- home
- Advanced Search
- Energy Research
- Open Access
- Restricted
- Embargo
- 11. Sustainability
- 9. Industry and infrastructure
- CN
- GB
- AU
- Energy Research
- Open Access
- Restricted
- Embargo
- 11. Sustainability
- 9. Industry and infrastructure
- CN
- GB
- AU
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Aitian Tao; Ang Tian; He Yang; Jing An;doi: 10.3390/su132313205
In recent years, the rapid development of the rare earth industry has had a serious impact on the environment. Some enterprises have taken measures to improve the production process. In order to explore the sustainability of this industry and these improvements’ environmental benefits, this paper combines emergy analysis and lifecycle assessment to evaluate and compare the production process of rare-earth oxides considering the three aspects of emergy flow, pollutant emissions, and emergy-based indicators. Changes in the emergy of pollutant emissions before and after improvement of the production process are discussed. The results show that the greatest inputs in the mining and beneficiation stage and smelting separation stage are labor force and service and non-renewable resources, respectively. These two production stages are highly dependent on external input and have weak competitiveness. Both stages place great pressure on the environment, so the bastnasite production process would be unsustainable in the long term. After the improvement, the environmental impact of the production process for bastnaesite changed significantly, indicating that the improvement effect of the wastewater treatment facilities and the change of fuel from coal to natural gas is remarkable.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132313205&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132313205&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Siddig Omer; Elamin Mohamed; Rami Zeinelabdein; Rami Zeinelabdein;© 2020 Elsevier Ltd Free cooling of buildings uses the nocturnal outdoor air as a heat sink via a ventilation process. This could be performed by storing the night coolness for use during the daytime as appropriate. Due to the latent heat capacity, phase change material (PCM) could play anessential role in the effective operation of the free cooling systems by shifting the daytime peak load to the night. However, there is a scarceness on the technology application in hot climates. This paper presents results of a parametric investigation into the application of PCMs as thermal energy storage (TES) to provide sustainable cooling to buildings in hot arid climate by making use of the night-time free cooling. The proposed TES medium comprises an arrangement of metallic modules filled with RT28HC PCM. Numerous geometrical configurations and operational parameters have been assessed. A transient CFD simulation has been employed using ANSYS Fluent software. Validation of the numerical results with experimental data has shown a good agreement. The results have demonstrated that the temperature difference between the PCM and the air, at appropriate air flow rate would have a significant impact on the performance of the system. A free cooling system based on the proposed arrangement has the potential to meet around 42% of a typical building cooling load and has the ability to save up to 67% of building cooling energy load in summer season compared to conventional air-conditioning systems in hot arid climates.
Journal of Energy St... arrow_drop_down Journal of Energy StorageArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2020.101972&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Energy St... arrow_drop_down Journal of Energy StorageArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2020.101972&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors:Ahmed, Asam;
Ge, Tianshu;Ahmed, Asam
Ahmed, Asam in OpenAIREPeng, Jinqing;
Yan, Wei-Cheng; +2 AuthorsPeng, Jinqing
Peng, Jinqing in OpenAIREAhmed, Asam;
Ge, Tianshu;Ahmed, Asam
Ahmed, Asam in OpenAIREPeng, Jinqing;
Yan, Wei-Cheng; Tee, Boon Tuan;Peng, Jinqing
Peng, Jinqing in OpenAIREYou, Siming;
You, Siming
You, Siming in OpenAIREDecarbonizing the building sector is extremely important to mitigating climate change as the sector contributes 40% of the overall energy consumption and 36% of the total greenhouse gas emissions in the world. Net-zero energy buildings are one of the promising decarbonization attempts due to their potential of decreasing the use of energy and increasing the total share of renewable energy. To achieve a net-zero energy building, it is necessary to decrease the energy demand by applying efficiency enhancement measures and using renewable energy sources. Net-zero energy buildings can be classified into four models (Net-Zero Site Energy buildings, Net-Zero Emissions buildings, Net-Zero Source Energy buildings, and Net-Zero Cost Energy buildings). A variety of technical, financial, and environmental factors should be considered during the decision-making process of net-zero energy building development, justifying the use of multi-criteria decision analysis methods for the design of net-zero energy buildings. This paper also discussed the contributions of renewable energy generation (hydropower, wind energy, solar, heat pumps, and bioenergy) to the development of net-zero energy buildings and reviewed its role in tackling the decarbonization challenge. Cost-benefit analysis and life cycle assessment of building designs were reviewed to shape the priorities of future development. It is important to develop a universal decision instrument for optimum design and operation of net-zero energy buildings.
CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2022License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2021.111755&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 263 citations 263 popularity Top 1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2022License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2021.111755&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: Chen, Huangxin; Lin, Hang; Zou, Wenjie;doi: 10.3390/su12083284
Innovation ability has become one of the core elements in the pursuit of China’s green growth, and high-tech industries are playing a leading role in technological innovation in China. With the rapid development of China’s high-tech industries, their innovation efficiency has attracted widespread attention. This article aims to illustrate a shared inputs two-stage network Data Envelopment Analysis (DEA), to measure the innovation efficiency of high-tech industries in China’s 29 provinces from 1999 to 2018. The results indicate that there are obvious differences in the innovation efficiency of the provinces. The technology development efficiency, the technical transformation efficiency, and the overall innovation efficiency of the developed east coast provinces are generally higher than those of the backward central and western provinces. This article further applies the spatial econometrics model to analyze the factors influencing the innovation efficiency of high-tech industries. We have found that government support, R&D input intensity, industries aggregation, economic extroversion, and the level of development of the modern service industries cause varying degrees of impact on innovation efficiency.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/8/3284/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12083284&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 65 citations 65 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/8/3284/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12083284&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG doi: 10.3390/su13105753
This study uses the structured–pragmatics–situational case study approach to explore the intrinsic mechanism of enterprise digital enablement using affordance theory and how traditional enterprises enable customers to participate in value co-creation through information technology, then realize business model innovation and maintain continuous consumption. The study revealed the following: (1) Product affordance drives customers’ original willingness to engage in value co-creation in four dimensions: economy, reliability, uniqueness, and selectivity; (2) The visibility, convenience, association, and persistence of the platform affordance enhance users’ abilities to engage in value co-creation; (3) The interaction of affordance, structural enablement, and digital enablement drives the interaction of willingness and capability to engage in value co-creation; and (4) User participation behaviors in value co-creation can be divided into three dimensions (informational, actionable, and attitudinal participation)and four stages. The findings explain how traditional enterprises use IT enablement to promote business model innovation of customer participation in value co-creation and enrich the theories of digital enablement. The conclusions reveal the managerial implications of the ways, paths, and mechanism of business model innovation by IT enabling customers to participate in value co-creation.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/10/5753/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13105753&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/10/5753/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13105753&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Zhu, Yaozong; Wang, Yezhu; Zhou, Baohuan; Hu, Xiaoli; Xie, Yundong;doi: 10.3390/su15043484
Large amounts of CO2 from human socioeconomic activities threaten environmental sustainability. Moreover, uncontrolled resource use and lack of relevant technology exacerbate this issue. For this reason, carbon capture, utilization, and storage (CCUS) technology has gained worldwide attention. Many scholars have researched CCUS, but few have used CCUS patent bibliometric analysis from a unified perspective. This article aims to provide a conclusive analysis for CCUS researchers and policymakers, as well as summarize the innovation trends, technological distribution, and topic evolution. Based on 11,915 pieces of patent data from the Derwent Innovations Index, we used bibliometric analysis and data mining methods to conduct research on four dimensions: overall trend, geographical distribution, patentees, and patent content. The results of this article are as follows. CCUS has entered a rapid development stage since 2013. Patents are mainly distributed geographically in China, the US, and Japan, especially in heavy industries such as energy and electricity. Large enterprises hold patents with a relatively stable network of cooperators and attach great importance to international patent protection. A total of 12 topics were identified through clustering, and these topics gradually shifted from technicalities to commercialization, and from industrial production to all aspects of people’s daily lives.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/4/3484/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15043484&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/4/3484/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15043484&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012Publisher:Wiley Authors: Göran Berndes;Serina Ahlgren;
Pål Börjesson;Serina Ahlgren
Serina Ahlgren in OpenAIREAnnette L. Cowie;
Annette L. Cowie
Annette L. Cowie in OpenAIREdoi: 10.1002/wene.41
AbstractBioenergy projects can lead to direct and indirect land use change (LUC), which can substantially affect greenhouse gas balances with both beneficial and adverse outcomes for bioenergy's contribution to climate change mitigation. The causes behind LUC are multiple, complex, interlinked, and change over time. This makes quantification uncertain and sensitive to many factors that can develop in different directions—including land use productivity, trade patterns, prices and elasticities, and use of by‐products associated with biofuels production. Quantifications reported so far vary substantially and do not support the ranking of bioenergy options with regard to LUC and associated emissions. There are however several options for mitigating these emissions, which can be implemented despite the uncertainties. Long‐rotation forest management is associated with carbon emissions and sequestration that are not in temporal balance with each other and this leads to mitigation trade‐offs between biomass extraction for energy use and the alternative to leave the biomass in the forest. Bioenergy's contribution to climate change mitigation needs to reflect a balance between near‐term targets and the long‐term objective to hold the increase in global temperature below 2°C (Copenhagen Accord). Although emissions from LUC can be significant in some circumstances, the reality of such emissions is not sufficient reason to exclude bioenergy from the list of worthwhile technologies for climate change mitigation. Policy measures to minimize the negative impacts of LUC should be based on a holistic perspective recognizing the multiple drivers and effects of LUC.This article is categorized under: Bioenergy > Economics and Policy Bioenergy > Climate and Environment
Research Papers in E... arrow_drop_down Wiley Interdisciplinary Reviews Energy and EnvironmentArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefWiley Interdisciplinary Reviews Energy and EnvironmentOther literature typeData sources: Microsoft Academic GraphWiley Interdisciplinary Reviews Energy and EnvironmentJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/wene.41&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu72 citations 72 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Research Papers in E... arrow_drop_down Wiley Interdisciplinary Reviews Energy and EnvironmentArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefWiley Interdisciplinary Reviews Energy and EnvironmentOther literature typeData sources: Microsoft Academic GraphWiley Interdisciplinary Reviews Energy and EnvironmentJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/wene.41&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 China (People's Republic of), Hong Kong, China (People's Republic of)Publisher:Elsevier BV Ren, S; Luo, F; Lin, L; Hsu, SC; Li, XI;handle: 10397/101128
Abstract With promising benefits such as traffic emission reduction, traffic congestion alleviation, and parking problem solving, Electric Vehicle (EV)-sharing systems have attracted large attentions in recent years. Different from other business modes, customers in sharing economy systems are usually price sensitive. Therefore, it is possible to shift the usage of shared EVs through a well-designed Dynamic Pricing Scheme (DPS), with the objective of maximizing the system operator's total profit. In this study, we propose a novel DPS for a large-scale EV-sharing network to address the EV unbalancing issue and satisfy the vehicle-grid-integration (VGI) service based on accurate station-level demand prediction. The proposed DPS is formulated as a complex optimization problem, which includes two Price Adjustment Level (PAL) decision variables for every origin-destination pair of stations. The two PALs are employed to affect the EV-sharing demand and travel time between each station pair, respectively. Physical and operational constraints from both EV demand and VGI service aspects are also included in the proposed model. Two case study are conducted to validate the effectiveness of the proposed method.
Hong Kong Polytechni... arrow_drop_down Hong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2023License: CC BY NC NDFull-Text: http://hdl.handle.net/10397/101128Data sources: Bielefeld Academic Search Engine (BASE)International Journal of Production EconomicsArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijpe.2019.06.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 67 citations 67 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hong Kong Polytechni... arrow_drop_down Hong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2023License: CC BY NC NDFull-Text: http://hdl.handle.net/10397/101128Data sources: Bielefeld Academic Search Engine (BASE)International Journal of Production EconomicsArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijpe.2019.06.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014 United KingdomPublisher:Public Library of Science (PLoS) Funded by:WT, UKRI | The Autonomic Power Syste...WT ,UKRI| The Autonomic Power SystemParker, Miles; Acland, Andrew; Armstrong, Harry J.; Bellingham, Jim R.; Bland, Jessica; Bodmer, Helen C.; Burall, Simon; Castell, Sarah;Chilvers, Jason;
Cleevely, David D.; Cope, David; Costanzo, Lucia;Chilvers, Jason
Chilvers, Jason in OpenAIREDolan, James A.;
Doubleday, Robert; Feng, Wai Yi; Godfray, H. Charles J.; Good, David A.;Dolan, James A.
Dolan, James A. in OpenAIREGrant, Jonathan;
Green, Nick; Groen, Arnoud J.; Guilliams, Tim T.; Gupta, Sunjai; Hall, Amanda C.; Heathfield, Adam; Hotopp, Ulrike; Kass, Gary; Leeder, Tim;Grant, Jonathan
Grant, Jonathan in OpenAIRELickorish, Fiona A.;
Lueshi, Leila M.; Magee, Chris;Lickorish, Fiona A.
Lickorish, Fiona A. in OpenAIREMata, Tiago;
McBride, Tony; McCarthy, Natasha; Mercer, Alan; Neilson, Ross; Ouchikh, Jackie;Mata, Tiago
Mata, Tiago in OpenAIREOughton, Edward J.;
Oxenham, David;Oughton, Edward J.
Oughton, Edward J. in OpenAIREPallett, Helen;
Pallett, Helen
Pallett, Helen in OpenAIREPalmer, James;
Patmore, Jeff; Petts, Judith; Pinkerton, Jan; Ploszek, Richard; Pratt, Alan;Palmer, James
Palmer, James in OpenAIRERocks, Sophie A.;
Stansfield, Neil; Surkovic, Elizabeth; Tyler, Christopher P.; Watkinson, Andrew R.; Wentworth, Jonny; Willis, Rebecca; Wollner, Patrick K. A.; Worts, Kim;Rocks, Sophie A.
Rocks, Sophie A. in OpenAIRESutherland, William J.;
Sutherland, William J.
Sutherland, William J. in OpenAIREpmid: 24879444
pmc: PMC4039428
Public policy requires public support, which in turn implies a need to enable the public not just to understand policy but also to be engaged in its development. Where complex science and technology issues are involved in policy making, this takes time, so it is important to identify emerging issues of this type and prepare engagement plans. In our horizon scanning exercise, we used a modified Delphi technique. A wide group of people with interests in the science and policy interface (drawn from policy makers, policy adviser, practitioners, the private sector and academics) elicited a long list of emergent policy issues in which science and technology would feature strongly and which would also necessitate public engagement as policies are developed. This was then refined to a short list of top priorities for policy makers. Thirty issues were identified within broad areas of business and technology; energy and environment; government, politics and education; health, healthcare, population and aging; information, communication, infrastructure and transport; and public safety and national security.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2014 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2014License: CC BYData sources: Bielefeld Academic Search Engine (BASE)King's College, London: Research PortalArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)Cranfield University: Collection of E-Research - CERESArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0096480&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2014 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2014License: CC BYData sources: Bielefeld Academic Search Engine (BASE)King's College, London: Research PortalArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)Cranfield University: Collection of E-Research - CERESArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0096480&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Oxford University Press (OUP) doi: 10.1093/ijlct/ctq006
Biomass plays an important role in the world primary energy supplies, currently providing ∼14% of the world's primary energy needs and being the fourth largest contributor following coal, oil and natural gas. Over the past decade, domestic biomass heating has received more governmental and public supports than ever before in many developed countries, such as the UK. Although biomass combustion releases some combustion pollutants, biomass is renewable and produces little net CO 2 emissions to the atmosphere. Owing to the low sulphur and low nitrogen contents of many biomass materials, substituting biomass for fossil fuels, particularly coal, can reduce SO x and NO x emissions. This study investigated flue gas emissions, particularly carbon monoxide and nitrogen oxides, of a domestic biomass boiler under various operating conditions. The biomass boiler used in this study satisfies the current EU regulation (EN 303-05) on emissions of domestic biomass boilers. Emissions of the boiler had been measured not only under normal combustion conditions, but also under 'idle' combustion conditions when the boiler was not in but was ready for full operation. The experimental results are analysed and presented in this paper. Copyright The Author 2010. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org, Oxford University Press.
International Journa... arrow_drop_down International Journal of Low-Carbon TechnologiesArticle . 2010 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/ijlct/ctq006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Low-Carbon TechnologiesArticle . 2010 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/ijlct/ctq006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu