significantly positively correlated with precipitation, average temperature, and relative humidity in 37.64%, 25.52%, and 20.87% of the area respectively, and significantly negatively correlated with sunshine hours in 15.32% of the area. There was a time-lag effect on the response of the GSN to climate factors; the response to precipitation and sunshine hours lagged by one month, and the response to average temperature and relative humidity was longer.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefEnvironmental Monitoring and AssessmentArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routeshybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefEnvironmental Monitoring and AssessmentArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
