- home
- Advanced Search
- Energy Research
- 11. Sustainability
- 15. Life on land
- CN
- GB
- DE
- EU
- Energy Research
- 11. Sustainability
- 15. Life on land
- CN
- GB
- DE
- EU
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Springer Science and Business Media LLC Funded by:FCT | NECEFCT| NECEAuthors: Muhammad Shahbaz; Patrícia Hipólito Leal; António Cardoso Marques;In the context of globalisation, is a country’s level of development an obstacle to its environmental performance? The main objective of this research is to identify the role played in the environmental performance of countries with different levels of development, globalisation, and environmental regulation, by the three dimensions and two new measures of globalisation, de jure and de facto. This analysis was accomplished by assessing the environmental curve which relates economic growth to environmental degradation, known as the environmental Kuznets curve, for a sample of 32 developed and 26 developing economies from 1995 to 2017. It was found that developed countries produced an inverted U-shaped curve and that globalisation had a mostly beneficial effect on the environment. In contrast, developing economies produced a U-shaped curve and globalisation was generally harmful. Globalisation caused reductions of 0.88% and 0.85% in the environmental degradation of developed countries, and increases of 0.20% and 0.52% in developing ones. Political globalisation produced different effects for each measure in developed countries and had no effect in developing countries. Economic globalisation suggests the relocation of polluting industries from developed to developing countries. As there is currently very little literature on the new measures of globalisation, this study provides fresh insights for policymakers devising appropriate measures to achieve sustainability in both developed and developing countries.
Environment Developm... arrow_drop_down Environment Development and SustainabilityArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10668-020-00923-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Environment Developm... arrow_drop_down Environment Development and SustainabilityArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10668-020-00923-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Miao Wang; Chao Feng;pmid: 33516687
On March 24, 2015, a political bureau meeting of the Communist Party of China Central Committee first proposed the political task of "greening" and placed unprecedented importance on the construction of an ecological civilization, aiming to guide China's economy and society toward green and low carbon development. This study aims to examine the impact of this "greening" policy on China's climate change mitigation. First, from an emissions reduction perspective, this study interprets greening as the process of constantly strengthening society's awareness and willingness regarding emissions reduction. Then, this study incorporates a carbon abatement willingness factor into a nonparametric model, and quantitatively simulates the impact of greening on carbon dioxide (CO2) emissions reduction in China. The results show that China can rapidly decrease its CO2 emissions in the early stages of greening. However, when greening passes a certain stage, it no longer affects CO2 emissions. Thus, the willingness to reduce emissions has a diminishing marginal effect on emissions reduction. Additionally, throughout the greening process, China is expected to reduce its CO2 emissions by 36.08%, or 3718.50 million tons. Finally, the impact of greening on China's CO2 emissions exhibits spatial variation, as its undeveloped western region can achieve greater CO2 emissions reductions by promoting greening. Base on the above results, corresponding policy implications are also provided at the end of this paper.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envres.2021.110779&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envres.2021.110779&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 NetherlandsPublisher:MDPI AG Nguyet Anh Dang; Rubianca Benavidez; Stephanie Anne Tomscha; Ho Nguyen; Dung Duc Tran; Diep Thi Hong Nguyen; Ho Huu Loc; Bethanna Marie Jackson;doi: 10.3390/su132413549
Deltas are among the most productive and diverse global ecosystems. However, these regions are highly vulnerable to natural disasters and climate change. Nature-based solutions (Nbs) have been increasingly adopted in many deltas to improve their resilience. Among decision support tools, assessment of ecosystem services (ES) through spatially explicit modelling plays an important role in advocating for Nbs. This study explores the use of the Land Utilisation and Capability Indicator (LUCI) model, a high-resolution model originally developed in temperate hill country regions, to map changes in multiple ecosystem services (ES), along with their synergies and trade-offs, between 2010 and 2018 in the Vietnamese Mekong Delta (VMD). In so doing, this study contributes to the current knowledge in at least two aspects: high-resolution ES modelling in the VMD, and the combination of ES biophysical and economic values within the VMD to support Nbs implementation. To date, this is the highest resolution (5 by 5 m) ES modelling study ever conducted in the VMD, with ~1500 million elements generated per ES. In the process of trialling implementations of LUCI within the VMD’s unique environmental conditions and data contexts, we identify and suggest potential model enhancements to make the LUCI model more applicable to the VMD as well as other tropical deltaic regions. LUCI generated informative results in much of the VMD for the selected ES (flood mitigation, agriculture/aquaculture productivity, and climate regulation), but challenges arose around its application to a new agro-hydrological regime. To address these challenges, parameterising LUCI and reconceptualising some of the model’s mechanisms to specifically account for the productivity and flood mitigation capability of water-tolerant crops as well as flooding processes of deltaic regions will improve future ES modelling in tropical deltaic areas. The ES maps showed the spatial heterogeneity of ES across the VMD. Next, to at least somewhat account for the economic drivers which need to be considered alongside biophysical valuations for practical implementations of ES maps for nature-based solutions (Nbs) in the upstream VMD, economic values were assigned to different parcels using a benefit transfer approach. The spatially explicit ES economic value maps can inform the design of financing incentives for Nbs. The results and related work can be used to support the establishment of Nbs that ultimately contribute to the security of local farmers’ livelihoods and the sustainability of the VMD.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing InstituteWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132413549&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing InstituteWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132413549&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Zahra Khounani; Meisam Tabatabaei; Vijai Kumar Gupta; Hamid Amiri; Tatiana Morosuk; Su Shiung Lam; Su Shiung Lam; Homa Hosseinzadeh-Bandbafha; Mortaza Aghbashlo; Mortaza Aghbashlo;Abstract Bioenergy systems are expected to expand over the coming decades due to their potential to address energy security and environmental pollution challenges. Nevertheless, any renewable energy project can only survive if approved environmentally superior to its conventional counterparts. Life cycle assessment (LCA) is an internationally standardized and validated methodology to evaluate and quantify the environmental impacts of bioenergy systems. However, due to its methodological scope, the LCA method measures only the environmental consequences of the target products of energy systems. The LCA approach can neither allocate the environmental impacts at the component level nor measure the environmental impacts of intermediate products. These challenges can be substantially resolved by systematically integrating the LCA approach with the thermodynamically-rooted exergy, offering a powerful environmental sustainability assessment tool known as “exergoenvironmental analysis“. Due to the unique methodological and conceptual characteristics of exergoenvironmental analysis in revealing the possibilities and trends for improvement, it has recently received increasing attention to mitigate the environmental impacts of bioenergy systems. Therefore, this review is aimed to thoroughly summarize and critically discuss the evaluation of sustainability aspects of bioenergy systems based on exergoenvironmental analysis. The pros and cons of using exergoenvironmental analysis in bioenergy research are also outlined to identify possible future directions for the field. Overall, exergoenvironmental analysis can offer more detailed information on the environmental consequences of each flow and component of bioenergy production plants, thereby diagnosing the breakthrough points for additional environmental improvements.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.111399&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.111399&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: Ying Li; Yue Xia; Yang-Che Wu; Wing-Keung Wong;doi: 10.3390/su12135463
The Chinese electric power industry, including its coal industry and other energy industries that are not efficient, contributes to China’s serious energy shortages and environmental contamination. The governing authority considers energy conservation to be one of the most prominent national targets, and has formulated various plans for decarbonizing the power system. Applying the trans-log cost function, this paper examined the trans-log cost function to analyze the potential inter-factor substitution among energy, capital and labor. We also investigated what role human capital played in energy substitution for the electric power sector during the period from 1981 to 2017. Three key results were derived: (1) energy is price-insensitive, (2) there exists large substitution sustainability between both capital and labor with energy, and (3) human capital input not only enhances the extent of energy substitutability with capital and labor but also is a substitute to energy itself. These findings imply that the liberalization of the electric price mechanism is conducive to lessening energy use and augmenting non-energy intensiveness, and that energy conservation technology could become more sustainable by investing more capital in the electricity sector, thereby achieving a capital–energy substitution and a decrease of CO2 emissions. We further suggest that the priority for the Chinese electric power industry should be to attach more importance to increasing human capital input.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/13/5463/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12135463&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/13/5463/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12135463&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Project deliverable , Other literature type 2024Publisher:Zenodo Funded by:EC | ePLANETEC| ePLANETAuthors: SANVICENTE, Estibaliz; PERUTKA, Tomáš; PALOMÉ, Xavier; PILIGOTSI, Georgia;ePLANET project is a Coordination and Support Action cofounded by the European Commission through Horizon 2020 program. ePLANET aims to deploy a new clustering governance for energy transition based on a digital framework to share harmonised information, facilitating the adoption of coordinated energy transition actions by the European public sector. The development of ePLANET is justified to deploy Energy Transition (ET) in the public sector, for which the following challenges are targeted: Improving coordination between local authorities and regional governments, Enhancing the decision-making process in the deployment of ET projects, Providing coherence and consistency to the energy transition measures (ETM) to be implemented, Encouraging the digitalisation of measures and plans, Enabling an interoperable ecosystem of data and tools, Building capacity of local authorities. All these targeted objectives will give the needed support for the energy transition decision-making process and its practical implementation. The present report is part of WP4, User empowerment. WP4 aims to empower policymakers, public officers, new ePLANET governance figures and key stakeholders with the necessary tools to implement Energy Transition Measures (ETM) with enough information and the proper tools.In Task 4.1, we investigated the main barriers and capacity building needs that ePLANET local authorities face when developing energy transition planning and implementation. In Task 4.2, we co-designed the capacity-building strategy and program for each ePLANET pilot territory. The present deliverable offers a comprehensive report on the capacity-building activities implemented in each pilot territory, outlining the engagement strategy and providing a detailed description of each activity. Finally, the last section summarises the key takeaways from the capacity-building program and outlines the next steps.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.12190032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.12190032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Hindawi Limited Authors: Hyunjoo Han; Neel Patel; Saffa Riffat; Yuehong Su;doi: 10.1002/er.1651
A lightwell is a daylighting design that brings daylight (including sunlight and skylight) to the lower floors in a multi-storey building. A lightwell has a similar function to a lightpipe or an atrium, but its size is medium. This paper presents construction, measurement and RADIANCE simulation of a model lightwell. The model lightwell has a scale factor of 1:20 to simulate a real lightwell design for a multi-storey hotel. The model lightwell has the dimension of 100mm (width) x 150 mm (length) x 800 mm (height) contained in a six-storey model building section with a dimension of 400 mm x 500 mm x 800 mm. Comparison of the measured daylighting performance is made for two different inner surfaces (matt white paint and mirror-finish) of the model lightwell under overcast and sunny sky conditions, respectively. Computational analysis on the daylight factor (DF) or illuminance ratio provides essential information to determine key design parameters and applicability of a lightwell.
International Journa... arrow_drop_down International Journal of Energy ResearchArticle . 2010 . Peer-reviewedLicense: Wiley TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/er.1651&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert International Journa... arrow_drop_down International Journal of Energy ResearchArticle . 2010 . Peer-reviewedLicense: Wiley TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/er.1651&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Funded by:UKRI | Localised Energy Systems ...UKRI| Localised Energy Systems - Community Energy Generation, Aggregation and Demand Shaping (LES-CEGADS)Boait, Peter John; Snape, J. Richard; Darby, S.; Hamilton, J.; Morris, R.;Abstract Thermal storage heaters, charged using overnight off-peak electricity, have been used for domestic space heating in the UK and other countries since the 1980s. However, they have always been difficult for consumers to manage efficiently and, with the advent of a high proportion of renewables in the electricity generation mix, the time of day when they are charged needs to be more flexible. There is also a need to reduce peaks in the demand profile to allow distribution networks to support new sources of demand such as electric vehicles. We describe a trial of a smart control system that was retrofitted to a group of six dwellings with this form of heating, with the objectives of providing more convenient and efficient control for the users while varying the times at which charging is performed, to flatten the profile of demand and make use of locally-generated renewable electricity. The trial also employs a commercially-realistic combination of a static time-of-day tariff with a real time tariff dependent on local generation, to provide consumers with the opportunity and incentive to reduce their costs by varying times of use of appliances. Results from operation over the 2015–16 heating season indicate that the objectives are largely achieved. It is estimated that on an annualised and weather-adjusted basis most of the users have consumed less electricity than before intervention and their costs are less on the trial tariffs. Critical factors for success of this form of system are identified, particularly the need to facilitate hands-on control of heating by thrifty users and the importance of an effective and sustained user engagement programme when introducing the technology, to ensure users gain confidence through a readily-accessible source of support and advice.
Energy and Buildings arrow_drop_down De Montfort University Open Research ArchiveArticle . 2016Data sources: De Montfort University Open Research ArchiveDe Montfort University Open Research ArchiveArticle . 2016Data sources: De Montfort University Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2016.12.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Energy and Buildings arrow_drop_down De Montfort University Open Research ArchiveArticle . 2016Data sources: De Montfort University Open Research ArchiveDe Montfort University Open Research ArchiveArticle . 2016Data sources: De Montfort University Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2016.12.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Bangzhu Zhu; Bright Obuobi; Gibbson Adu-Gyamfi; Dan Cudjoe; Emmanuel Nketiah; Mavis Adjei;Abstract Global environmental change is driven by food production. Biogas from food waste is a better source of clean energy. Ghana’s energy strategy targets a 10% increase in renewable energy and modern biomass in the national electricity generation mix. Studies on the assessment of electricity generation potential and economic feasibility of biogas to electricity projects in Ghana’s major cities are scarcely available. This study assesses the electricity generation potential of biogas from food waste through anaerobic digestion technology. The municipal solid waste generation potential of Accra and Kumasi was estimated from 2020 to 2039. The potential theoretical methane yield from food waste was calculated using Buswell’s equation. The study analyzed anaerobic digestion projects’ economic feasibility using the total life cycle cost, net present value, investment payback period, levelized cost of energy, and internal rate of return methods. A sensitivity analysis based on two scenarios (optimistic and pessimistic) was performed to analyze the influence of changes in the composition of food waste, per capita waste generation rate, population growth rate, per capita GDP growth rate, discount rate, capacity factor, electricity generation efficiency, waste collection efficiency, and methane production potential on the economic feasibility of the projects. The main findings indicate that the amount of waste generation in Accra during the project life cycle is 899,000 t/y to 3,359,000 t/y, while that of Kumasi is 915,000 t/y to 3,159,000 t/y. The power generation potential of the project in Accra ranges from 80.43 to 300.49 GWh/y, and in Kumasi ranges from 60.63 to 209.31 GWh/y. Economically, the project is feasible in Accra and Kumasi. The net present value of the project in Accra and Kumasi is $217,800,000 and $156,100,000. The sensitivity analysis shows that the project is infeasible in all the cities with a discount rate exceeding 20%. When the discount rate exceeds 20%, the project becomes highly infeasible in Accra compared to Kumasi. This study will offer itself as scientific guidance for investment in biogas to electricity projects in Ghana’s cities.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.120342&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.120342&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Yan Xu; Chunning Na; Changhong Zhao; Jiahai Yuan;Abstract Domestic wind turbine manufacturing sector in China has experienced development stages starting from scratch to mass production. During the 11th FYP period (2006–2010), the main goal of wind power policy in China is to promote the commercialization of wind power by large-scale deployment of wind farms. This goal has been realized to a great extent and now the cost of wind power generation is nearly comparable to coal-fired power generation in China. The industry policy, which devotes to mass production of domestic wind turbines, is also largely successful. The purpose of the paper is to provide an overview on wind turbine manufacturing sector in China. The policy evolution in different stages, achievements and challenges pertinent to the sector are addressed in the paper. Key findings are that the misleading industry policy, which provides strong incentive to blind entrance and “competition for scale and price” and restrains innovation as well, is the key obstacle for the sustainable development of the sector. Deficient technology standard and qualification system and the misplaced franchise bidding system also indulge vicious competition and oversupply. Creating a level playground for all turbine supplies, providing strong incentive to innovative manufacturers, establishing thorough and practicable standard and qualification system, and fine-tuning the directive of the franchise bidding system towards technology and service are the primary policy implications proposed by our study.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2015.07.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2015.07.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Springer Science and Business Media LLC Funded by:FCT | NECEFCT| NECEAuthors: Muhammad Shahbaz; Patrícia Hipólito Leal; António Cardoso Marques;In the context of globalisation, is a country’s level of development an obstacle to its environmental performance? The main objective of this research is to identify the role played in the environmental performance of countries with different levels of development, globalisation, and environmental regulation, by the three dimensions and two new measures of globalisation, de jure and de facto. This analysis was accomplished by assessing the environmental curve which relates economic growth to environmental degradation, known as the environmental Kuznets curve, for a sample of 32 developed and 26 developing economies from 1995 to 2017. It was found that developed countries produced an inverted U-shaped curve and that globalisation had a mostly beneficial effect on the environment. In contrast, developing economies produced a U-shaped curve and globalisation was generally harmful. Globalisation caused reductions of 0.88% and 0.85% in the environmental degradation of developed countries, and increases of 0.20% and 0.52% in developing ones. Political globalisation produced different effects for each measure in developed countries and had no effect in developing countries. Economic globalisation suggests the relocation of polluting industries from developed to developing countries. As there is currently very little literature on the new measures of globalisation, this study provides fresh insights for policymakers devising appropriate measures to achieve sustainability in both developed and developing countries.
Environment Developm... arrow_drop_down Environment Development and SustainabilityArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10668-020-00923-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Environment Developm... arrow_drop_down Environment Development and SustainabilityArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10668-020-00923-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Miao Wang; Chao Feng;pmid: 33516687
On March 24, 2015, a political bureau meeting of the Communist Party of China Central Committee first proposed the political task of "greening" and placed unprecedented importance on the construction of an ecological civilization, aiming to guide China's economy and society toward green and low carbon development. This study aims to examine the impact of this "greening" policy on China's climate change mitigation. First, from an emissions reduction perspective, this study interprets greening as the process of constantly strengthening society's awareness and willingness regarding emissions reduction. Then, this study incorporates a carbon abatement willingness factor into a nonparametric model, and quantitatively simulates the impact of greening on carbon dioxide (CO2) emissions reduction in China. The results show that China can rapidly decrease its CO2 emissions in the early stages of greening. However, when greening passes a certain stage, it no longer affects CO2 emissions. Thus, the willingness to reduce emissions has a diminishing marginal effect on emissions reduction. Additionally, throughout the greening process, China is expected to reduce its CO2 emissions by 36.08%, or 3718.50 million tons. Finally, the impact of greening on China's CO2 emissions exhibits spatial variation, as its undeveloped western region can achieve greater CO2 emissions reductions by promoting greening. Base on the above results, corresponding policy implications are also provided at the end of this paper.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envres.2021.110779&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envres.2021.110779&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 NetherlandsPublisher:MDPI AG Nguyet Anh Dang; Rubianca Benavidez; Stephanie Anne Tomscha; Ho Nguyen; Dung Duc Tran; Diep Thi Hong Nguyen; Ho Huu Loc; Bethanna Marie Jackson;doi: 10.3390/su132413549
Deltas are among the most productive and diverse global ecosystems. However, these regions are highly vulnerable to natural disasters and climate change. Nature-based solutions (Nbs) have been increasingly adopted in many deltas to improve their resilience. Among decision support tools, assessment of ecosystem services (ES) through spatially explicit modelling plays an important role in advocating for Nbs. This study explores the use of the Land Utilisation and Capability Indicator (LUCI) model, a high-resolution model originally developed in temperate hill country regions, to map changes in multiple ecosystem services (ES), along with their synergies and trade-offs, between 2010 and 2018 in the Vietnamese Mekong Delta (VMD). In so doing, this study contributes to the current knowledge in at least two aspects: high-resolution ES modelling in the VMD, and the combination of ES biophysical and economic values within the VMD to support Nbs implementation. To date, this is the highest resolution (5 by 5 m) ES modelling study ever conducted in the VMD, with ~1500 million elements generated per ES. In the process of trialling implementations of LUCI within the VMD’s unique environmental conditions and data contexts, we identify and suggest potential model enhancements to make the LUCI model more applicable to the VMD as well as other tropical deltaic regions. LUCI generated informative results in much of the VMD for the selected ES (flood mitigation, agriculture/aquaculture productivity, and climate regulation), but challenges arose around its application to a new agro-hydrological regime. To address these challenges, parameterising LUCI and reconceptualising some of the model’s mechanisms to specifically account for the productivity and flood mitigation capability of water-tolerant crops as well as flooding processes of deltaic regions will improve future ES modelling in tropical deltaic areas. The ES maps showed the spatial heterogeneity of ES across the VMD. Next, to at least somewhat account for the economic drivers which need to be considered alongside biophysical valuations for practical implementations of ES maps for nature-based solutions (Nbs) in the upstream VMD, economic values were assigned to different parcels using a benefit transfer approach. The spatially explicit ES economic value maps can inform the design of financing incentives for Nbs. The results and related work can be used to support the establishment of Nbs that ultimately contribute to the security of local farmers’ livelihoods and the sustainability of the VMD.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing InstituteWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132413549&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing InstituteWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132413549&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Zahra Khounani; Meisam Tabatabaei; Vijai Kumar Gupta; Hamid Amiri; Tatiana Morosuk; Su Shiung Lam; Su Shiung Lam; Homa Hosseinzadeh-Bandbafha; Mortaza Aghbashlo; Mortaza Aghbashlo;Abstract Bioenergy systems are expected to expand over the coming decades due to their potential to address energy security and environmental pollution challenges. Nevertheless, any renewable energy project can only survive if approved environmentally superior to its conventional counterparts. Life cycle assessment (LCA) is an internationally standardized and validated methodology to evaluate and quantify the environmental impacts of bioenergy systems. However, due to its methodological scope, the LCA method measures only the environmental consequences of the target products of energy systems. The LCA approach can neither allocate the environmental impacts at the component level nor measure the environmental impacts of intermediate products. These challenges can be substantially resolved by systematically integrating the LCA approach with the thermodynamically-rooted exergy, offering a powerful environmental sustainability assessment tool known as “exergoenvironmental analysis“. Due to the unique methodological and conceptual characteristics of exergoenvironmental analysis in revealing the possibilities and trends for improvement, it has recently received increasing attention to mitigate the environmental impacts of bioenergy systems. Therefore, this review is aimed to thoroughly summarize and critically discuss the evaluation of sustainability aspects of bioenergy systems based on exergoenvironmental analysis. The pros and cons of using exergoenvironmental analysis in bioenergy research are also outlined to identify possible future directions for the field. Overall, exergoenvironmental analysis can offer more detailed information on the environmental consequences of each flow and component of bioenergy production plants, thereby diagnosing the breakthrough points for additional environmental improvements.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.111399&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.111399&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: Ying Li; Yue Xia; Yang-Che Wu; Wing-Keung Wong;doi: 10.3390/su12135463
The Chinese electric power industry, including its coal industry and other energy industries that are not efficient, contributes to China’s serious energy shortages and environmental contamination. The governing authority considers energy conservation to be one of the most prominent national targets, and has formulated various plans for decarbonizing the power system. Applying the trans-log cost function, this paper examined the trans-log cost function to analyze the potential inter-factor substitution among energy, capital and labor. We also investigated what role human capital played in energy substitution for the electric power sector during the period from 1981 to 2017. Three key results were derived: (1) energy is price-insensitive, (2) there exists large substitution sustainability between both capital and labor with energy, and (3) human capital input not only enhances the extent of energy substitutability with capital and labor but also is a substitute to energy itself. These findings imply that the liberalization of the electric price mechanism is conducive to lessening energy use and augmenting non-energy intensiveness, and that energy conservation technology could become more sustainable by investing more capital in the electricity sector, thereby achieving a capital–energy substitution and a decrease of CO2 emissions. We further suggest that the priority for the Chinese electric power industry should be to attach more importance to increasing human capital input.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/13/5463/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12135463&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/13/5463/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12135463&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Project deliverable , Other literature type 2024Publisher:Zenodo Funded by:EC | ePLANETEC| ePLANETAuthors: SANVICENTE, Estibaliz; PERUTKA, Tomáš; PALOMÉ, Xavier; PILIGOTSI, Georgia;ePLANET project is a Coordination and Support Action cofounded by the European Commission through Horizon 2020 program. ePLANET aims to deploy a new clustering governance for energy transition based on a digital framework to share harmonised information, facilitating the adoption of coordinated energy transition actions by the European public sector. The development of ePLANET is justified to deploy Energy Transition (ET) in the public sector, for which the following challenges are targeted: Improving coordination between local authorities and regional governments, Enhancing the decision-making process in the deployment of ET projects, Providing coherence and consistency to the energy transition measures (ETM) to be implemented, Encouraging the digitalisation of measures and plans, Enabling an interoperable ecosystem of data and tools, Building capacity of local authorities. All these targeted objectives will give the needed support for the energy transition decision-making process and its practical implementation. The present report is part of WP4, User empowerment. WP4 aims to empower policymakers, public officers, new ePLANET governance figures and key stakeholders with the necessary tools to implement Energy Transition Measures (ETM) with enough information and the proper tools.In Task 4.1, we investigated the main barriers and capacity building needs that ePLANET local authorities face when developing energy transition planning and implementation. In Task 4.2, we co-designed the capacity-building strategy and program for each ePLANET pilot territory. The present deliverable offers a comprehensive report on the capacity-building activities implemented in each pilot territory, outlining the engagement strategy and providing a detailed description of each activity. Finally, the last section summarises the key takeaways from the capacity-building program and outlines the next steps.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.12190032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.12190032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Hindawi Limited Authors: Hyunjoo Han; Neel Patel; Saffa Riffat; Yuehong Su;doi: 10.1002/er.1651
A lightwell is a daylighting design that brings daylight (including sunlight and skylight) to the lower floors in a multi-storey building. A lightwell has a similar function to a lightpipe or an atrium, but its size is medium. This paper presents construction, measurement and RADIANCE simulation of a model lightwell. The model lightwell has a scale factor of 1:20 to simulate a real lightwell design for a multi-storey hotel. The model lightwell has the dimension of 100mm (width) x 150 mm (length) x 800 mm (height) contained in a six-storey model building section with a dimension of 400 mm x 500 mm x 800 mm. Comparison of the measured daylighting performance is made for two different inner surfaces (matt white paint and mirror-finish) of the model lightwell under overcast and sunny sky conditions, respectively. Computational analysis on the daylight factor (DF) or illuminance ratio provides essential information to determine key design parameters and applicability of a lightwell.
International Journa... arrow_drop_down International Journal of Energy ResearchArticle . 2010 . Peer-reviewedLicense: Wiley TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/er.1651&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert International Journa... arrow_drop_down International Journal of Energy ResearchArticle . 2010 . Peer-reviewedLicense: Wiley TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/er.1651&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Funded by:UKRI | Localised Energy Systems ...UKRI| Localised Energy Systems - Community Energy Generation, Aggregation and Demand Shaping (LES-CEGADS)Boait, Peter John; Snape, J. Richard; Darby, S.; Hamilton, J.; Morris, R.;Abstract Thermal storage heaters, charged using overnight off-peak electricity, have been used for domestic space heating in the UK and other countries since the 1980s. However, they have always been difficult for consumers to manage efficiently and, with the advent of a high proportion of renewables in the electricity generation mix, the time of day when they are charged needs to be more flexible. There is also a need to reduce peaks in the demand profile to allow distribution networks to support new sources of demand such as electric vehicles. We describe a trial of a smart control system that was retrofitted to a group of six dwellings with this form of heating, with the objectives of providing more convenient and efficient control for the users while varying the times at which charging is performed, to flatten the profile of demand and make use of locally-generated renewable electricity. The trial also employs a commercially-realistic combination of a static time-of-day tariff with a real time tariff dependent on local generation, to provide consumers with the opportunity and incentive to reduce their costs by varying times of use of appliances. Results from operation over the 2015–16 heating season indicate that the objectives are largely achieved. It is estimated that on an annualised and weather-adjusted basis most of the users have consumed less electricity than before intervention and their costs are less on the trial tariffs. Critical factors for success of this form of system are identified, particularly the need to facilitate hands-on control of heating by thrifty users and the importance of an effective and sustained user engagement programme when introducing the technology, to ensure users gain confidence through a readily-accessible source of support and advice.
Energy and Buildings arrow_drop_down De Montfort University Open Research ArchiveArticle . 2016Data sources: De Montfort University Open Research ArchiveDe Montfort University Open Research ArchiveArticle . 2016Data sources: De Montfort University Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2016.12.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Energy and Buildings arrow_drop_down De Montfort University Open Research ArchiveArticle . 2016Data sources: De Montfort University Open Research ArchiveDe Montfort University Open Research ArchiveArticle . 2016Data sources: De Montfort University Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2016.12.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Bangzhu Zhu; Bright Obuobi; Gibbson Adu-Gyamfi; Dan Cudjoe; Emmanuel Nketiah; Mavis Adjei;Abstract Global environmental change is driven by food production. Biogas from food waste is a better source of clean energy. Ghana’s energy strategy targets a 10% increase in renewable energy and modern biomass in the national electricity generation mix. Studies on the assessment of electricity generation potential and economic feasibility of biogas to electricity projects in Ghana’s major cities are scarcely available. This study assesses the electricity generation potential of biogas from food waste through anaerobic digestion technology. The municipal solid waste generation potential of Accra and Kumasi was estimated from 2020 to 2039. The potential theoretical methane yield from food waste was calculated using Buswell’s equation. The study analyzed anaerobic digestion projects’ economic feasibility using the total life cycle cost, net present value, investment payback period, levelized cost of energy, and internal rate of return methods. A sensitivity analysis based on two scenarios (optimistic and pessimistic) was performed to analyze the influence of changes in the composition of food waste, per capita waste generation rate, population growth rate, per capita GDP growth rate, discount rate, capacity factor, electricity generation efficiency, waste collection efficiency, and methane production potential on the economic feasibility of the projects. The main findings indicate that the amount of waste generation in Accra during the project life cycle is 899,000 t/y to 3,359,000 t/y, while that of Kumasi is 915,000 t/y to 3,159,000 t/y. The power generation potential of the project in Accra ranges from 80.43 to 300.49 GWh/y, and in Kumasi ranges from 60.63 to 209.31 GWh/y. Economically, the project is feasible in Accra and Kumasi. The net present value of the project in Accra and Kumasi is $217,800,000 and $156,100,000. The sensitivity analysis shows that the project is infeasible in all the cities with a discount rate exceeding 20%. When the discount rate exceeds 20%, the project becomes highly infeasible in Accra compared to Kumasi. This study will offer itself as scientific guidance for investment in biogas to electricity projects in Ghana’s cities.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.120342&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.120342&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Yan Xu; Chunning Na; Changhong Zhao; Jiahai Yuan;Abstract Domestic wind turbine manufacturing sector in China has experienced development stages starting from scratch to mass production. During the 11th FYP period (2006–2010), the main goal of wind power policy in China is to promote the commercialization of wind power by large-scale deployment of wind farms. This goal has been realized to a great extent and now the cost of wind power generation is nearly comparable to coal-fired power generation in China. The industry policy, which devotes to mass production of domestic wind turbines, is also largely successful. The purpose of the paper is to provide an overview on wind turbine manufacturing sector in China. The policy evolution in different stages, achievements and challenges pertinent to the sector are addressed in the paper. Key findings are that the misleading industry policy, which provides strong incentive to blind entrance and “competition for scale and price” and restrains innovation as well, is the key obstacle for the sustainable development of the sector. Deficient technology standard and qualification system and the misplaced franchise bidding system also indulge vicious competition and oversupply. Creating a level playground for all turbine supplies, providing strong incentive to innovative manufacturers, establishing thorough and practicable standard and qualification system, and fine-tuning the directive of the franchise bidding system towards technology and service are the primary policy implications proposed by our study.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2015.07.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2015.07.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu