- home
- Advanced Search
- Energy Research
- Open Access
- Restricted
- Open Source
- CN
- GB
- CA
- Energy Research
- Open Access
- Restricted
- Open Source
- CN
- GB
- CA
description Publicationkeyboard_double_arrow_right Article , Other literature type 2018Publisher:International Centre for Education in Islamic Finance Authors: Aassouli, D.; Ebrahim, M. S.; Basiruddin, R.;handle: 10419/236925
Purpose This paper aims to propose a liquidity management solution for Islamic financial institutions (IFIs) that concurs with sustainable development and financial stability. Design/methodology/approach The study is a qualitative research. It uses the exploratory research methodology, specifically the content analysis approach, to gather primary data and identify and interpret relevant secondary data and Sharīʿah concepts. The purpose is to develop a liquidity management solution for IFIs. The proposal is based on the Unleveraged Green Investment Trust (UGIT) model, which is consistent with Basel III regulatory requirements. In developing the UGIT model, the exploratory research was complemented by a case study to examine the UGIT solution for the particular case of renewable energy. Findings The model demonstrates how financial innovation can meet both financial stability and sustainable development objectives, thereby achieving the spirit of Islamic finance. The structure further highlights the importance of regulatory and fiscal frameworks to enhance liquidity management and investor appeal for green financial instruments. Originality/value This study suggests a structure of UGIT to enable IFIs to meet their liquidity management needs while promoting sustainable development.
Durham Research Onli... arrow_drop_down Durham Research OnlineArticle . 2018 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/25733/1/25733.pdfData sources: Durham Research OnlineDurham University: Durham Research OnlineArticle . 2018Full-Text: http://dro.dur.ac.uk/25733/Data sources: Bielefeld Academic Search Engine (BASE)ISRA International Journal of Islamic FinanceArticle . 2018 . Peer-reviewedLicense: Emerald Insight Site PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Durham Research Onli... arrow_drop_down Durham Research OnlineArticle . 2018 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/25733/1/25733.pdfData sources: Durham Research OnlineDurham University: Durham Research OnlineArticle . 2018Full-Text: http://dro.dur.ac.uk/25733/Data sources: Bielefeld Academic Search Engine (BASE)ISRA International Journal of Islamic FinanceArticle . 2018 . Peer-reviewedLicense: Emerald Insight Site PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2020Publisher:MDPI AG Syed Afaq Ali Shah; Muhammad Hassan Sayyad; Karim Khan; Kai Guo; Fei Shen; Jinghua Sun; Ayesha Khan Tareen; Yubin Gong; Zhongyi Guo;doi: 10.3390/en13195092
Since its invention in 2009, Perovskite solar cells (PSCs) has attracted great attention because of its low cost, numerous options of efficiency enhancement, ease of manufacturing and high-performance. Within a short span of time, the PSC has already outperformed thin-film and multicrystalline silicon solar cells. A current certified efficiency of 25.2% demonstrates that it has the potential to replace its forerunner generations. However, to commercialize PSCs, some problems need to be addressed. The toxic nature of lead which is the major component of light absorbing layer, and inherited stability issues of fabricated devices are the major hurdles in the industrialization of this technology. Therefore, new researching areas focus on the lead-free metal halide perovskites with analogous optical and photovoltaic performances. Tin being nontoxic and as one of group IV(A) elements, is considered as the most suitable alternate for lead because of their similarities in chemical properties. Efficiencies exceeding 13% have been recorded using Tin halide perovskite based devices. This review summarizes progress made so far in this field, mainly focusing on the stability and photovoltaic performances. Role of different cations and their composition on device performances and stability have been involved and discussed. With a considerable room for enhancement of both efficiency and device stability, different optimized strategies reported so far have also been presented. Finally, the future developing trends and prospects of the PSCs are analyzed and forecasted.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 45 citations 45 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Book 2022Publisher:Springer International Publishing Authors: Howarth, Candice; Lane, Matthew; Slevin, Amanda;This open access book brings together a collection of cutting-edge insights into how action can and is already being taken against climate change at multiple levels of our societies, amidst growing calls for transformative and inclusive climate action. In an era of increasing recognition regarding climate and ecological breakdown, this book offers hope, inspiration and analyses for multi-level climate action, spanning varied communities, places, spaces, agents and disciplines, demonstrating how the energy and dynamism of local scales are a powerful resource in turning the tide. Interconnected yet conceptually distinct, the book’s three sections span multiple levels of analysis, interrogating diverse perspectives and practices inherent to the vivid tapestry of climate action emerging locally, nationally and internationally. Delivered in collaboration with the UK’s ‘Place-Based Climate Action Network’, chapters are drawn from a wide range of authors with varying backgrounds spread across academia, policy and practice.
https://doi.org/10.1... arrow_drop_down Queen's University Research PortalBook . 2021License: CC BYData sources: Queen's University Research PortalQueen's University Belfast Research PortalBook . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down Queen's University Research PortalBook . 2021License: CC BYData sources: Queen's University Research PortalQueen's University Belfast Research PortalBook . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Leijiao Ge; Jun Yan; Yonghui Sun; Zhongguan Wang;doi: 10.3390/en15114164
In recent years, the accelerating climate change and intensifying natural disasters have called for more renewable, resilient, and reliable energy from more distributed sources to more diversified consumers, resulting in a pressing need for advanced situational awareness of modern smart distribution systems [...]
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2017Publisher:MDPI AG Baohua Xie; Jiangxin Gu; Junbao Yu; Guangxuan Han; Xunhua Zheng; Yu Xu; Haitao Lin;doi: 10.3390/atmos8100181
Land use changes from cropland to orchards in Eastern China have raised serious concerns about the regional nitrogen (N) cycle and greenhouse gas balance. We measured soil nitrous oxide (N2O) emissions and methane (CH4) uptake using manual static chambers in an apple orchard. The primary aims were to assess the effect of N fertilizer application on gas fluxes and quantify the site-specific N2O emission factor (EFd). Field experiments were arranged in a randomized block design with three N input rates (0, 800 and 2600/2000 kg N ha−1 year−1). We found that orchard soils were a negligible CH4 sink (−1.1 to −0.4 kg C ha−1 year−1). Annual N2O emissions responded positively to N input rates, ranging from 34.1 to 60.3 kg N ha−1 year−1. EFd ranged from 1.00% to 1.65% with a mean of 1.34%. The extremely large background emissions of N2O (34.1–34.3 kg N ha−1 year−1) most likely originated from nitrate accumulation in the soil profile because of historical overuse of N fertilizer. We conclude that (1) site-specific EFd is suitable for assessing regional direct N2O emissions from upland orchards; and (2) conventional fertilization regimes must be avoided, and reduced N input rates are recommended in the study region.
Atmosphere arrow_drop_down AtmosphereOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2073-4433/8/10/181/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 23 citations 23 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Atmosphere arrow_drop_down AtmosphereOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2073-4433/8/10/181/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2023Publisher:Frontiers Media SA Funded by:EC | IntelCompEC| IntelCompPapadaki, Lydia; Stavridis, Charalampos; Koundouri, Phoebe; Grypari, Ioanna; Kazbek, Madina; Papageorgiou, Haris; Theodossiou, Nicolaos;The phenomena of climate change transcend all national and regional boundaries. To address this complex challenge, we must determine the areas of the country of interest, in this case, Greece, that have been most adversely affected by climate. Greece is surrounded by water, and a significant part of its GDP is derived from the marine and maritime industries, including tourism. Since the start of the IntelComp project, a Preparatory Living Lab (PLL) has been planned and delivered, feeding into the development of the IntelComp platform and the Living Lab on Climate Change Adaptation. The study's results lead to the conclusion that one of the most important challenges in tackling climate change is the decarbonisation challenge, specifically the shift to renewable energy sources and the investments that must be made. Several EU and national policy frameworks, including the European Green Deal, the Climate Law, the National Long-term Strategy for 2050 (on the Climate and Energy), highlight the decarbonisation as one of the major challenges in the climate change pledge. This will be the primary subject of the IntelComp climate change case study. PLLs also led to the identification of policy questions and useful data sources to aid the IntelComp project's launch. While previous research on co-production has primarily focused on involving citizens through public participation processes in order to gain their support, trust, and insights in structured decision-making processes, our approach opens a new channel for incorporating external knowledge into problem-solving processes. The IntelComp project will aid in policy development by providing pertinent tools co-developed with the final users that will provide insights and analysis in the field of STI (Science, Technology, Innovation) encompassing all of the Energy areas mentioned above.
Frontiers in Environ... arrow_drop_down Frontiers in Environmental EconomicsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefOnline Research Database In TechnologyArticle . 2023Data sources: Online Research Database In TechnologyFrontiers in Environmental EconomicsArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Frontiers in Environ... arrow_drop_down Frontiers in Environmental EconomicsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefOnline Research Database In TechnologyArticle . 2023Data sources: Online Research Database In TechnologyFrontiers in Environmental EconomicsArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Zhiqiang Chen; Chengcheng Wang; Wei Jia; Le Cheng; Fan Guo; Linshen Xie; Wei Wu; Wei Chen;doi: 10.3390/en15062202
In order to further improve the insulation performance of fiber reinforce plastic (FRP) materials used in electromagnetic pulse (EMP) simulators, the flashover characteristics of FRP materials with different surface roughness and groove, i.e., those who are easily achieved and have a prominent effect, are investigated in 0.1 MPa SF6 under nanosecond pulse voltage with a rise time of 20–30 ns. The experimental results show that surfaces with different roughness have no significant influence on the flashover voltages of the FRP insulators, and both the convex grooves made of FRP and the convex grooves with nylon rings inlaid to form projections can improve the surface flashover voltage of epoxy FRP insulators under nanosecond pulse, in which the effect of the former surface is more obvious. For the insulators with convex grooves made of FRP, it is found that the root of the FRP protrusions breaks down after a number of shots with the occurrence of carbonization channels and spots, which is nonexistent for the nylon projections. Combined with the test results of surface characteristics, the surface roughness and the secondary electron emission yield (SEEY) are not key factors of flashover characteristics in SF6 under nanosecond pulse, arguably due to the fact that the energy needed for an incident electron to ionize an SF6 molecule is lower than that to excite two secondary electrons. Hence, the flashover performance cannot be improved by adjusting the surface roughness, and the flashover channel is principally governed by the macroscopic distribution of electrical field which can be changed by the convex groove. Breakdown phenomena of FRP protrusions indicate that the bulk insulation performance of resin FRP is weaker compared to pure resin because of its composite structure, as well as the impurities and voids introduced in the manufacturing process. The results are instructive for the design of FRP insulation structures in the compact EMP simulator.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/6/2202/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/6/2202/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Research , Preprint 2021Embargo end date: 01 Jan 2020Publisher:Springer Science and Business Media LLC Publicly fundedFunded by:EC | AMVA4NewPhysics, EC | INSIGHTS, EC | LHCTOPVLQEC| AMVA4NewPhysics ,EC| INSIGHTS ,EC| LHCTOPVLQSirunyan, A. M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Bergauer, T.; Dragicevic, M.; Ero, J.; Del Valle, A. Escalante; Fruhwirth, R.; Jeitler, M.; Krammer, N.; Lechner, L.; Liko, D.; Madlener, T.; Mikulec, I; Pitters, F. M.; Rad, N.; Schieck, J.; Schofbeck, R.; Spanring, M.; Templ, S.; Waltenberger, W.; Wulz, C-E; Zarucki, M.; Chekhovsky, V; Litomin, A.; Makarenko, V; Gonzalez, J. Suarez; Darwish, M. R.; De Wolf, E. A.; Di Croce, D.; Janssen, X.; Kello, T.; Lelek, A.; Pieters, M.; Sfar, H. Rejeb; Van Haevermaet, H.; Van Mechelen, P.; Van Putte, S.; Van Remortel, N.; Blekman, F.; Bols, E. S.; Chhibra, S. S.; D'Hondt, J.; De Clercq, J.; Lontkovskyi, D.; Lowette, S.; Marchesini, I; Moortgat, S.; Morton, A.; Python, Q.; Tavernier, S.; Van Doninck, W.; Van; Mulders, P.; Beghin, D.; Bilin, B.; Clerbaux, B.; De; Lentdecker, G.; Dorney, B.; Favart, L.; Grebenyuk, A.; Kalsi, A. K.; Makarenko, I; Moureaux, L.; Petre, L.; Popov; A.; Postiau, N.; Starling, E.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Vannerom, D.; Wezenbeek, L.; Cornelis, T.; Dobur, D.; Gruchala, M.; Khvastunov, I; Niedziela, M.; Roskas, C.; Skovpen, K.; Tytgat, M.; Verbeke, W.; Vermassen; B.; Vit, M.; Bruno, G.; Bury, F.; Caputo, C.; David, P.; Delaere, C.; Delcourt, M.; Donertas, I. S.; Giammanco, A.; Lemaitre, V; Mondal, K.; Prisciandaro, J.; Taliercio, A.; Teklishyn, M.; Vischia, P.; Wuyckens, S.; Zobec, J.; Alves, G. A.; Correia Silva, G.; Hensel, C.; Moraes, A.; Alda Junior, W. L.; Belchior Batista Das Chagas, E.; Brandao; Malbouisson, H.; Carvalho, W.; Chinellato, J.; Coelho, E.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; Fonseca De Souza, S.; Martins, J.; Matos Figueiredo, D.; Medina; Jaime, M.; Melo De Almeida, M.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Rebello Teles, P.; Sanchez Rosas, L. J.; Santoro, A.; Silva Do Amaral, S. M.; Sznajder, A.; Thiel, M.; Tonelli Manganote, E. J.; Torres Da Silva De Araujo, F.; Vilela Pereira, A.; Bernardes, C. A.; Calligaris, L.; Fernandez; Perez Tomei, T. R.; Gregores, E. M.; Lemos, D. S.; Mercadante; P. G.; Novaes, S. F.; Padula, Sandra S.; Aleksandrov, A.; Antchev, G.; Atanasov, I; Hadjiiska, R.; Iaydjiev, P.; Misheva, M.; Rodozov, M.; Shopova, M.; Sultanov, G.; Bonchev, M.; Dimitrov, A.; Ivanov, T.; Litov, L.; Pavlov, B.; Petkov, P.; Petrov, A.; Fang, W.; Guo, Q.; Wang, H.; Yuan, L.; Ahmad, M.; Hu, Z.; Wang, Y.; Chapon, E.; Chen; G. M.; Chen, H. S.; Chen, M.; Kapoor, A.; Leggat, D.; Liao, H.; Liu, Z.; Sharma, R.; Spiezia, A.; Tao, J.; Thomas-wilsker, J.; Wang, J.; Zhang, H.; Zhang, S.; Zhao, J.; Agapitos, A.; Ban, Y.; Chen, C.; Huang, Q.; Levin, A.; Li, Q.; Lu, M.; Lyu, X.; Mao, Y.; Qian, S. J.; Wang; D.; Wang, Q.; Xiao, J.;doi: 10.1140/epjc/s10052-020-08817-8 , 10.48550/arxiv.2009.01186 , 10.3204/pubdb-2021-01404 , 10.5445/ir/1000133495 , 10.3204/pubdb-2020-03553 , 10.18154/rwth-2021-04402 , 10.18154/rwth-2021-04323
pmid: 33750993
pmc: PMC7921081
handle: 10486/704420 , 10651/61050 , 11588/981266 , 11368/2981217 , 20.500.12960/1096 , 10281/308797 , 10679/8214 , 10067/1775930151162165141 , 11449/210711 , 11492/4967 , 10831/111002 , 11503/974 , 11486/5265 , 11577/3400582 , 11573/1639263 , 11584/420886 , 11567/1050491 , 11568/1134020 , 11589/257781 , 11391/1507393 , 11384/101251 , 11585/853320 , 20.500.11769/526794 , 2158/1297765 , 1854/LU-8702116 , 2318/1841118 , 11579/135374 , 11563/159092 , 10044/1/87583 , 11586/374199 , 11571/1478316
doi: 10.1140/epjc/s10052-020-08817-8 , 10.48550/arxiv.2009.01186 , 10.3204/pubdb-2021-01404 , 10.5445/ir/1000133495 , 10.3204/pubdb-2020-03553 , 10.18154/rwth-2021-04402 , 10.18154/rwth-2021-04323
pmid: 33750993
pmc: PMC7921081
handle: 10486/704420 , 10651/61050 , 11588/981266 , 11368/2981217 , 20.500.12960/1096 , 10281/308797 , 10679/8214 , 10067/1775930151162165141 , 11449/210711 , 11492/4967 , 10831/111002 , 11503/974 , 11486/5265 , 11577/3400582 , 11573/1639263 , 11584/420886 , 11567/1050491 , 11568/1134020 , 11589/257781 , 11391/1507393 , 11384/101251 , 11585/853320 , 20.500.11769/526794 , 2158/1297765 , 1854/LU-8702116 , 2318/1841118 , 11579/135374 , 11563/159092 , 10044/1/87583 , 11586/374199 , 11571/1478316
AbstractThe production of Z boson pairs in proton–proton ($${\mathrm{p}} {\mathrm{p}} $$ p p ) collisions, $${{\mathrm{p}} {\mathrm{p}} \rightarrow ({\mathrm{Z}}/\gamma ^*)({\mathrm{Z}}/\gamma ^*) \rightarrow 2\ell 2\ell '}$$ p p → ( Z / γ ∗ ) ( Z / γ ∗ ) → 2 ℓ 2 ℓ ′ , where $${\ell ,\ell ' = {\mathrm{e}}}$$ ℓ , ℓ ′ = e or $${{\upmu }}$$ μ , is studied at a center-of-mass energy of 13$$\,\text {TeV}$$ TeV with the CMS detector at the CERN LHC. The data sample corresponds to an integrated luminosity of 137$$\,\text {fb}^{-1}$$ fb - 1 , collected during 2016–2018. The $${\mathrm{Z}} {\mathrm{Z}} $$ Z Z production cross section, $$\sigma _{\text {tot}} ({\mathrm{p}} {\mathrm{p}} \rightarrow {\mathrm{Z}} {\mathrm{Z}} ) = 17.4 \pm 0.3 \,\text {(stat)} \pm 0.5 \,\text {(syst)} \pm 0.4 \,\text {(theo)} \pm 0.3 \,\text {(lumi)} \text { pb} $$ σ tot ( p p → Z Z ) = 17.4 ± 0.3 (stat) ± 0.5 (syst) ± 0.4 (theo) ± 0.3 (lumi) pb , measured for events with two pairs of opposite-sign, same-flavor leptons produced in the mass region $${60< m_{\ell ^+\ell ^-} < 120\,\text {GeV}}$$ 60 < m ℓ + ℓ - < 120 GeV is consistent with standard model predictions. Differential cross sections are also measured and agree with theoretical predictions. The invariant mass distribution of the four-lepton system is used to set limits on anomalous $${\mathrm{Z}} {\mathrm{Z}} {\mathrm{Z}} $$ Z Z Z and $${{\mathrm{Z}} {\mathrm{Z}} \gamma }$$ Z Z γ couplings.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAPadua research Archive (Archivio istituzionale della ricerca - Università di Padova)Article . 2021License: CC BYArchivio della ricerca- Università di Roma La SapienzaArticle . 2021License: CC BY NC NDData sources: Archivio della ricerca- Università di Roma La SapienzaArchivio della Ricerca - Università di PisaArticle . 2021License: CC BYData sources: Archivio della Ricerca - Università di PisaBelarusian State University: Electronic Library BSUArticle . 2021License: CC BYFull-Text: https://elib.bsu.by/handle/123456789/289295Data sources: Bielefeld Academic Search Engine (BASE)Brunel University London: Brunel University Research Archive (BURA)Article . 2021License: CC BYFull-Text: https://bura.brunel.ac.uk/handle/2438/22652Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2021License: CC BYFull-Text: https://escholarship.org/uc/item/3804229hData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10044/1/87583Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2021Full-Text: https://hdl.handle.net/11586/374199Data sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2021Full-Text: https://arxiv.org/abs/2009.01186Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)European Physical Journal C: Particles and FieldsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefCroatian Scientific Bibliography - CROSBIArticle . 2021Data sources: Croatian Scientific Bibliography - CROSBIRecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAEuropean Physical Journal C: Particles and FieldsArticle . 2021Data sources: Croatian Research Information SystemPiri Reis Üniversitesi Kurumsal Akademik Arşiv SistemiArticle . 2021Data sources: Piri Reis Üniversitesi Kurumsal Akademik Arşiv SistemiSpiral - Imperial College Digital RepositoryArticle . 2020License: CC BYData sources: Spiral - Imperial College Digital RepositoryInstitutional Repository Universiteit AntwerpenArticle . 2021Data sources: Institutional Repository Universiteit AntwerpenRepositorio Institucional de la Universidad de OviedoArticle . 2021License: CC BYData sources: Repositorio Institucional de la Universidad de OviedoKaramanoğlu Mehmetbey Üniversitesi Akademik Arşiv SistemiArticle . 2021ELTE Digital Institutional Repository (EDIT)Article . 2021Data sources: ELTE Digital Institutional Repository (EDIT)Sirnak University Institutional RepositoryArticle . 2021Data sources: Sirnak University Institutional RepositorySinop Üniversitesi Akademik Arşiv SistemiArticle . 2025Data sources: Sinop Üniversitesi Akademik Arşiv SistemiElectronic archive of Tomsk Polytechnic UniversityArticle . 2023Data sources: Electronic archive of Tomsk Polytechnic UniversityeScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaGhent University Academic BibliographyArticle . 2021Data sources: Ghent University Academic BibliographyPublikationsserver der RWTH Aachen UniversityPreprint . 2020Data sources: Publikationsserver der RWTH Aachen UniversityPublikationsserver der RWTH Aachen UniversityArticle . 2021Data sources: Publikationsserver der RWTH Aachen UniversityBrunel University Research ArchiveArticle . 2021License: CC BYData sources: Brunel University Research ArchiveÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Archivio Istituzionale della Ricerca - Politecnico di BariArticle . 2021IRIS - Università degli Studi di CataniaArticle . 2021Data sources: IRIS - Università degli Studi di CataniaFlore (Florence Research Repository)Article . 2021Data sources: Flore (Florence Research Repository)FEDOA - IRIS Università degli Studi Napoli Federico IIArticle . 2021Data sources: FEDOA - IRIS Università degli Studi Napoli Federico IIUniversità degli Studi del Piemonte Orientale: CINECA IRISArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi della Basilicata: CINECA IRISArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Universidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Brunel University London: Brunel University Research Archive (BURA)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 307visibility views 307 download downloads 254 Powered by
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAPadua research Archive (Archivio istituzionale della ricerca - Università di Padova)Article . 2021License: CC BYArchivio della ricerca- Università di Roma La SapienzaArticle . 2021License: CC BY NC NDData sources: Archivio della ricerca- Università di Roma La SapienzaArchivio della Ricerca - Università di PisaArticle . 2021License: CC BYData sources: Archivio della Ricerca - Università di PisaBelarusian State University: Electronic Library BSUArticle . 2021License: CC BYFull-Text: https://elib.bsu.by/handle/123456789/289295Data sources: Bielefeld Academic Search Engine (BASE)Brunel University London: Brunel University Research Archive (BURA)Article . 2021License: CC BYFull-Text: https://bura.brunel.ac.uk/handle/2438/22652Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2021License: CC BYFull-Text: https://escholarship.org/uc/item/3804229hData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10044/1/87583Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2021Full-Text: https://hdl.handle.net/11586/374199Data sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2021Full-Text: https://arxiv.org/abs/2009.01186Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)European Physical Journal C: Particles and FieldsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefCroatian Scientific Bibliography - CROSBIArticle . 2021Data sources: Croatian Scientific Bibliography - CROSBIRecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAEuropean Physical Journal C: Particles and FieldsArticle . 2021Data sources: Croatian Research Information SystemPiri Reis Üniversitesi Kurumsal Akademik Arşiv SistemiArticle . 2021Data sources: Piri Reis Üniversitesi Kurumsal Akademik Arşiv SistemiSpiral - Imperial College Digital RepositoryArticle . 2020License: CC BYData sources: Spiral - Imperial College Digital RepositoryInstitutional Repository Universiteit AntwerpenArticle . 2021Data sources: Institutional Repository Universiteit AntwerpenRepositorio Institucional de la Universidad de OviedoArticle . 2021License: CC BYData sources: Repositorio Institucional de la Universidad de OviedoKaramanoğlu Mehmetbey Üniversitesi Akademik Arşiv SistemiArticle . 2021ELTE Digital Institutional Repository (EDIT)Article . 2021Data sources: ELTE Digital Institutional Repository (EDIT)Sirnak University Institutional RepositoryArticle . 2021Data sources: Sirnak University Institutional RepositorySinop Üniversitesi Akademik Arşiv SistemiArticle . 2025Data sources: Sinop Üniversitesi Akademik Arşiv SistemiElectronic archive of Tomsk Polytechnic UniversityArticle . 2023Data sources: Electronic archive of Tomsk Polytechnic UniversityeScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaGhent University Academic BibliographyArticle . 2021Data sources: Ghent University Academic BibliographyPublikationsserver der RWTH Aachen UniversityPreprint . 2020Data sources: Publikationsserver der RWTH Aachen UniversityPublikationsserver der RWTH Aachen UniversityArticle . 2021Data sources: Publikationsserver der RWTH Aachen UniversityBrunel University Research ArchiveArticle . 2021License: CC BYData sources: Brunel University Research ArchiveÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Archivio Istituzionale della Ricerca - Politecnico di BariArticle . 2021IRIS - Università degli Studi di CataniaArticle . 2021Data sources: IRIS - Università degli Studi di CataniaFlore (Florence Research Repository)Article . 2021Data sources: Flore (Florence Research Repository)FEDOA - IRIS Università degli Studi Napoli Federico IIArticle . 2021Data sources: FEDOA - IRIS Università degli Studi Napoli Federico IIUniversità degli Studi del Piemonte Orientale: CINECA IRISArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi della Basilicata: CINECA IRISArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Universidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Brunel University London: Brunel University Research Archive (BURA)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:Oxford University Press (OUP) Funded by:UKRI | Investigating the role of...UKRI| Investigating the role of a kinesin gene in butterfly mimicryDavid As Smith; Jon J Bennie; Ian J Gordon; Simon Martin; Piera Ireri; Kennedy S Omufwoko; Richard H Ffrench-Constant;pmid: 34539176
pmc: PMC8444992
Abstract Heterosis, Haldane and Bateson-Dobzhansky-Muller effects have been widely documented amongst a range of plants and animals. However, typically these effects are shown by taking parents of known genotype into the laboratory and measuring components of the F1 progeny under laboratory conditions. This leaves in doubt the real significance of such effects in the field. Here we use the well-known colour pattern genotypes of the African monarch or queen (Danaus chrysippus), which also control wing length, to test these effects both in the laboratory and in a contact zone in the field. By measuring the wing lengths in animals of known colour pattern genotype we show clear evidence for all three hybrid effects at the A and BC colour patterning loci, and importantly, that these same effects persist in the same presumptive F1s when measured in hybrid populations in the field. This demonstrates the power of a system in which genotypes can be directly inferred in the field and highlights that all three hybrid effects can be seen in the East African contact zone of this fascinating butterfly.
Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10871/125082Data sources: Bielefeld Academic Search Engine (BASE)Biological Journal of the Linnean SocietyArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10871/125082Data sources: Bielefeld Academic Search Engine (BASE)Biological Journal of the Linnean SocietyArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2021Publisher:Elsevier BV Authors: Xiangyu Zhu; Xuewei Liu;The accurate morphology identification of gas hydrate-bearing sediments (GHBS) has great significance in practical exploitation and subsequent resource evaluation. Previous studies have disclosed two main morphologies for gas hydrate in sediments: pore- and fracture-filling. However, the existing identification methods of gas hydrate’s morphology rarely consider their intrinsic differences in distribution characteristics. In this paper, a new method is proposed to identify the morphology of hydrate according to the scattered distribution of fracture dips for fracture-filling GHBS. Firstly, numerical simulations are performed to study the relationships between the morphology of hydrate and the sonic velocities. Considering the dip variation is within a certain range for fracture-filling hydrate, the theoretical curves show that the resulting mutation degrees between P- and S-wave velocities are inconsistent in fracture-filling GHBS, which is different from pore-filling GHBS. Then the modified estimation method for pointwise Lipschitz exponent α is introduced to capture their differences. The cross plots of Lipschitz exponent for P-wave velocity, α(Vp), and Lipschitz exponent for S-wave velocity, α(Vs), indicate that most of the dots representing pore-filling GHBS are evenly distributed near the line α(Vp)=α(Vs), while the dots representing fracture-filling GHBS are scattered outside the line α(Vp)=α(Vs). Based on these characteristics, a ratio method is put forward to differentiate the two types of hydrate. These hypotheses and methods are verified using the measured P- and S-wave velocities log data at different sites in Leg 204, Ocean Drilling Program (ODP), in the United States. Finally, the results of this new method agree closely with core data.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
description Publicationkeyboard_double_arrow_right Article , Other literature type 2018Publisher:International Centre for Education in Islamic Finance Authors: Aassouli, D.; Ebrahim, M. S.; Basiruddin, R.;handle: 10419/236925
Purpose This paper aims to propose a liquidity management solution for Islamic financial institutions (IFIs) that concurs with sustainable development and financial stability. Design/methodology/approach The study is a qualitative research. It uses the exploratory research methodology, specifically the content analysis approach, to gather primary data and identify and interpret relevant secondary data and Sharīʿah concepts. The purpose is to develop a liquidity management solution for IFIs. The proposal is based on the Unleveraged Green Investment Trust (UGIT) model, which is consistent with Basel III regulatory requirements. In developing the UGIT model, the exploratory research was complemented by a case study to examine the UGIT solution for the particular case of renewable energy. Findings The model demonstrates how financial innovation can meet both financial stability and sustainable development objectives, thereby achieving the spirit of Islamic finance. The structure further highlights the importance of regulatory and fiscal frameworks to enhance liquidity management and investor appeal for green financial instruments. Originality/value This study suggests a structure of UGIT to enable IFIs to meet their liquidity management needs while promoting sustainable development.
Durham Research Onli... arrow_drop_down Durham Research OnlineArticle . 2018 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/25733/1/25733.pdfData sources: Durham Research OnlineDurham University: Durham Research OnlineArticle . 2018Full-Text: http://dro.dur.ac.uk/25733/Data sources: Bielefeld Academic Search Engine (BASE)ISRA International Journal of Islamic FinanceArticle . 2018 . Peer-reviewedLicense: Emerald Insight Site PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Durham Research Onli... arrow_drop_down Durham Research OnlineArticle . 2018 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/25733/1/25733.pdfData sources: Durham Research OnlineDurham University: Durham Research OnlineArticle . 2018Full-Text: http://dro.dur.ac.uk/25733/Data sources: Bielefeld Academic Search Engine (BASE)ISRA International Journal of Islamic FinanceArticle . 2018 . Peer-reviewedLicense: Emerald Insight Site PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2020Publisher:MDPI AG Syed Afaq Ali Shah; Muhammad Hassan Sayyad; Karim Khan; Kai Guo; Fei Shen; Jinghua Sun; Ayesha Khan Tareen; Yubin Gong; Zhongyi Guo;doi: 10.3390/en13195092
Since its invention in 2009, Perovskite solar cells (PSCs) has attracted great attention because of its low cost, numerous options of efficiency enhancement, ease of manufacturing and high-performance. Within a short span of time, the PSC has already outperformed thin-film and multicrystalline silicon solar cells. A current certified efficiency of 25.2% demonstrates that it has the potential to replace its forerunner generations. However, to commercialize PSCs, some problems need to be addressed. The toxic nature of lead which is the major component of light absorbing layer, and inherited stability issues of fabricated devices are the major hurdles in the industrialization of this technology. Therefore, new researching areas focus on the lead-free metal halide perovskites with analogous optical and photovoltaic performances. Tin being nontoxic and as one of group IV(A) elements, is considered as the most suitable alternate for lead because of their similarities in chemical properties. Efficiencies exceeding 13% have been recorded using Tin halide perovskite based devices. This review summarizes progress made so far in this field, mainly focusing on the stability and photovoltaic performances. Role of different cations and their composition on device performances and stability have been involved and discussed. With a considerable room for enhancement of both efficiency and device stability, different optimized strategies reported so far have also been presented. Finally, the future developing trends and prospects of the PSCs are analyzed and forecasted.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 45 citations 45 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Book 2022Publisher:Springer International Publishing Authors: Howarth, Candice; Lane, Matthew; Slevin, Amanda;This open access book brings together a collection of cutting-edge insights into how action can and is already being taken against climate change at multiple levels of our societies, amidst growing calls for transformative and inclusive climate action. In an era of increasing recognition regarding climate and ecological breakdown, this book offers hope, inspiration and analyses for multi-level climate action, spanning varied communities, places, spaces, agents and disciplines, demonstrating how the energy and dynamism of local scales are a powerful resource in turning the tide. Interconnected yet conceptually distinct, the book’s three sections span multiple levels of analysis, interrogating diverse perspectives and practices inherent to the vivid tapestry of climate action emerging locally, nationally and internationally. Delivered in collaboration with the UK’s ‘Place-Based Climate Action Network’, chapters are drawn from a wide range of authors with varying backgrounds spread across academia, policy and practice.
https://doi.org/10.1... arrow_drop_down Queen's University Research PortalBook . 2021License: CC BYData sources: Queen's University Research PortalQueen's University Belfast Research PortalBook . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down Queen's University Research PortalBook . 2021License: CC BYData sources: Queen's University Research PortalQueen's University Belfast Research PortalBook . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Leijiao Ge; Jun Yan; Yonghui Sun; Zhongguan Wang;doi: 10.3390/en15114164
In recent years, the accelerating climate change and intensifying natural disasters have called for more renewable, resilient, and reliable energy from more distributed sources to more diversified consumers, resulting in a pressing need for advanced situational awareness of modern smart distribution systems [...]
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2017Publisher:MDPI AG Baohua Xie; Jiangxin Gu; Junbao Yu; Guangxuan Han; Xunhua Zheng; Yu Xu; Haitao Lin;doi: 10.3390/atmos8100181
Land use changes from cropland to orchards in Eastern China have raised serious concerns about the regional nitrogen (N) cycle and greenhouse gas balance. We measured soil nitrous oxide (N2O) emissions and methane (CH4) uptake using manual static chambers in an apple orchard. The primary aims were to assess the effect of N fertilizer application on gas fluxes and quantify the site-specific N2O emission factor (EFd). Field experiments were arranged in a randomized block design with three N input rates (0, 800 and 2600/2000 kg N ha−1 year−1). We found that orchard soils were a negligible CH4 sink (−1.1 to −0.4 kg C ha−1 year−1). Annual N2O emissions responded positively to N input rates, ranging from 34.1 to 60.3 kg N ha−1 year−1. EFd ranged from 1.00% to 1.65% with a mean of 1.34%. The extremely large background emissions of N2O (34.1–34.3 kg N ha−1 year−1) most likely originated from nitrate accumulation in the soil profile because of historical overuse of N fertilizer. We conclude that (1) site-specific EFd is suitable for assessing regional direct N2O emissions from upland orchards; and (2) conventional fertilization regimes must be avoided, and reduced N input rates are recommended in the study region.
Atmosphere arrow_drop_down AtmosphereOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2073-4433/8/10/181/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 23 citations 23 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Atmosphere arrow_drop_down AtmosphereOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2073-4433/8/10/181/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2023Publisher:Frontiers Media SA Funded by:EC | IntelCompEC| IntelCompPapadaki, Lydia; Stavridis, Charalampos; Koundouri, Phoebe; Grypari, Ioanna; Kazbek, Madina; Papageorgiou, Haris; Theodossiou, Nicolaos;The phenomena of climate change transcend all national and regional boundaries. To address this complex challenge, we must determine the areas of the country of interest, in this case, Greece, that have been most adversely affected by climate. Greece is surrounded by water, and a significant part of its GDP is derived from the marine and maritime industries, including tourism. Since the start of the IntelComp project, a Preparatory Living Lab (PLL) has been planned and delivered, feeding into the development of the IntelComp platform and the Living Lab on Climate Change Adaptation. The study's results lead to the conclusion that one of the most important challenges in tackling climate change is the decarbonisation challenge, specifically the shift to renewable energy sources and the investments that must be made. Several EU and national policy frameworks, including the European Green Deal, the Climate Law, the National Long-term Strategy for 2050 (on the Climate and Energy), highlight the decarbonisation as one of the major challenges in the climate change pledge. This will be the primary subject of the IntelComp climate change case study. PLLs also led to the identification of policy questions and useful data sources to aid the IntelComp project's launch. While previous research on co-production has primarily focused on involving citizens through public participation processes in order to gain their support, trust, and insights in structured decision-making processes, our approach opens a new channel for incorporating external knowledge into problem-solving processes. The IntelComp project will aid in policy development by providing pertinent tools co-developed with the final users that will provide insights and analysis in the field of STI (Science, Technology, Innovation) encompassing all of the Energy areas mentioned above.
Frontiers in Environ... arrow_drop_down Frontiers in Environmental EconomicsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefOnline Research Database In TechnologyArticle . 2023Data sources: Online Research Database In TechnologyFrontiers in Environmental EconomicsArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Frontiers in Environ... arrow_drop_down Frontiers in Environmental EconomicsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefOnline Research Database In TechnologyArticle . 2023Data sources: Online Research Database In TechnologyFrontiers in Environmental EconomicsArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Zhiqiang Chen; Chengcheng Wang; Wei Jia; Le Cheng; Fan Guo; Linshen Xie; Wei Wu; Wei Chen;doi: 10.3390/en15062202
In order to further improve the insulation performance of fiber reinforce plastic (FRP) materials used in electromagnetic pulse (EMP) simulators, the flashover characteristics of FRP materials with different surface roughness and groove, i.e., those who are easily achieved and have a prominent effect, are investigated in 0.1 MPa SF6 under nanosecond pulse voltage with a rise time of 20–30 ns. The experimental results show that surfaces with different roughness have no significant influence on the flashover voltages of the FRP insulators, and both the convex grooves made of FRP and the convex grooves with nylon rings inlaid to form projections can improve the surface flashover voltage of epoxy FRP insulators under nanosecond pulse, in which the effect of the former surface is more obvious. For the insulators with convex grooves made of FRP, it is found that the root of the FRP protrusions breaks down after a number of shots with the occurrence of carbonization channels and spots, which is nonexistent for the nylon projections. Combined with the test results of surface characteristics, the surface roughness and the secondary electron emission yield (SEEY) are not key factors of flashover characteristics in SF6 under nanosecond pulse, arguably due to the fact that the energy needed for an incident electron to ionize an SF6 molecule is lower than that to excite two secondary electrons. Hence, the flashover performance cannot be improved by adjusting the surface roughness, and the flashover channel is principally governed by the macroscopic distribution of electrical field which can be changed by the convex groove. Breakdown phenomena of FRP protrusions indicate that the bulk insulation performance of resin FRP is weaker compared to pure resin because of its composite structure, as well as the impurities and voids introduced in the manufacturing process. The results are instructive for the design of FRP insulation structures in the compact EMP simulator.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/6/2202/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/6/2202/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Research , Preprint 2021Embargo end date: 01 Jan 2020Publisher:Springer Science and Business Media LLC Publicly fundedFunded by:EC | AMVA4NewPhysics, EC | INSIGHTS, EC | LHCTOPVLQEC| AMVA4NewPhysics ,EC| INSIGHTS ,EC| LHCTOPVLQSirunyan, A. M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Bergauer, T.; Dragicevic, M.; Ero, J.; Del Valle, A. Escalante; Fruhwirth, R.; Jeitler, M.; Krammer, N.; Lechner, L.; Liko, D.; Madlener, T.; Mikulec, I; Pitters, F. M.; Rad, N.; Schieck, J.; Schofbeck, R.; Spanring, M.; Templ, S.; Waltenberger, W.; Wulz, C-E; Zarucki, M.; Chekhovsky, V; Litomin, A.; Makarenko, V; Gonzalez, J. Suarez; Darwish, M. R.; De Wolf, E. A.; Di Croce, D.; Janssen, X.; Kello, T.; Lelek, A.; Pieters, M.; Sfar, H. Rejeb; Van Haevermaet, H.; Van Mechelen, P.; Van Putte, S.; Van Remortel, N.; Blekman, F.; Bols, E. S.; Chhibra, S. S.; D'Hondt, J.; De Clercq, J.; Lontkovskyi, D.; Lowette, S.; Marchesini, I; Moortgat, S.; Morton, A.; Python, Q.; Tavernier, S.; Van Doninck, W.; Van; Mulders, P.; Beghin, D.; Bilin, B.; Clerbaux, B.; De; Lentdecker, G.; Dorney, B.; Favart, L.; Grebenyuk, A.; Kalsi, A. K.; Makarenko, I; Moureaux, L.; Petre, L.; Popov; A.; Postiau, N.; Starling, E.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Vannerom, D.; Wezenbeek, L.; Cornelis, T.; Dobur, D.; Gruchala, M.; Khvastunov, I; Niedziela, M.; Roskas, C.; Skovpen, K.; Tytgat, M.; Verbeke, W.; Vermassen; B.; Vit, M.; Bruno, G.; Bury, F.; Caputo, C.; David, P.; Delaere, C.; Delcourt, M.; Donertas, I. S.; Giammanco, A.; Lemaitre, V; Mondal, K.; Prisciandaro, J.; Taliercio, A.; Teklishyn, M.; Vischia, P.; Wuyckens, S.; Zobec, J.; Alves, G. A.; Correia Silva, G.; Hensel, C.; Moraes, A.; Alda Junior, W. L.; Belchior Batista Das Chagas, E.; Brandao; Malbouisson, H.; Carvalho, W.; Chinellato, J.; Coelho, E.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; Fonseca De Souza, S.; Martins, J.; Matos Figueiredo, D.; Medina; Jaime, M.; Melo De Almeida, M.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Rebello Teles, P.; Sanchez Rosas, L. J.; Santoro, A.; Silva Do Amaral, S. M.; Sznajder, A.; Thiel, M.; Tonelli Manganote, E. J.; Torres Da Silva De Araujo, F.; Vilela Pereira, A.; Bernardes, C. A.; Calligaris, L.; Fernandez; Perez Tomei, T. R.; Gregores, E. M.; Lemos, D. S.; Mercadante; P. G.; Novaes, S. F.; Padula, Sandra S.; Aleksandrov, A.; Antchev, G.; Atanasov, I; Hadjiiska, R.; Iaydjiev, P.; Misheva, M.; Rodozov, M.; Shopova, M.; Sultanov, G.; Bonchev, M.; Dimitrov, A.; Ivanov, T.; Litov, L.; Pavlov, B.; Petkov, P.; Petrov, A.; Fang, W.; Guo, Q.; Wang, H.; Yuan, L.; Ahmad, M.; Hu, Z.; Wang, Y.; Chapon, E.; Chen; G. M.; Chen, H. S.; Chen, M.; Kapoor, A.; Leggat, D.; Liao, H.; Liu, Z.; Sharma, R.; Spiezia, A.; Tao, J.; Thomas-wilsker, J.; Wang, J.; Zhang, H.; Zhang, S.; Zhao, J.; Agapitos, A.; Ban, Y.; Chen, C.; Huang, Q.; Levin, A.; Li, Q.; Lu, M.; Lyu, X.; Mao, Y.; Qian, S. J.; Wang; D.; Wang, Q.; Xiao, J.;doi: 10.1140/epjc/s10052-020-08817-8 , 10.48550/arxiv.2009.01186 , 10.3204/pubdb-2021-01404 , 10.5445/ir/1000133495 , 10.3204/pubdb-2020-03553 , 10.18154/rwth-2021-04402 , 10.18154/rwth-2021-04323
pmid: 33750993
pmc: PMC7921081
handle: 10486/704420 , 10651/61050 , 11588/981266 , 11368/2981217 , 20.500.12960/1096 , 10281/308797 , 10679/8214 , 10067/1775930151162165141 , 11449/210711 , 11492/4967 , 10831/111002 , 11503/974 , 11486/5265 , 11577/3400582 , 11573/1639263 , 11584/420886 , 11567/1050491 , 11568/1134020 , 11589/257781 , 11391/1507393 , 11384/101251 , 11585/853320 , 20.500.11769/526794 , 2158/1297765 , 1854/LU-8702116 , 2318/1841118 , 11579/135374 , 11563/159092 , 10044/1/87583 , 11586/374199 , 11571/1478316
doi: 10.1140/epjc/s10052-020-08817-8 , 10.48550/arxiv.2009.01186 , 10.3204/pubdb-2021-01404 , 10.5445/ir/1000133495 , 10.3204/pubdb-2020-03553 , 10.18154/rwth-2021-04402 , 10.18154/rwth-2021-04323
pmid: 33750993
pmc: PMC7921081
handle: 10486/704420 , 10651/61050 , 11588/981266 , 11368/2981217 , 20.500.12960/1096 , 10281/308797 , 10679/8214 , 10067/1775930151162165141 , 11449/210711 , 11492/4967 , 10831/111002 , 11503/974 , 11486/5265 , 11577/3400582 , 11573/1639263 , 11584/420886 , 11567/1050491 , 11568/1134020 , 11589/257781 , 11391/1507393 , 11384/101251 , 11585/853320 , 20.500.11769/526794 , 2158/1297765 , 1854/LU-8702116 , 2318/1841118 , 11579/135374 , 11563/159092 , 10044/1/87583 , 11586/374199 , 11571/1478316
AbstractThe production of Z boson pairs in proton–proton ($${\mathrm{p}} {\mathrm{p}} $$ p p ) collisions, $${{\mathrm{p}} {\mathrm{p}} \rightarrow ({\mathrm{Z}}/\gamma ^*)({\mathrm{Z}}/\gamma ^*) \rightarrow 2\ell 2\ell '}$$ p p → ( Z / γ ∗ ) ( Z / γ ∗ ) → 2 ℓ 2 ℓ ′ , where $${\ell ,\ell ' = {\mathrm{e}}}$$ ℓ , ℓ ′ = e or $${{\upmu }}$$ μ , is studied at a center-of-mass energy of 13$$\,\text {TeV}$$ TeV with the CMS detector at the CERN LHC. The data sample corresponds to an integrated luminosity of 137$$\,\text {fb}^{-1}$$ fb - 1 , collected during 2016–2018. The $${\mathrm{Z}} {\mathrm{Z}} $$ Z Z production cross section, $$\sigma _{\text {tot}} ({\mathrm{p}} {\mathrm{p}} \rightarrow {\mathrm{Z}} {\mathrm{Z}} ) = 17.4 \pm 0.3 \,\text {(stat)} \pm 0.5 \,\text {(syst)} \pm 0.4 \,\text {(theo)} \pm 0.3 \,\text {(lumi)} \text { pb} $$ σ tot ( p p → Z Z ) = 17.4 ± 0.3 (stat) ± 0.5 (syst) ± 0.4 (theo) ± 0.3 (lumi) pb , measured for events with two pairs of opposite-sign, same-flavor leptons produced in the mass region $${60< m_{\ell ^+\ell ^-} < 120\,\text {GeV}}$$ 60 < m ℓ + ℓ - < 120 GeV is consistent with standard model predictions. Differential cross sections are also measured and agree with theoretical predictions. The invariant mass distribution of the four-lepton system is used to set limits on anomalous $${\mathrm{Z}} {\mathrm{Z}} {\mathrm{Z}} $$ Z Z Z and $${{\mathrm{Z}} {\mathrm{Z}} \gamma }$$ Z Z γ couplings.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAPadua research Archive (Archivio istituzionale della ricerca - Università di Padova)Article . 2021License: CC BYArchivio della ricerca- Università di Roma La SapienzaArticle . 2021License: CC BY NC NDData sources: Archivio della ricerca- Università di Roma La SapienzaArchivio della Ricerca - Università di PisaArticle . 2021License: CC BYData sources: Archivio della Ricerca - Università di PisaBelarusian State University: Electronic Library BSUArticle . 2021License: CC BYFull-Text: https://elib.bsu.by/handle/123456789/289295Data sources: Bielefeld Academic Search Engine (BASE)Brunel University London: Brunel University Research Archive (BURA)Article . 2021License: CC BYFull-Text: https://bura.brunel.ac.uk/handle/2438/22652Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2021License: CC BYFull-Text: https://escholarship.org/uc/item/3804229hData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10044/1/87583Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2021Full-Text: https://hdl.handle.net/11586/374199Data sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2021Full-Text: https://arxiv.org/abs/2009.01186Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)European Physical Journal C: Particles and FieldsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefCroatian Scientific Bibliography - CROSBIArticle . 2021Data sources: Croatian Scientific Bibliography - CROSBIRecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAEuropean Physical Journal C: Particles and FieldsArticle . 2021Data sources: Croatian Research Information SystemPiri Reis Üniversitesi Kurumsal Akademik Arşiv SistemiArticle . 2021Data sources: Piri Reis Üniversitesi Kurumsal Akademik Arşiv SistemiSpiral - Imperial College Digital RepositoryArticle . 2020License: CC BYData sources: Spiral - Imperial College Digital RepositoryInstitutional Repository Universiteit AntwerpenArticle . 2021Data sources: Institutional Repository Universiteit AntwerpenRepositorio Institucional de la Universidad de OviedoArticle . 2021License: CC BYData sources: Repositorio Institucional de la Universidad de OviedoKaramanoğlu Mehmetbey Üniversitesi Akademik Arşiv SistemiArticle . 2021ELTE Digital Institutional Repository (EDIT)Article . 2021Data sources: ELTE Digital Institutional Repository (EDIT)Sirnak University Institutional RepositoryArticle . 2021Data sources: Sirnak University Institutional RepositorySinop Üniversitesi Akademik Arşiv SistemiArticle . 2025Data sources: Sinop Üniversitesi Akademik Arşiv SistemiElectronic archive of Tomsk Polytechnic UniversityArticle . 2023Data sources: Electronic archive of Tomsk Polytechnic UniversityeScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaGhent University Academic BibliographyArticle . 2021Data sources: Ghent University Academic BibliographyPublikationsserver der RWTH Aachen UniversityPreprint . 2020Data sources: Publikationsserver der RWTH Aachen UniversityPublikationsserver der RWTH Aachen UniversityArticle . 2021Data sources: Publikationsserver der RWTH Aachen UniversityBrunel University Research ArchiveArticle . 2021License: CC BYData sources: Brunel University Research ArchiveÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Archivio Istituzionale della Ricerca - Politecnico di BariArticle . 2021IRIS - Università degli Studi di CataniaArticle . 2021Data sources: IRIS - Università degli Studi di CataniaFlore (Florence Research Repository)Article . 2021Data sources: Flore (Florence Research Repository)FEDOA - IRIS Università degli Studi Napoli Federico IIArticle . 2021Data sources: FEDOA - IRIS Università degli Studi Napoli Federico IIUniversità degli Studi del Piemonte Orientale: CINECA IRISArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi della Basilicata: CINECA IRISArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Universidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Brunel University London: Brunel University Research Archive (BURA)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 307visibility views 307 download downloads 254 Powered by
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAPadua research Archive (Archivio istituzionale della ricerca - Università di Padova)Article . 2021License: CC BYArchivio della ricerca- Università di Roma La SapienzaArticle . 2021License: CC BY NC NDData sources: Archivio della ricerca- Università di Roma La SapienzaArchivio della Ricerca - Università di PisaArticle . 2021License: CC BYData sources: Archivio della Ricerca - Università di PisaBelarusian State University: Electronic Library BSUArticle . 2021License: CC BYFull-Text: https://elib.bsu.by/handle/123456789/289295Data sources: Bielefeld Academic Search Engine (BASE)Brunel University London: Brunel University Research Archive (BURA)Article . 2021License: CC BYFull-Text: https://bura.brunel.ac.uk/handle/2438/22652Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2021License: CC BYFull-Text: https://escholarship.org/uc/item/3804229hData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10044/1/87583Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2021Full-Text: https://hdl.handle.net/11586/374199Data sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2021Full-Text: https://arxiv.org/abs/2009.01186Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)European Physical Journal C: Particles and FieldsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefCroatian Scientific Bibliography - CROSBIArticle . 2021Data sources: Croatian Scientific Bibliography - CROSBIRecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAEuropean Physical Journal C: Particles and FieldsArticle . 2021Data sources: Croatian Research Information SystemPiri Reis Üniversitesi Kurumsal Akademik Arşiv SistemiArticle . 2021Data sources: Piri Reis Üniversitesi Kurumsal Akademik Arşiv SistemiSpiral - Imperial College Digital RepositoryArticle . 2020License: CC BYData sources: Spiral - Imperial College Digital RepositoryInstitutional Repository Universiteit AntwerpenArticle . 2021Data sources: Institutional Repository Universiteit AntwerpenRepositorio Institucional de la Universidad de OviedoArticle . 2021License: CC BYData sources: Repositorio Institucional de la Universidad de OviedoKaramanoğlu Mehmetbey Üniversitesi Akademik Arşiv SistemiArticle . 2021ELTE Digital Institutional Repository (EDIT)Article . 2021Data sources: ELTE Digital Institutional Repository (EDIT)Sirnak University Institutional RepositoryArticle . 2021Data sources: Sirnak University Institutional RepositorySinop Üniversitesi Akademik Arşiv SistemiArticle . 2025Data sources: Sinop Üniversitesi Akademik Arşiv SistemiElectronic archive of Tomsk Polytechnic UniversityArticle . 2023Data sources: Electronic archive of Tomsk Polytechnic UniversityeScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaGhent University Academic BibliographyArticle . 2021Data sources: Ghent University Academic BibliographyPublikationsserver der RWTH Aachen UniversityPreprint . 2020Data sources: Publikationsserver der RWTH Aachen UniversityPublikationsserver der RWTH Aachen UniversityArticle . 2021Data sources: Publikationsserver der RWTH Aachen UniversityBrunel University Research ArchiveArticle . 2021License: CC BYData sources: Brunel University Research ArchiveÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Archivio Istituzionale della Ricerca - Politecnico di BariArticle . 2021IRIS - Università degli Studi di CataniaArticle . 2021Data sources: IRIS - Università degli Studi di CataniaFlore (Florence Research Repository)Article . 2021Data sources: Flore (Florence Research Repository)FEDOA - IRIS Università degli Studi Napoli Federico IIArticle . 2021Data sources: FEDOA - IRIS Università degli Studi Napoli Federico IIUniversità degli Studi del Piemonte Orientale: CINECA IRISArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi della Basilicata: CINECA IRISArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Universidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Brunel University London: Brunel University Research Archive (BURA)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:Oxford University Press (OUP) Funded by:UKRI | Investigating the role of...UKRI| Investigating the role of a kinesin gene in butterfly mimicryDavid As Smith; Jon J Bennie; Ian J Gordon; Simon Martin; Piera Ireri; Kennedy S Omufwoko; Richard H Ffrench-Constant;pmid: 34539176
pmc: PMC8444992
Abstract Heterosis, Haldane and Bateson-Dobzhansky-Muller effects have been widely documented amongst a range of plants and animals. However, typically these effects are shown by taking parents of known genotype into the laboratory and measuring components of the F1 progeny under laboratory conditions. This leaves in doubt the real significance of such effects in the field. Here we use the well-known colour pattern genotypes of the African monarch or queen (Danaus chrysippus), which also control wing length, to test these effects both in the laboratory and in a contact zone in the field. By measuring the wing lengths in animals of known colour pattern genotype we show clear evidence for all three hybrid effects at the A and BC colour patterning loci, and importantly, that these same effects persist in the same presumptive F1s when measured in hybrid populations in the field. This demonstrates the power of a system in which genotypes can be directly inferred in the field and highlights that all three hybrid effects can be seen in the East African contact zone of this fascinating butterfly.
Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10871/125082Data sources: Bielefeld Academic Search Engine (BASE)Biological Journal of the Linnean SocietyArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10871/125082Data sources: Bielefeld Academic Search Engine (BASE)Biological Journal of the Linnean SocietyArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2021Publisher:Elsevier BV Authors: Xiangyu Zhu; Xuewei Liu;The accurate morphology identification of gas hydrate-bearing sediments (GHBS) has great significance in practical exploitation and subsequent resource evaluation. Previous studies have disclosed two main morphologies for gas hydrate in sediments: pore- and fracture-filling. However, the existing identification methods of gas hydrate’s morphology rarely consider their intrinsic differences in distribution characteristics. In this paper, a new method is proposed to identify the morphology of hydrate according to the scattered distribution of fracture dips for fracture-filling GHBS. Firstly, numerical simulations are performed to study the relationships between the morphology of hydrate and the sonic velocities. Considering the dip variation is within a certain range for fracture-filling hydrate, the theoretical curves show that the resulting mutation degrees between P- and S-wave velocities are inconsistent in fracture-filling GHBS, which is different from pore-filling GHBS. Then the modified estimation method for pointwise Lipschitz exponent α is introduced to capture their differences. The cross plots of Lipschitz exponent for P-wave velocity, α(Vp), and Lipschitz exponent for S-wave velocity, α(Vs), indicate that most of the dots representing pore-filling GHBS are evenly distributed near the line α(Vp)=α(Vs), while the dots representing fracture-filling GHBS are scattered outside the line α(Vp)=α(Vs). Based on these characteristics, a ratio method is put forward to differentiate the two types of hydrate. These hypotheses and methods are verified using the measured P- and S-wave velocities log data at different sites in Leg 204, Ocean Drilling Program (ODP), in the United States. Finally, the results of this new method agree closely with core data.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
