- home
- Advanced Search
- Energy Research
- CN
- GB
- DE
- AU
- Energy Research
- CN
- GB
- DE
- AU
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Jian Liao; Haojie Wang; Shaojun Xiao; Zhaoying Guan; Haomiao Zhang; Henri J. Dumont; Bo-Ping Han;Neurobasis chinensis is widely distributed in eastern tropical Asia. Its only congener in China, the N. anderssoni, has not been observed for decades. To protect N. chinensis, it is necessary to understand the ecological properties of its habitats and specie’s range shift under climate change. In the present study, we modeled its potential distribution under one historical, current, and four future scenarios. We evaluated the importance of the factors that shape its distribution and habitats and predicted the historical and current core spatial distributions and their shifting in the future. Two historical core distribution areas were identified: the inland region of the Bay of Bengal and south-central Vietnam. The current potential distribution includes south China, Vietnam, Laos, Thailand, Myanmar, Luzon of Philippines, Malaysia, southwest and northeast India, Sri Lanka, Indonesia (Java, Sumatera), Bangladesh, Nepal, Bhutan, and foothills of the Himalayas, in total, ca. 3.59 × 106 km2. Only one core distribution remained, concentrated in south-central Vietnam. In a warming future, the core distribution, high suitable habitats, and even the whole range of N. chinensis will expand and shift northwards. Currently, N. chinensis mainly resides in forest ecosystems below 1200 m above sea level (preferred 500 m to 1200 m a.s.l.). Annual precipitation, mean temperature of driest quarter, and seasonality of precipitation are important factors shaping the species distribution. Our study provides systematic information on habitats and geographical distribution, which is useful for the conservation of N. chinensis.
Biology arrow_drop_down BiologyOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2079-7737/11/6/868/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Biology arrow_drop_down BiologyOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2079-7737/11/6/868/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Funded by:MESTD | Ministry of Education, Sc..., DFG | Biological Responses to N..., UKRI | ForeSight: Predicting and...MESTD| Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200169 (University of Belgrade, Faculty of Forestry) ,DFG| Biological Responses to Novel and Changing Environments ,UKRI| ForeSight: Predicting and monitoring drought-linked forest growth decline across EuropeLeifsson, Christopher; Buras, Allan; Klesse, Stefan; Baittinger, Claudia; Bat-Enerel, Banzragch; Battipaglia, Giovanna; Biondi, Franco; Stajić, Branko; Budeanu, Marius; Čada, Vojtěch; Cavin, Liam; Claessens, Hugues; Čufar, Katarina; de Luis, Martin; Dorado-Liñán, Isabel; Dulamsuren, Choimaa; Garamszegi, Balázs; Grabner, Michael; Hacket-Pain, Andrew; Hansen, Jon Kehlet; Hartl, Claudia; Huang, Weiwei; Janda, Pavel; Jump, Alistair; Kazimirović, Marko; Knutzen, Florian; Kreyling, Jürgen; Land, Alexander; Latte, Nicolas; Lebourgeois, François; Leuschner, Christoph; Longares, Luis; Martinez del Castillo, Edurne; Menzel, Annette; Motta, Renzo; Muffler-Weigel, Lena; Nola, Paola; Panayatov, Momchil; Petritan, Any Mary; Petritan, Ion Catalin; Popa, Ionel; Roibu, Cǎtǎlin-Constantin; Rubio-Cuadrado, Álvaro; Rydval, Miloš; Scharnweber, Tobias; Camarero, J. Julio; Svoboda, Miroslav; Toromani, Elvin; Trotsiuk, Volodymyr; van der Maaten-Theunissen, Marieke; van der Maaten, Ernst; Weigel, Robert; Wilmking, Martin; Zlatanov, Tzvetan; Rammig, Anja; Zang, Christian;pmid: 38782287
The future performance of the widely abundant European beech (Fagus sylvatica L.) across its ecological amplitude is uncertain. Although beech is considered drought-sensitive and thus negatively affected by drought events, scientific evidence indicating increasing drought vulnerability under climate change on a cross-regional scale remains elusive. While evaluating changes in climate sensitivity of secondary growth offers a promising avenue, studies from productive, closed-canopy forests suffer from knowledge gaps, especially regarding the natural variability of climate sensitivity and how it relates to radial growth as an indicator of tree vitality. Since beech is sensitive to drought, we in this study use a drought index as a climate variable to account for the combined effects of temperature and water availability and explore how the drought sensitivity of secondary growth varies temporally in dependence on growth variability, growth trends, and climatic water availability across the species' ecological amplitude. Our results show that drought sensitivity is highly variable and non-stationary, though consistently higher at dry sites compared to moist sites. Increasing drought sensitivity can largely be explained by increasing climatic aridity, especially as it is exacerbated by climate change and trees' rank progression within forest communities, as (co-)dominant trees are more sensitive to extra-canopy climatic conditions than trees embedded in understories. However, during the driest periods of the 20th century, growth showed clear signs of being decoupled from climate. This may indicate fundamental changes in system behavior and be early-warning signals of decreasing drought tolerance. The multiple significant interaction terms in our model elucidate the complexity of European beech's drought sensitivity, which needs to be taken into consideration when assessing this species' response to climate change.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2025 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Freiburg: FreiDokArticle . 2024Full-Text: https://freidok.uni-freiburg.de/data/261433Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of Zaragoza (ZAGUAN)Article . 2024License: CC BYFull-Text: http://zaguan.unizar.es/record/135789Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2024License: CC BYFull-Text: http://hdl.handle.net/1893/36046Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2024Data sources: Digital Repository of University of ZaragozaPublikationenserver der Georg-August-Universität GöttingenArticle . 2024Copenhagen University Research Information SystemArticle . 2024Data sources: Copenhagen University Research Information SystemRepository of the University of LjubljanaArticle . 2024Data sources: Repository of the University of LjubljanaMinistry of Culture Research PortalArticle . 2024License: CC BYData sources: Ministry of Culture Research PortalUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Omorika - Repository of the Faculty of Forestry, BelgradeArticle . 2024Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 21visibility views 21 download downloads 28 Powered by
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2025 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Freiburg: FreiDokArticle . 2024Full-Text: https://freidok.uni-freiburg.de/data/261433Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of Zaragoza (ZAGUAN)Article . 2024License: CC BYFull-Text: http://zaguan.unizar.es/record/135789Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2024License: CC BYFull-Text: http://hdl.handle.net/1893/36046Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2024Data sources: Digital Repository of University of ZaragozaPublikationenserver der Georg-August-Universität GöttingenArticle . 2024Copenhagen University Research Information SystemArticle . 2024Data sources: Copenhagen University Research Information SystemRepository of the University of LjubljanaArticle . 2024Data sources: Repository of the University of LjubljanaMinistry of Culture Research PortalArticle . 2024License: CC BYData sources: Ministry of Culture Research PortalUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Omorika - Repository of the Faculty of Forestry, BelgradeArticle . 2024Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Conference object 2023Publisher:MDPI AG Authors: Sigle, Sebastian; Hahn, Robert;doi: 10.3390/en16186512
Heavy-duty vehicles (HDVs) are responsible for a significant amount of CO2 emissions in the transport sector. The share of these vehicles is still increasing in the European Union (EU); nevertheless, rigorous CO2 emission reduction schemes will apply in the near future. Different measures to decrease CO2 emissions are being already discussed, e.g., the electrification of the powertrain. Additionally, the impact of autonomous driving on energy consumption is being investigated. The most common types are fuel cell vehicles (FCEVs) and battery-only vehicles (BEVs). It is still unclear which type of powertrain will prevail in the future. Therefore, we developed a method to compare different powertrain options based on different scenarios in terms of primary energy consumption, CO2 emissions, and fuel costs. We compared the results with the internal combustion engine vehicle (ICEV). The model includes a model for the climatization of the driver’s cabin, which we used to investigate the impact of autonomous driving on energy consumption. It became clear that certain powertrains offer advantages for certain applications and that sensitivities exist with regard to primary energy and CO2 emissions. Overall, it became clear that electrified powertrains could reduce the CO2 emissions and the primary energy consumption of HDVs. Moreover, autonomous vehicles can save energy in most cases.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2019Publisher:Elsevier BV Funded by:UKRI | UK Carbon Capture and Sto...UKRI| UK Carbon Capture and Storage Research Centre 2017 (UKCCSRC 2017)Nilay Shah; Minh T. Ho; Husain Bahzad; Niall Mac Dowell; Paul S. Fennell; Matthew E. Boot-Handford; Salman Masoudi Soltani; Salman Masoudi Soltani;handle: 10044/1/72189
Abstract In this work, a novel hydrogen production process (Integrated Chemical Looping Water Splitting “ICLWS”) has been developed. The modelled process has been optimised via heat integration between the main process units. The effects of the key process variables (i.e. the oxygen carrier-to-fuel ratio, steam flow rate and discharged gas temperature) on the behaviour of the reducer and oxidiser reactors were investigated. The thermal and exergy efficiencies of the process were studied and compared against a conventional steam-methane reforming (SMR) process. Finally, the economic feasibility of the process was evaluated based on the corresponding CAPEX, OPEX and first-year plant cost per kg of the hydrogen produced. The thermal efficiency of the ICLWS process was improved by 31.1% compared to the baseline (Chemical Looping Water Splitting without heat integration) process. The hydrogen efficiency and the effective efficiencies were also higher by 11.7% and 11.9%, respectively compared to the SMR process. The sensitivity analysis showed that the oxygen carrier–to-methane and -steam ratios enhanced the discharged gas and solid conversions from both the reducer and oxidiser. Unlike for the oxidiser, the temperature of the discharged gas and solids from the reducer had an impact on the gas and solid conversion. The economic evaluation of the process indicated hydrogen production costs of $1.41 and $1.62 per kilogram of hydrogen produced for Fe-based oxygen carriers supported by ZrO2 and MgAl2O4, respectively - 14% and 1.2% lower for the SMR process H2 production costs respectively.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2019License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/72189Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2019Data sources: Spiral - Imperial College Digital RepositoryInternational Journal of Hydrogen EnergyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefBrunel University London: Brunel University Research Archive (BURA)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen bronze 50 citations 50 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2019License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/72189Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2019Data sources: Spiral - Imperial College Digital RepositoryInternational Journal of Hydrogen EnergyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefBrunel University London: Brunel University Research Archive (BURA)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2018Publisher:Wiley Funded by:SNSF | Population Genomic Basis ..., EC | APODYNA, NSF | Costs and Benefits of Bip... +8 projectsSNSF| Population Genomic Basis of Evolutionary Change in Drosophila Aging and Life History ,EC| APODYNA ,NSF| Costs and Benefits of Biparental Care in Monogamous Owl Monkeys ,NIH| EXTERNAL INNOVATIVE NETWORK CORE ,EC| LEED ,NIH| Mechanisms and Consequences of Social Connectedness in a Wild Primate Population ,NIH| SEX DIFFERENCES IN HEALTH AND SURVIVAL IN A WILD PRIMATE POPULATION ,NSF| RAPID Twinning in Monogamous Owl Monkeys of the Argentinean Chaco: Developmental and Behavioral Consequences ,NSF| LTREB: Long-term behavioral and genetic analyses of a wild primate population ,DFG ,NSF| Social Monogamy in Free-ranging Owl Monkeys (Aotus azarai azarai) of ArgentinaAuthors: Peter H. Becker; Henri Weimerskirch; Kristel M. De Vleeschouwer; Fernando Colchero; +30 AuthorsPeter H. Becker; Henri Weimerskirch; Kristel M. De Vleeschouwer; Fernando Colchero; Craig Packer; Owen R. Jones; Aurelio F. Malo; Aurelio F. Malo; Richard J. Delahay; Jennifer McDonald; Martin Hesselsøe; Jean-François Lemaître; Becky E. Raboy; Chris J. Reading; Dalia Amor Conde; David Miller; Colin O'Donnell; Felix Zajitschek; Anne M. Bronikowski; Jean-Michel Gaillard; Sam M. Larson; Sandra Bouwhuis; Annette Baudisch; Thomas Flatt; Eduardo Fernandez-Duque; David J. Hodgson; Stefan Dummermuth; Benedikt R. Schmidt; Geoffrey M. While; Geoffrey M. While; John Frisenvænge; Susan C. Alberts; Tim Coulson; Erik Wapstra;AbstractThe current extinction and climate change crises pressure us to predict population dynamics with ever‐greater accuracy. Although predictions rest on the well‐advanced theory of age‐structured populations, two key issues remain poorly explored. Specifically, how the age‐dependency in demographic rates and the year‐to‐year interactions between survival and fecundity affect stochastic population growth rates. We use inference, simulations and mathematical derivations to explore how environmental perturbations determine population growth rates for populations with different age‐specific demographic rates and when ages are reduced to stages. We find that stage‐ vs. age‐based models can produce markedly divergent stochastic population growth rates. The differences are most pronounced when there are survival‐fecundity‐trade‐offs, which reduce the variance in the population growth rate. Finally, the expected value and variance of the stochastic growth rates of populations with different age‐specific demographic rates can diverge to the extent that, while some populations may thrive, others will inevitably go extinct.
Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10871/36423Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAOxford University Research ArchiveArticle . 2018License: CC BYData sources: Oxford University Research ArchiveEcology LettersArticle . 2019License: CC BYData sources: University of Southern Denmark Research OutputUniversity of Southern Denmark Research OutputArticle . 2019Data sources: University of Southern Denmark Research OutputBiblioteca Digital de la Universidad de AlcaláArticle . 2019License: CC BY NC NDData sources: Biblioteca Digital de la Universidad de AlcaláInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 52 citations 52 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 190visibility views 190 download downloads 39 Powered by
more_vert Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10871/36423Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAOxford University Research ArchiveArticle . 2018License: CC BYData sources: Oxford University Research ArchiveEcology LettersArticle . 2019License: CC BYData sources: University of Southern Denmark Research OutputUniversity of Southern Denmark Research OutputArticle . 2019Data sources: University of Southern Denmark Research OutputBiblioteca Digital de la Universidad de AlcaláArticle . 2019License: CC BY NC NDData sources: Biblioteca Digital de la Universidad de AlcaláInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2016Publisher:Springer Science and Business Media LLC Funded by:DFG, ANR | GC-INVAMOFECTDFG ,ANR| GC-INVAMOFECTAuthors: Cunze, Sarah; Koch, Lisa Katharina; Kochmann, Judith; Klimpel, Sven;Aedes albopictus and Ae. japonicus are two of the most widespread invasive mosquito species that have recently become established in western Europe. Both species are associated with the transmission of a number of serious diseases and are projected to continue their spread in Europe.In the present study, we modelled the habitat suitability for both species under current and future climatic conditions by means of an Ensemble forecasting approach. We additionally compared the modelled MAXENT niches of Ae. albopictus and Ae. japonicus regarding temperature and precipitation requirements.Both species were modelled to find suitable habitat conditions in distinct areas within Europe: Ae. albopictus within the Mediterranean regions in southern Europe, Ae. japonicus within the more temperate regions of central Europe. Only in few regions, suitable habitat conditions were projected to overlap for both species. Whereas Ae. albopictus is projected to be generally promoted by climate change in Europe, the area modelled to be climatically suitable for Ae. japonicus is projected to decrease under climate change. This projection of range reduction under climate change relies on the assumption that Ae. japonicus is not able to adapt to warmer climatic conditions. The modelled MAXENT temperature niches of Ae. japonicus were found to be narrower with an optimum at lower temperatures compared to the niches of Ae. albopictus.Species distribution models identifying areas with high habitat suitability can help improving monitoring programmes for invasive species currently in place. However, as mosquito species are known to be able to adapt to new environmental conditions within the invasion range quickly, niche evolution of invasive mosquito species should be closely followed upon in future studies.
Parasites & Vect... arrow_drop_down Hochschulschriftenserver - Universität Frankfurt am MainArticle . 2016Data sources: Hochschulschriftenserver - Universität Frankfurt am MainPublication Server of Goethe University Frankfurt am MainArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 77 citations 77 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Parasites & Vect... arrow_drop_down Hochschulschriftenserver - Universität Frankfurt am MainArticle . 2016Data sources: Hochschulschriftenserver - Universität Frankfurt am MainPublication Server of Goethe University Frankfurt am MainArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2023Publisher:Springer Science and Business Media LLC Zining Xiang; Yuyu Liu; Yongfei Fu; Yixiong Gao; Luxia Liu; Fuqiang Wang;Abstract Exploring the spatiotemporal variation characteristics of vegetation in the confluent area of water systems in western Jinan and its response mechanism to climatic factors is of great significance for the scientific evaluation of the benefits of the water system connectivity project and eco-environmental protection and can provide a reference for ecotourism development in the Jixi wetland park. Based on the Landsat series of images and meteorological data, this study used ENVI to interpret the normalized difference vegetation index (NDVI) of the confluent area from 2010 to 2021 and the spatiotemporal change characteristics and trends of NDVI were quantitatively analysed. The response of the growing-season NDVI (GSN) to climate factors and its time-lag effect were explored. The results showed that the overall change in the interannual NDVI in the confluent area from 2010 to 2021 was stable. The GSN in the confluent area was significantly positively correlated with precipitation, average temperature, and relative humidity in 37.64%, 25.52%, and 20.87% of the area respectively, and significantly negatively correlated with sunshine hours in 15.32% of the area. There was a time-lag effect on the response of the GSN to climate factors; the response to precipitation and sunshine hours lagged by one month, and the response to average temperature and relative humidity was longer.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefEnvironmental Monitoring and AssessmentArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routeshybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefEnvironmental Monitoring and AssessmentArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:Springer Science and Business Media LLC Authors: Runqun Yu; Zhuoyang Luo;AbstractIn the study of urban development, it is very important to evaluate the influence of production factors reasonably and efficiently for the region to achieve efficient development. The principal aim of this investigation is to amalgamate the conventional measurement model characterized by robust interpretability with the non-parametric model characterized by limited interpretability, thereby enhancing the precision of research outcomes. Towards this objective, the study employs an optimized directional distance function integrated with a global Malmquist–Luenberger index to formulate a comprehensive total factor productivity measurement framework. In elucidating the homogeneous attributes of regions, departing from prior methodologies reliant on manual or direct algorithmic partitioning, this paper employs the K-means clustering algorithm for index discernment, abstracting the concept of K-means clustering centroids to encapsulate regional homogeneity, thereby delineating results through the visualization of regional development potential maps and the evolution of centroid-based clustering trend maps. The findings of the investigation illuminate common patterns of change across disparate regions, proposing a strategy for leveraging regional resource endowments towards a cohesive framework, thereby transcending constraints imposed by production efficiency limitations. Amidst the backdrop of the COVID-19 pandemic, this study draws upon provincial-level data spanning from 2000 to 2018 in China. The conclusive analytical outcomes underscore the pivotal role of energy factors in regional development efficiency, particularly within high-potential development regions, followed by the capital and labor factors. Concurrently, the study discerns a discernible hierarchical pattern among areas of development potential, which exhibits correlation with factor mobility dynamics.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1038/s41598...Article . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1038/s41598...Article . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2013Publisher:Elsevier BV Authors: S. Voswinckel; J. Haller; Viktor Wesselak;Abstract Global irradiance spectra vary with location, different viewing angles and times of day, depending on the fraction of direct and diffuse irradiance. Owing to big differences in spectral responses, PV module technologies might therefore show a differing behaviour with varying orientation and tilt angles. The purpose of this work is to verify the thesis, that thin film modules are – due to their spectral response – more suitable for horizontal orientation than crystalline. Diffuse irradiation (except from circumsolar radiation) can be captured best by a horizontal surface and consists to a greater fraction of short wavelengths than direct irradiation. At the same time thin film modules primarily absorb photons of short wavelengths and could therefore be better suited for horizontal application. Based on the semi-empirical spectral model Sedes2 and quantum efficiency data, a model has been developed to analyse differences in optimum orientation of several PV module technologies. In a first step, hourly global irradiance spectra are generated from a 1 year dataset of hourly climate data derived from long-term averages by the Meteonorm database for two sites in different climes. Based on this, average photocurrent densities are computed for each technology and for a matrix of different orientation and tilt angles using quantum efficiency data. Normalised to their maximum, the photocurrent densities are compared between the technologies. The results we obtained show, that for each site the maximum relative photocurrent densities are located at about the same orientation for all technologies, i.e. the optimum orientation is the same. At horizontal orientation, thin film modules show a slightly higher value of normalised average photocurrent densities than monocrystalline modules. Yet, for a whole year this advantage lies below 1% for both sites.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2022Publisher:Springer Science and Business Media LLC Funded by:UKRI | High Volume E-Machine Sta...UKRI| High Volume E-Machine Stack ManufactureBenjamin van Selm; Anita Frehner; Imke J. M. de Boer; Ollie van Hal; Renske Hijbeek; Martin K. van Ittersum; Elise F. Talsma; Jan Peter Lesschen; Chantal M. J. Hendriks; Mario Herrero; Hannah H. E. van Zanten;AbstractIt is not known whether dietary guidelines proposing a limited intake of animal protein are compatible with the adoption of circular food systems. Using a resource-allocation model, we compared the effects of circularity on the supply of animal-source nutrients in Europe with the nutritional requirements of the EAT-Lancet reference diet. We found the two to be compatible in terms of total animal-source proteins but not specific animal-source foods; in particular, the EAT-Lancet guidelines recommend larger quantities of poultry meat over beef and pork, while a circular food system produces mainly milk, dairy-beef and pork. Compared with the EAT-Lancet reference diet, greenhouse gas emissions were reduced by up to 31% and arable land use reduced by up to 42%. Careful consideration of the feasible substitutability between animal-source foods is needed to define potential roles of animal products in circular human diets.
Research@WUR arrow_drop_down Research@WURArticle . 2022License: CC BYFull-Text: https://edepot.wur.nl/561836Data sources: Research@WURCGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/126918Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 77 citations 77 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Research@WUR arrow_drop_down Research@WURArticle . 2022License: CC BYFull-Text: https://edepot.wur.nl/561836Data sources: Research@WURCGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/126918Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Jian Liao; Haojie Wang; Shaojun Xiao; Zhaoying Guan; Haomiao Zhang; Henri J. Dumont; Bo-Ping Han;Neurobasis chinensis is widely distributed in eastern tropical Asia. Its only congener in China, the N. anderssoni, has not been observed for decades. To protect N. chinensis, it is necessary to understand the ecological properties of its habitats and specie’s range shift under climate change. In the present study, we modeled its potential distribution under one historical, current, and four future scenarios. We evaluated the importance of the factors that shape its distribution and habitats and predicted the historical and current core spatial distributions and their shifting in the future. Two historical core distribution areas were identified: the inland region of the Bay of Bengal and south-central Vietnam. The current potential distribution includes south China, Vietnam, Laos, Thailand, Myanmar, Luzon of Philippines, Malaysia, southwest and northeast India, Sri Lanka, Indonesia (Java, Sumatera), Bangladesh, Nepal, Bhutan, and foothills of the Himalayas, in total, ca. 3.59 × 106 km2. Only one core distribution remained, concentrated in south-central Vietnam. In a warming future, the core distribution, high suitable habitats, and even the whole range of N. chinensis will expand and shift northwards. Currently, N. chinensis mainly resides in forest ecosystems below 1200 m above sea level (preferred 500 m to 1200 m a.s.l.). Annual precipitation, mean temperature of driest quarter, and seasonality of precipitation are important factors shaping the species distribution. Our study provides systematic information on habitats and geographical distribution, which is useful for the conservation of N. chinensis.
Biology arrow_drop_down BiologyOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2079-7737/11/6/868/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Biology arrow_drop_down BiologyOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2079-7737/11/6/868/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Funded by:MESTD | Ministry of Education, Sc..., DFG | Biological Responses to N..., UKRI | ForeSight: Predicting and...MESTD| Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200169 (University of Belgrade, Faculty of Forestry) ,DFG| Biological Responses to Novel and Changing Environments ,UKRI| ForeSight: Predicting and monitoring drought-linked forest growth decline across EuropeLeifsson, Christopher; Buras, Allan; Klesse, Stefan; Baittinger, Claudia; Bat-Enerel, Banzragch; Battipaglia, Giovanna; Biondi, Franco; Stajić, Branko; Budeanu, Marius; Čada, Vojtěch; Cavin, Liam; Claessens, Hugues; Čufar, Katarina; de Luis, Martin; Dorado-Liñán, Isabel; Dulamsuren, Choimaa; Garamszegi, Balázs; Grabner, Michael; Hacket-Pain, Andrew; Hansen, Jon Kehlet; Hartl, Claudia; Huang, Weiwei; Janda, Pavel; Jump, Alistair; Kazimirović, Marko; Knutzen, Florian; Kreyling, Jürgen; Land, Alexander; Latte, Nicolas; Lebourgeois, François; Leuschner, Christoph; Longares, Luis; Martinez del Castillo, Edurne; Menzel, Annette; Motta, Renzo; Muffler-Weigel, Lena; Nola, Paola; Panayatov, Momchil; Petritan, Any Mary; Petritan, Ion Catalin; Popa, Ionel; Roibu, Cǎtǎlin-Constantin; Rubio-Cuadrado, Álvaro; Rydval, Miloš; Scharnweber, Tobias; Camarero, J. Julio; Svoboda, Miroslav; Toromani, Elvin; Trotsiuk, Volodymyr; van der Maaten-Theunissen, Marieke; van der Maaten, Ernst; Weigel, Robert; Wilmking, Martin; Zlatanov, Tzvetan; Rammig, Anja; Zang, Christian;pmid: 38782287
The future performance of the widely abundant European beech (Fagus sylvatica L.) across its ecological amplitude is uncertain. Although beech is considered drought-sensitive and thus negatively affected by drought events, scientific evidence indicating increasing drought vulnerability under climate change on a cross-regional scale remains elusive. While evaluating changes in climate sensitivity of secondary growth offers a promising avenue, studies from productive, closed-canopy forests suffer from knowledge gaps, especially regarding the natural variability of climate sensitivity and how it relates to radial growth as an indicator of tree vitality. Since beech is sensitive to drought, we in this study use a drought index as a climate variable to account for the combined effects of temperature and water availability and explore how the drought sensitivity of secondary growth varies temporally in dependence on growth variability, growth trends, and climatic water availability across the species' ecological amplitude. Our results show that drought sensitivity is highly variable and non-stationary, though consistently higher at dry sites compared to moist sites. Increasing drought sensitivity can largely be explained by increasing climatic aridity, especially as it is exacerbated by climate change and trees' rank progression within forest communities, as (co-)dominant trees are more sensitive to extra-canopy climatic conditions than trees embedded in understories. However, during the driest periods of the 20th century, growth showed clear signs of being decoupled from climate. This may indicate fundamental changes in system behavior and be early-warning signals of decreasing drought tolerance. The multiple significant interaction terms in our model elucidate the complexity of European beech's drought sensitivity, which needs to be taken into consideration when assessing this species' response to climate change.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2025 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Freiburg: FreiDokArticle . 2024Full-Text: https://freidok.uni-freiburg.de/data/261433Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of Zaragoza (ZAGUAN)Article . 2024License: CC BYFull-Text: http://zaguan.unizar.es/record/135789Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2024License: CC BYFull-Text: http://hdl.handle.net/1893/36046Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2024Data sources: Digital Repository of University of ZaragozaPublikationenserver der Georg-August-Universität GöttingenArticle . 2024Copenhagen University Research Information SystemArticle . 2024Data sources: Copenhagen University Research Information SystemRepository of the University of LjubljanaArticle . 2024Data sources: Repository of the University of LjubljanaMinistry of Culture Research PortalArticle . 2024License: CC BYData sources: Ministry of Culture Research PortalUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Omorika - Repository of the Faculty of Forestry, BelgradeArticle . 2024Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 21visibility views 21 download downloads 28 Powered by
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2025 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Freiburg: FreiDokArticle . 2024Full-Text: https://freidok.uni-freiburg.de/data/261433Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of Zaragoza (ZAGUAN)Article . 2024License: CC BYFull-Text: http://zaguan.unizar.es/record/135789Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2024License: CC BYFull-Text: http://hdl.handle.net/1893/36046Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2024Data sources: Digital Repository of University of ZaragozaPublikationenserver der Georg-August-Universität GöttingenArticle . 2024Copenhagen University Research Information SystemArticle . 2024Data sources: Copenhagen University Research Information SystemRepository of the University of LjubljanaArticle . 2024Data sources: Repository of the University of LjubljanaMinistry of Culture Research PortalArticle . 2024License: CC BYData sources: Ministry of Culture Research PortalUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Omorika - Repository of the Faculty of Forestry, BelgradeArticle . 2024Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Conference object 2023Publisher:MDPI AG Authors: Sigle, Sebastian; Hahn, Robert;doi: 10.3390/en16186512
Heavy-duty vehicles (HDVs) are responsible for a significant amount of CO2 emissions in the transport sector. The share of these vehicles is still increasing in the European Union (EU); nevertheless, rigorous CO2 emission reduction schemes will apply in the near future. Different measures to decrease CO2 emissions are being already discussed, e.g., the electrification of the powertrain. Additionally, the impact of autonomous driving on energy consumption is being investigated. The most common types are fuel cell vehicles (FCEVs) and battery-only vehicles (BEVs). It is still unclear which type of powertrain will prevail in the future. Therefore, we developed a method to compare different powertrain options based on different scenarios in terms of primary energy consumption, CO2 emissions, and fuel costs. We compared the results with the internal combustion engine vehicle (ICEV). The model includes a model for the climatization of the driver’s cabin, which we used to investigate the impact of autonomous driving on energy consumption. It became clear that certain powertrains offer advantages for certain applications and that sensitivities exist with regard to primary energy and CO2 emissions. Overall, it became clear that electrified powertrains could reduce the CO2 emissions and the primary energy consumption of HDVs. Moreover, autonomous vehicles can save energy in most cases.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2019Publisher:Elsevier BV Funded by:UKRI | UK Carbon Capture and Sto...UKRI| UK Carbon Capture and Storage Research Centre 2017 (UKCCSRC 2017)Nilay Shah; Minh T. Ho; Husain Bahzad; Niall Mac Dowell; Paul S. Fennell; Matthew E. Boot-Handford; Salman Masoudi Soltani; Salman Masoudi Soltani;handle: 10044/1/72189
Abstract In this work, a novel hydrogen production process (Integrated Chemical Looping Water Splitting “ICLWS”) has been developed. The modelled process has been optimised via heat integration between the main process units. The effects of the key process variables (i.e. the oxygen carrier-to-fuel ratio, steam flow rate and discharged gas temperature) on the behaviour of the reducer and oxidiser reactors were investigated. The thermal and exergy efficiencies of the process were studied and compared against a conventional steam-methane reforming (SMR) process. Finally, the economic feasibility of the process was evaluated based on the corresponding CAPEX, OPEX and first-year plant cost per kg of the hydrogen produced. The thermal efficiency of the ICLWS process was improved by 31.1% compared to the baseline (Chemical Looping Water Splitting without heat integration) process. The hydrogen efficiency and the effective efficiencies were also higher by 11.7% and 11.9%, respectively compared to the SMR process. The sensitivity analysis showed that the oxygen carrier–to-methane and -steam ratios enhanced the discharged gas and solid conversions from both the reducer and oxidiser. Unlike for the oxidiser, the temperature of the discharged gas and solids from the reducer had an impact on the gas and solid conversion. The economic evaluation of the process indicated hydrogen production costs of $1.41 and $1.62 per kilogram of hydrogen produced for Fe-based oxygen carriers supported by ZrO2 and MgAl2O4, respectively - 14% and 1.2% lower for the SMR process H2 production costs respectively.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2019License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/72189Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2019Data sources: Spiral - Imperial College Digital RepositoryInternational Journal of Hydrogen EnergyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefBrunel University London: Brunel University Research Archive (BURA)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen bronze 50 citations 50 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2019License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/72189Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2019Data sources: Spiral - Imperial College Digital RepositoryInternational Journal of Hydrogen EnergyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefBrunel University London: Brunel University Research Archive (BURA)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2018Publisher:Wiley Funded by:SNSF | Population Genomic Basis ..., EC | APODYNA, NSF | Costs and Benefits of Bip... +8 projectsSNSF| Population Genomic Basis of Evolutionary Change in Drosophila Aging and Life History ,EC| APODYNA ,NSF| Costs and Benefits of Biparental Care in Monogamous Owl Monkeys ,NIH| EXTERNAL INNOVATIVE NETWORK CORE ,EC| LEED ,NIH| Mechanisms and Consequences of Social Connectedness in a Wild Primate Population ,NIH| SEX DIFFERENCES IN HEALTH AND SURVIVAL IN A WILD PRIMATE POPULATION ,NSF| RAPID Twinning in Monogamous Owl Monkeys of the Argentinean Chaco: Developmental and Behavioral Consequences ,NSF| LTREB: Long-term behavioral and genetic analyses of a wild primate population ,DFG ,NSF| Social Monogamy in Free-ranging Owl Monkeys (Aotus azarai azarai) of ArgentinaAuthors: Peter H. Becker; Henri Weimerskirch; Kristel M. De Vleeschouwer; Fernando Colchero; +30 AuthorsPeter H. Becker; Henri Weimerskirch; Kristel M. De Vleeschouwer; Fernando Colchero; Craig Packer; Owen R. Jones; Aurelio F. Malo; Aurelio F. Malo; Richard J. Delahay; Jennifer McDonald; Martin Hesselsøe; Jean-François Lemaître; Becky E. Raboy; Chris J. Reading; Dalia Amor Conde; David Miller; Colin O'Donnell; Felix Zajitschek; Anne M. Bronikowski; Jean-Michel Gaillard; Sam M. Larson; Sandra Bouwhuis; Annette Baudisch; Thomas Flatt; Eduardo Fernandez-Duque; David J. Hodgson; Stefan Dummermuth; Benedikt R. Schmidt; Geoffrey M. While; Geoffrey M. While; John Frisenvænge; Susan C. Alberts; Tim Coulson; Erik Wapstra;AbstractThe current extinction and climate change crises pressure us to predict population dynamics with ever‐greater accuracy. Although predictions rest on the well‐advanced theory of age‐structured populations, two key issues remain poorly explored. Specifically, how the age‐dependency in demographic rates and the year‐to‐year interactions between survival and fecundity affect stochastic population growth rates. We use inference, simulations and mathematical derivations to explore how environmental perturbations determine population growth rates for populations with different age‐specific demographic rates and when ages are reduced to stages. We find that stage‐ vs. age‐based models can produce markedly divergent stochastic population growth rates. The differences are most pronounced when there are survival‐fecundity‐trade‐offs, which reduce the variance in the population growth rate. Finally, the expected value and variance of the stochastic growth rates of populations with different age‐specific demographic rates can diverge to the extent that, while some populations may thrive, others will inevitably go extinct.
Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10871/36423Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAOxford University Research ArchiveArticle . 2018License: CC BYData sources: Oxford University Research ArchiveEcology LettersArticle . 2019License: CC BYData sources: University of Southern Denmark Research OutputUniversity of Southern Denmark Research OutputArticle . 2019Data sources: University of Southern Denmark Research OutputBiblioteca Digital de la Universidad de AlcaláArticle . 2019License: CC BY NC NDData sources: Biblioteca Digital de la Universidad de AlcaláInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 52 citations 52 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 190visibility views 190 download downloads 39 Powered by
more_vert Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10871/36423Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAOxford University Research ArchiveArticle . 2018License: CC BYData sources: Oxford University Research ArchiveEcology LettersArticle . 2019License: CC BYData sources: University of Southern Denmark Research OutputUniversity of Southern Denmark Research OutputArticle . 2019Data sources: University of Southern Denmark Research OutputBiblioteca Digital de la Universidad de AlcaláArticle . 2019License: CC BY NC NDData sources: Biblioteca Digital de la Universidad de AlcaláInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2016Publisher:Springer Science and Business Media LLC Funded by:DFG, ANR | GC-INVAMOFECTDFG ,ANR| GC-INVAMOFECTAuthors: Cunze, Sarah; Koch, Lisa Katharina; Kochmann, Judith; Klimpel, Sven;Aedes albopictus and Ae. japonicus are two of the most widespread invasive mosquito species that have recently become established in western Europe. Both species are associated with the transmission of a number of serious diseases and are projected to continue their spread in Europe.In the present study, we modelled the habitat suitability for both species under current and future climatic conditions by means of an Ensemble forecasting approach. We additionally compared the modelled MAXENT niches of Ae. albopictus and Ae. japonicus regarding temperature and precipitation requirements.Both species were modelled to find suitable habitat conditions in distinct areas within Europe: Ae. albopictus within the Mediterranean regions in southern Europe, Ae. japonicus within the more temperate regions of central Europe. Only in few regions, suitable habitat conditions were projected to overlap for both species. Whereas Ae. albopictus is projected to be generally promoted by climate change in Europe, the area modelled to be climatically suitable for Ae. japonicus is projected to decrease under climate change. This projection of range reduction under climate change relies on the assumption that Ae. japonicus is not able to adapt to warmer climatic conditions. The modelled MAXENT temperature niches of Ae. japonicus were found to be narrower with an optimum at lower temperatures compared to the niches of Ae. albopictus.Species distribution models identifying areas with high habitat suitability can help improving monitoring programmes for invasive species currently in place. However, as mosquito species are known to be able to adapt to new environmental conditions within the invasion range quickly, niche evolution of invasive mosquito species should be closely followed upon in future studies.
Parasites & Vect... arrow_drop_down Hochschulschriftenserver - Universität Frankfurt am MainArticle . 2016Data sources: Hochschulschriftenserver - Universität Frankfurt am MainPublication Server of Goethe University Frankfurt am MainArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 77 citations 77 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Parasites & Vect... arrow_drop_down Hochschulschriftenserver - Universität Frankfurt am MainArticle . 2016Data sources: Hochschulschriftenserver - Universität Frankfurt am MainPublication Server of Goethe University Frankfurt am MainArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2023Publisher:Springer Science and Business Media LLC Zining Xiang; Yuyu Liu; Yongfei Fu; Yixiong Gao; Luxia Liu; Fuqiang Wang;Abstract Exploring the spatiotemporal variation characteristics of vegetation in the confluent area of water systems in western Jinan and its response mechanism to climatic factors is of great significance for the scientific evaluation of the benefits of the water system connectivity project and eco-environmental protection and can provide a reference for ecotourism development in the Jixi wetland park. Based on the Landsat series of images and meteorological data, this study used ENVI to interpret the normalized difference vegetation index (NDVI) of the confluent area from 2010 to 2021 and the spatiotemporal change characteristics and trends of NDVI were quantitatively analysed. The response of the growing-season NDVI (GSN) to climate factors and its time-lag effect were explored. The results showed that the overall change in the interannual NDVI in the confluent area from 2010 to 2021 was stable. The GSN in the confluent area was significantly positively correlated with precipitation, average temperature, and relative humidity in 37.64%, 25.52%, and 20.87% of the area respectively, and significantly negatively correlated with sunshine hours in 15.32% of the area. There was a time-lag effect on the response of the GSN to climate factors; the response to precipitation and sunshine hours lagged by one month, and the response to average temperature and relative humidity was longer.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefEnvironmental Monitoring and AssessmentArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routeshybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefEnvironmental Monitoring and AssessmentArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:Springer Science and Business Media LLC Authors: Runqun Yu; Zhuoyang Luo;AbstractIn the study of urban development, it is very important to evaluate the influence of production factors reasonably and efficiently for the region to achieve efficient development. The principal aim of this investigation is to amalgamate the conventional measurement model characterized by robust interpretability with the non-parametric model characterized by limited interpretability, thereby enhancing the precision of research outcomes. Towards this objective, the study employs an optimized directional distance function integrated with a global Malmquist–Luenberger index to formulate a comprehensive total factor productivity measurement framework. In elucidating the homogeneous attributes of regions, departing from prior methodologies reliant on manual or direct algorithmic partitioning, this paper employs the K-means clustering algorithm for index discernment, abstracting the concept of K-means clustering centroids to encapsulate regional homogeneity, thereby delineating results through the visualization of regional development potential maps and the evolution of centroid-based clustering trend maps. The findings of the investigation illuminate common patterns of change across disparate regions, proposing a strategy for leveraging regional resource endowments towards a cohesive framework, thereby transcending constraints imposed by production efficiency limitations. Amidst the backdrop of the COVID-19 pandemic, this study draws upon provincial-level data spanning from 2000 to 2018 in China. The conclusive analytical outcomes underscore the pivotal role of energy factors in regional development efficiency, particularly within high-potential development regions, followed by the capital and labor factors. Concurrently, the study discerns a discernible hierarchical pattern among areas of development potential, which exhibits correlation with factor mobility dynamics.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1038/s41598...Article . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1038/s41598...Article . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2013Publisher:Elsevier BV Authors: S. Voswinckel; J. Haller; Viktor Wesselak;Abstract Global irradiance spectra vary with location, different viewing angles and times of day, depending on the fraction of direct and diffuse irradiance. Owing to big differences in spectral responses, PV module technologies might therefore show a differing behaviour with varying orientation and tilt angles. The purpose of this work is to verify the thesis, that thin film modules are – due to their spectral response – more suitable for horizontal orientation than crystalline. Diffuse irradiation (except from circumsolar radiation) can be captured best by a horizontal surface and consists to a greater fraction of short wavelengths than direct irradiation. At the same time thin film modules primarily absorb photons of short wavelengths and could therefore be better suited for horizontal application. Based on the semi-empirical spectral model Sedes2 and quantum efficiency data, a model has been developed to analyse differences in optimum orientation of several PV module technologies. In a first step, hourly global irradiance spectra are generated from a 1 year dataset of hourly climate data derived from long-term averages by the Meteonorm database for two sites in different climes. Based on this, average photocurrent densities are computed for each technology and for a matrix of different orientation and tilt angles using quantum efficiency data. Normalised to their maximum, the photocurrent densities are compared between the technologies. The results we obtained show, that for each site the maximum relative photocurrent densities are located at about the same orientation for all technologies, i.e. the optimum orientation is the same. At horizontal orientation, thin film modules show a slightly higher value of normalised average photocurrent densities than monocrystalline modules. Yet, for a whole year this advantage lies below 1% for both sites.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2022Publisher:Springer Science and Business Media LLC Funded by:UKRI | High Volume E-Machine Sta...UKRI| High Volume E-Machine Stack ManufactureBenjamin van Selm; Anita Frehner; Imke J. M. de Boer; Ollie van Hal; Renske Hijbeek; Martin K. van Ittersum; Elise F. Talsma; Jan Peter Lesschen; Chantal M. J. Hendriks; Mario Herrero; Hannah H. E. van Zanten;AbstractIt is not known whether dietary guidelines proposing a limited intake of animal protein are compatible with the adoption of circular food systems. Using a resource-allocation model, we compared the effects of circularity on the supply of animal-source nutrients in Europe with the nutritional requirements of the EAT-Lancet reference diet. We found the two to be compatible in terms of total animal-source proteins but not specific animal-source foods; in particular, the EAT-Lancet guidelines recommend larger quantities of poultry meat over beef and pork, while a circular food system produces mainly milk, dairy-beef and pork. Compared with the EAT-Lancet reference diet, greenhouse gas emissions were reduced by up to 31% and arable land use reduced by up to 42%. Careful consideration of the feasible substitutability between animal-source foods is needed to define potential roles of animal products in circular human diets.
Research@WUR arrow_drop_down Research@WURArticle . 2022License: CC BYFull-Text: https://edepot.wur.nl/561836Data sources: Research@WURCGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/126918Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 77 citations 77 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Research@WUR arrow_drop_down Research@WURArticle . 2022License: CC BYFull-Text: https://edepot.wur.nl/561836Data sources: Research@WURCGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/126918Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
