- home
- Advanced Search
- Energy Research
- CN
- GB
- Energy Research
- CN
- GB
description Publicationkeyboard_double_arrow_right Project deliverable , Other literature type 2017Publisher:Zenodo Funded by:EC | CHESS-SETUPEC| CHESS-SETUPAbad, Ferran; Grau, Marc; Pérez, Marcos; Wansdronk, Renee; Barley, Eleanor; Olatunji, Yomi; Hewitt, Neil;Sensible Heat Storage is the most common method of thermal energy storage, particularly in the form of hot water tanks. Essentially, sensible heat storage systems work by charging them with heat from a higher temperature source to raise the temperature of the thermal store, and by extracting heat to discharge them. On a larger scale, these sensible heat stores should be designed to store heat long term over seasons, which allow the thermal storage systems to be charged using solar thermal systems to then supply heat over colder periods and can be applied in an array of buildings, including individual dwellings and larger buildings. These seasonal storage systems consist of: Tank Thermal Energy Storage (TTES), Pit Thermal Energy Storage (PTES), Borehole Thermal Energy Storage (BTES) and Aquifer Thermal Energy Storage (ATES). The aim of this report is to provide useful information about the different construction techniques for the mentioned systems in addition to FP7 Einstein Project, where a big information research has already been done, analysing the main characteristics that interfere in the various proceedings. In addition, a general study for the three different CHESS-SETUP pilots is done regarding the availability and constraints of every case to introduce the different technologies. Finally, in order to ensure the correct operation of the installations, some guidance of the different types of maintenance is done as well as maintenance plans for the different elements of the system.
ZENODO arrow_drop_down http://dx.doi.org/10.5281/zeno...Other literature type . 2017Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3839431&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 40visibility views 40 download downloads 120 Powered bymore_vert ZENODO arrow_drop_down http://dx.doi.org/10.5281/zeno...Other literature type . 2017Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3839431&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:American Chemical Society (ACS) Authors: Liu, Xinyi; Guo, Zhixiong; Wang, Jifen; Xie, Huaqing;pmid: 37042829
High supercooling and single functionalization are the main barriers to the large-scale application of microencapsulated phase-change materials (PCMs) in the construction industry. To address these issues, we propose a new inorganic microencapsulated PCM, PW@CaWO4, which was synthesized via the in situ polymerization method using inorganic CaWO4 as shell and phase-change paraffin wax (PW) as core. We investigated the effects of different emulsifiers and core-to-shell ratios on microcapsule properties and found that the PW@CaWO4 microcapsules have regular spherical topography and good uniformity in particle size. During the synthesis process, the CaWO4 shell provides convenient conditions for heterogeneous nucleation of PW and effectively reduces the supercooling degree. The minimum supercooling degree of the PW@CaWO4 microcapsules is only 1.00 ± 0.08 °C, which is 3.41 °C lower than that of PW. Moreover, the PW@CaWO4 microcapsules can absorb ultraviolet radiation and exhibit fluorescence, which originates from the peculiar WO42– structure in the CaWO4 shell, eliminating the need for doping other light-activating ions into the shell. The newly prepared microcapsules possess several advantages, including suitable particle size, low supercooling, good heat storage, high thermal conductivity, good short-wave ultraviolet absorption, peculiar fluorescence, excellent proof of leakage, and so on. The microcapsules can be applied to fluorescent architectural energy-saving coatings.
ACS Applied Material... arrow_drop_down ACS Applied Materials & InterfacesArticle . 2023 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsami.3c02941&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert ACS Applied Material... arrow_drop_down ACS Applied Materials & InterfacesArticle . 2023 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsami.3c02941&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Doctoral thesis , Thesis 2020 China (People's Republic of)Publisher:The Hong Kong University of Science and Technology Library Authors: Wong, Man Yi MECH;A thermal diode is a device where the effective thermal conductivity in one direction is higher than that in the opposite direction. Among various types of thermal diodes reported in the literature, the phase-change thermal diode yields a greater thermal rectification performance. However, there are some limitations to the current phase-change thermal diodes, such as complex structures, complicated manufacturing procedures, and sophisticated working mechanisms. More importantly, some thermal diodes involve toxic, rare and expensive constituent materials. Hence, a simple water-vapour chamber thermal diode utilising the latent heat from pure water is designed, assembled and investigated, both experimentally and numerically in this study. The effects of the temperature gradient across the thermal diode, and the water-air volume ratio inside the water chamber on the heat transfer and thermal rectification performance of the water-vapour chamber thermal diode are examined. Mathematical models for anticipating the heat transfer performance of the proposed thermal diode are also built and verified by the experimental results. It should be noted that this is the first study to investigate this kind of thermal diode theoretically and experimentally. The findings reveal that the forward effective thermal conductivity of the thermal diode shows a 50 % enhancement when the hot side temperature rises from 40 ℃ to 70 ℃. A maximum diodicity of 1.43 is reported at the water-air volume ratio of 0.5. The results also indicate that the heat transfer and thermal rectification performances of the thermal diode is improved for a high water-air volume ratio. There are lots of applications for the thermal diode. In this study, a thermal diode based solar thermoelectric power system is established. The findings show that a maximum power output of 0.057 W is reported when the hot plate temperature is 120 ℃ and the cooling temperature is 10 ℃.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.14711/thesis-991012763468603412&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.14711/thesis-991012763468603412&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Science Data Bank Authors: Liyong Wang ;phase change phase change
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.07441&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.07441&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Thesis , Doctoral thesis 2016Embargo end date: 10 Mar 2017 United KingdomPublisher:Department of Engineering, University of Cambridge Authors: McTigue, Joshua;doi: 10.17863/cam.7084
The focus of this project is the storage of thermal energy in packed beds for bulk electricity storage applications. Packed beds are composed of pebbles through which a heat transfer fluid passes, and a thermodynamic model of the heat transfer processes within the store is described. The packed beds are investigated using second law analysis which reveals trade-offs between several heat transfer processes and the importance of various design parameters. Parametric studies of the reservoir behaviour informs the design process and leads to a set of design guidelines. Two innovative design features are proposed and investigated. These features are segmented packed beds and radial-flow packed beds respectively. Thermal reservoirs are an integral component in a storage system known as Pumped Thermal Energy Storage (PTES). To charge, PTES uses a heat pump to create a difference in internal energy between two thermal stores; one hot and one cold. The cycle reverses during discharge with PTES operating as a heat engine. The heat pumps/engines require compression and expansion devices, for which simple models are described and are integrated with the packed bed models. The PTES system behaviour is investigated with parametric studies, and alternative design configurations are explored. A multi-objective genetic algorithm is used to undertake thermo-economic optimisations of packed-bed thermal reservoirs and PTES systems. The algorithm generates a set of optimal designs that illustrate the trade-off between capital cost and round-trip efficiency. Segmentation is found to be particularly beneficial in cold stores, and can add up to 1% to the round-trip efficiency of a PTES system. On the basis of the assumptions made, PTES can achieve efficiencies and energy densities comparable with other bulk electricity storage systems. However, the round-trip efficiency is very sensitive to the efficiency of the compression–expansion system. For designs that utilised bespoke reciprocating compressors and expanders, PTES might be expected to achieve electricity-to-electricity efficiencies of 64%. However, using compression and expansion efficiencies typical of off-theshelf devices the round-trip efficiency is around 45%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.7084&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.7084&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Doctoral thesis 2010 United KingdomPublisher:The University of Edinburgh This thesis describes research into electrical power takeoff mechanisms for Oscillating Water Column (OWC) wave energy devices. The OWC application is studied and possible alternatives to the existing Induction Generator (IG) are identified. The Permanent Magnet Generator (PMG) is found to be the most promising. Results showed that the IG could almost match the output of the PMG if it could be operated significantly above its rated capacity. This improvement would require only limited changes to the overall OWC system. The ability to operate overloaded is determined by the losses and cooling of the IG. The losses in a suitable IG were measured in tests at Nottingham University. Steady state measurements were made of the cooling ability of the OWC airflow at the LIMPET wave power plant operated by Wavegen (the sponsor company) on Islay. Thermal modelling combining the loss and cooling measurements allowed the maximum capacity of the induction generator in an OWC to be found. A simplified model that accurately represents this system is proposed for use in system design and generator control.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=1842/4642&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=1842/4642&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Project deliverable , Other literature type 2016Publisher:Zenodo Funded by:EC | CHESS-SETUPEC| CHESS-SETUPAbad, Ferran; Lloveras, Francesc; Pérez, Marcos; Abadal, Jordi; Morató, Moisès; Wansdronk, Renne; Hewitt, Neil;Description of the different options and materials to store heat. The report will include practical data synthesized in tables about prices, thermal properties, environmental issues, etc. The report will be useful to determinate the most suitable option under different circumstances. The objective of this deliverable is to gather and summarize, for each technology, all the information about the technical properties, environmental impacts, prices, Life Cycle Costing (LCC), market level and other important parameters. The collected information is to be used in the decision of the more adapted technology for different possible thermal project requirements and locations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3834269&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 35visibility views 35 download downloads 79 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3834269&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Doctoral thesis 2018 United KingdomPublisher:The University of Edinburgh Authors: Renaldi, Renaldi;handle: 1842/31214
One of the main challenges in the implementation of renewable energy is the mismatch between supply and demand. Energy storage has been identified as one of the solutions to the mismatch problem. Among various storage technologies, thermal energy storage (TES) is foreseen to have a significant role to achieve a low carbon energy systems because of the large share of thermal energy demand and its relatively low cost. However, integrating TES into energy systems requires careful design and implementation since otherwise potential financial and environmental savings may not be achieved. Computational-based design tools are ubiquitous in the design process of modern energy systems and can be broadly categorised into two methodologies: optimisation and simulation. In both cases, designing an energy system with storage technology is significantly more complicated than those without, mainly due to the coupling of variables between time steps. This thesis is concerned with two facets of the application of TES in energy systems. First, the role of TES in improving the performance of renewable-based domestic heating systems. Second, the implementation of optimisation and simulation tools in the design of energy systems with integrated TES. They are addressed by examining two case studies that illustrate the spatial and temporal variance of energy systems: a single dwelling heat pump system with a hot water tank, and a solar district heating system with a borehole thermal energy storage. In the single dwelling case study, the technical and financial benefits of TES installation in a heat pump system are illustrated by the optimisation model. A simulation model which utilises the optimisation results is developed to assess the accuracy of the optimisation results and the potential interaction between the two methodologies. The solar district heating case study is utilised to highlight the potential of a time decomposition technique, the multiple time grids method, in reducing the computational time in the operational ...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=1842/31214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=1842/31214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 AustraliaPublisher:ASME International Li, Haowen; Yang, Huachao; Xu, Chenxuan; Cheng, Xiangnan; Yan, Jianhua; Cen, Kefa; Bo, Zheng; Ostrikov, Kostya;doi: 10.1115/1.4055152
Abstract Actuators that convert external stimuli to mechanical energy have aroused strong attention for emerging applications in robotics, artificial muscles, and other fields. However, their limited performance under harsh operating conditions evidenced by the low cycle life and hysteresis has restricted their practical applications. Here, a thermal-driven actuator based on layered metallic molybdenum disulfide (1T MoS2) nanosheets is demonstrated. The active actuator film exhibits fully reversible and highly stable (>99.296% in 2700 cycles) thermal-mechanical conversion over a wide temperature window (from −60 °C to 80 °C). Importantly, 1T MoS2 film shows a fast response with the bending rate and the recovery rate of >1.090 rad s−1 and >0.978 rad s−1, respectively. The assembled actuator can lift 20 times its weight over several centimeters for more than 200 cycles. This work, for the first time, demonstrates the thermoresponsive characteristics of 1T MoS2 in developing the thermal actuator, which may open new opportunities for various applications, such as robotics, artificial muscles, and human assist devices.
Journal of Thermal S... arrow_drop_down Journal of Thermal Science and Engineering ApplicationsArticle . 2022 . Peer-reviewedLicense: ASME Site License AgreemenData sources: CrossrefQueensland University of Technology: QUT ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4055152&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Thermal S... arrow_drop_down Journal of Thermal Science and Engineering ApplicationsArticle . 2022 . Peer-reviewedLicense: ASME Site License AgreemenData sources: CrossrefQueensland University of Technology: QUT ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4055152&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Hanlin Liu; Liangchen Lu; Dapeng Sun; Peng Liu; Yiming Li; Tianlai Li; Xingan Liu;Covering thermal screen on the front roof is one of the most general methods to improve the thermal performance of the solar greenhouse in China. Thermal screen control, however, is operator-dependent and based on empirical strategies. In order to more effectively manage the thermal screen, an optimal control method based on solar radiation and temperature difference between indoor and outdoor was established. The influence of different factors on the control of greenhouse thermal screen is systematically analyzed and the control function of the greenhouse thermal screen was calculated. The empirical control formula was established based on simulation which lasted for 62 days. As a result, the two-factor control method can significantly improve the air temperature when the thermal screen is controlled, and it can increase the average air temperature by 0.53 °C. Comparing with temperature difference, solar radiation has a greater impact on the control of thermal screen. The control method based on temperature difference and solar radiation can save 7.2% energy in winter. The research can provide reference for energy saving and automatic control of Chinese solar greenhouse.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy13030821&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy13030821&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Project deliverable , Other literature type 2017Publisher:Zenodo Funded by:EC | CHESS-SETUPEC| CHESS-SETUPAbad, Ferran; Grau, Marc; Pérez, Marcos; Wansdronk, Renee; Barley, Eleanor; Olatunji, Yomi; Hewitt, Neil;Sensible Heat Storage is the most common method of thermal energy storage, particularly in the form of hot water tanks. Essentially, sensible heat storage systems work by charging them with heat from a higher temperature source to raise the temperature of the thermal store, and by extracting heat to discharge them. On a larger scale, these sensible heat stores should be designed to store heat long term over seasons, which allow the thermal storage systems to be charged using solar thermal systems to then supply heat over colder periods and can be applied in an array of buildings, including individual dwellings and larger buildings. These seasonal storage systems consist of: Tank Thermal Energy Storage (TTES), Pit Thermal Energy Storage (PTES), Borehole Thermal Energy Storage (BTES) and Aquifer Thermal Energy Storage (ATES). The aim of this report is to provide useful information about the different construction techniques for the mentioned systems in addition to FP7 Einstein Project, where a big information research has already been done, analysing the main characteristics that interfere in the various proceedings. In addition, a general study for the three different CHESS-SETUP pilots is done regarding the availability and constraints of every case to introduce the different technologies. Finally, in order to ensure the correct operation of the installations, some guidance of the different types of maintenance is done as well as maintenance plans for the different elements of the system.
ZENODO arrow_drop_down http://dx.doi.org/10.5281/zeno...Other literature type . 2017Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3839431&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 40visibility views 40 download downloads 120 Powered bymore_vert ZENODO arrow_drop_down http://dx.doi.org/10.5281/zeno...Other literature type . 2017Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3839431&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:American Chemical Society (ACS) Authors: Liu, Xinyi; Guo, Zhixiong; Wang, Jifen; Xie, Huaqing;pmid: 37042829
High supercooling and single functionalization are the main barriers to the large-scale application of microencapsulated phase-change materials (PCMs) in the construction industry. To address these issues, we propose a new inorganic microencapsulated PCM, PW@CaWO4, which was synthesized via the in situ polymerization method using inorganic CaWO4 as shell and phase-change paraffin wax (PW) as core. We investigated the effects of different emulsifiers and core-to-shell ratios on microcapsule properties and found that the PW@CaWO4 microcapsules have regular spherical topography and good uniformity in particle size. During the synthesis process, the CaWO4 shell provides convenient conditions for heterogeneous nucleation of PW and effectively reduces the supercooling degree. The minimum supercooling degree of the PW@CaWO4 microcapsules is only 1.00 ± 0.08 °C, which is 3.41 °C lower than that of PW. Moreover, the PW@CaWO4 microcapsules can absorb ultraviolet radiation and exhibit fluorescence, which originates from the peculiar WO42– structure in the CaWO4 shell, eliminating the need for doping other light-activating ions into the shell. The newly prepared microcapsules possess several advantages, including suitable particle size, low supercooling, good heat storage, high thermal conductivity, good short-wave ultraviolet absorption, peculiar fluorescence, excellent proof of leakage, and so on. The microcapsules can be applied to fluorescent architectural energy-saving coatings.
ACS Applied Material... arrow_drop_down ACS Applied Materials & InterfacesArticle . 2023 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsami.3c02941&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert ACS Applied Material... arrow_drop_down ACS Applied Materials & InterfacesArticle . 2023 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsami.3c02941&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Doctoral thesis , Thesis 2020 China (People's Republic of)Publisher:The Hong Kong University of Science and Technology Library Authors: Wong, Man Yi MECH;A thermal diode is a device where the effective thermal conductivity in one direction is higher than that in the opposite direction. Among various types of thermal diodes reported in the literature, the phase-change thermal diode yields a greater thermal rectification performance. However, there are some limitations to the current phase-change thermal diodes, such as complex structures, complicated manufacturing procedures, and sophisticated working mechanisms. More importantly, some thermal diodes involve toxic, rare and expensive constituent materials. Hence, a simple water-vapour chamber thermal diode utilising the latent heat from pure water is designed, assembled and investigated, both experimentally and numerically in this study. The effects of the temperature gradient across the thermal diode, and the water-air volume ratio inside the water chamber on the heat transfer and thermal rectification performance of the water-vapour chamber thermal diode are examined. Mathematical models for anticipating the heat transfer performance of the proposed thermal diode are also built and verified by the experimental results. It should be noted that this is the first study to investigate this kind of thermal diode theoretically and experimentally. The findings reveal that the forward effective thermal conductivity of the thermal diode shows a 50 % enhancement when the hot side temperature rises from 40 ℃ to 70 ℃. A maximum diodicity of 1.43 is reported at the water-air volume ratio of 0.5. The results also indicate that the heat transfer and thermal rectification performances of the thermal diode is improved for a high water-air volume ratio. There are lots of applications for the thermal diode. In this study, a thermal diode based solar thermoelectric power system is established. The findings show that a maximum power output of 0.057 W is reported when the hot plate temperature is 120 ℃ and the cooling temperature is 10 ℃.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.14711/thesis-991012763468603412&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.14711/thesis-991012763468603412&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Science Data Bank Authors: Liyong Wang ;phase change phase change
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.07441&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.07441&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Thesis , Doctoral thesis 2016Embargo end date: 10 Mar 2017 United KingdomPublisher:Department of Engineering, University of Cambridge Authors: McTigue, Joshua;doi: 10.17863/cam.7084
The focus of this project is the storage of thermal energy in packed beds for bulk electricity storage applications. Packed beds are composed of pebbles through which a heat transfer fluid passes, and a thermodynamic model of the heat transfer processes within the store is described. The packed beds are investigated using second law analysis which reveals trade-offs between several heat transfer processes and the importance of various design parameters. Parametric studies of the reservoir behaviour informs the design process and leads to a set of design guidelines. Two innovative design features are proposed and investigated. These features are segmented packed beds and radial-flow packed beds respectively. Thermal reservoirs are an integral component in a storage system known as Pumped Thermal Energy Storage (PTES). To charge, PTES uses a heat pump to create a difference in internal energy between two thermal stores; one hot and one cold. The cycle reverses during discharge with PTES operating as a heat engine. The heat pumps/engines require compression and expansion devices, for which simple models are described and are integrated with the packed bed models. The PTES system behaviour is investigated with parametric studies, and alternative design configurations are explored. A multi-objective genetic algorithm is used to undertake thermo-economic optimisations of packed-bed thermal reservoirs and PTES systems. The algorithm generates a set of optimal designs that illustrate the trade-off between capital cost and round-trip efficiency. Segmentation is found to be particularly beneficial in cold stores, and can add up to 1% to the round-trip efficiency of a PTES system. On the basis of the assumptions made, PTES can achieve efficiencies and energy densities comparable with other bulk electricity storage systems. However, the round-trip efficiency is very sensitive to the efficiency of the compression–expansion system. For designs that utilised bespoke reciprocating compressors and expanders, PTES might be expected to achieve electricity-to-electricity efficiencies of 64%. However, using compression and expansion efficiencies typical of off-theshelf devices the round-trip efficiency is around 45%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.7084&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.7084&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Doctoral thesis 2010 United KingdomPublisher:The University of Edinburgh This thesis describes research into electrical power takeoff mechanisms for Oscillating Water Column (OWC) wave energy devices. The OWC application is studied and possible alternatives to the existing Induction Generator (IG) are identified. The Permanent Magnet Generator (PMG) is found to be the most promising. Results showed that the IG could almost match the output of the PMG if it could be operated significantly above its rated capacity. This improvement would require only limited changes to the overall OWC system. The ability to operate overloaded is determined by the losses and cooling of the IG. The losses in a suitable IG were measured in tests at Nottingham University. Steady state measurements were made of the cooling ability of the OWC airflow at the LIMPET wave power plant operated by Wavegen (the sponsor company) on Islay. Thermal modelling combining the loss and cooling measurements allowed the maximum capacity of the induction generator in an OWC to be found. A simplified model that accurately represents this system is proposed for use in system design and generator control.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=1842/4642&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=1842/4642&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Project deliverable , Other literature type 2016Publisher:Zenodo Funded by:EC | CHESS-SETUPEC| CHESS-SETUPAbad, Ferran; Lloveras, Francesc; Pérez, Marcos; Abadal, Jordi; Morató, Moisès; Wansdronk, Renne; Hewitt, Neil;Description of the different options and materials to store heat. The report will include practical data synthesized in tables about prices, thermal properties, environmental issues, etc. The report will be useful to determinate the most suitable option under different circumstances. The objective of this deliverable is to gather and summarize, for each technology, all the information about the technical properties, environmental impacts, prices, Life Cycle Costing (LCC), market level and other important parameters. The collected information is to be used in the decision of the more adapted technology for different possible thermal project requirements and locations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3834269&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 35visibility views 35 download downloads 79 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3834269&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Doctoral thesis 2018 United KingdomPublisher:The University of Edinburgh Authors: Renaldi, Renaldi;handle: 1842/31214
One of the main challenges in the implementation of renewable energy is the mismatch between supply and demand. Energy storage has been identified as one of the solutions to the mismatch problem. Among various storage technologies, thermal energy storage (TES) is foreseen to have a significant role to achieve a low carbon energy systems because of the large share of thermal energy demand and its relatively low cost. However, integrating TES into energy systems requires careful design and implementation since otherwise potential financial and environmental savings may not be achieved. Computational-based design tools are ubiquitous in the design process of modern energy systems and can be broadly categorised into two methodologies: optimisation and simulation. In both cases, designing an energy system with storage technology is significantly more complicated than those without, mainly due to the coupling of variables between time steps. This thesis is concerned with two facets of the application of TES in energy systems. First, the role of TES in improving the performance of renewable-based domestic heating systems. Second, the implementation of optimisation and simulation tools in the design of energy systems with integrated TES. They are addressed by examining two case studies that illustrate the spatial and temporal variance of energy systems: a single dwelling heat pump system with a hot water tank, and a solar district heating system with a borehole thermal energy storage. In the single dwelling case study, the technical and financial benefits of TES installation in a heat pump system are illustrated by the optimisation model. A simulation model which utilises the optimisation results is developed to assess the accuracy of the optimisation results and the potential interaction between the two methodologies. The solar district heating case study is utilised to highlight the potential of a time decomposition technique, the multiple time grids method, in reducing the computational time in the operational ...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=1842/31214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=1842/31214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 AustraliaPublisher:ASME International Li, Haowen; Yang, Huachao; Xu, Chenxuan; Cheng, Xiangnan; Yan, Jianhua; Cen, Kefa; Bo, Zheng; Ostrikov, Kostya;doi: 10.1115/1.4055152
Abstract Actuators that convert external stimuli to mechanical energy have aroused strong attention for emerging applications in robotics, artificial muscles, and other fields. However, their limited performance under harsh operating conditions evidenced by the low cycle life and hysteresis has restricted their practical applications. Here, a thermal-driven actuator based on layered metallic molybdenum disulfide (1T MoS2) nanosheets is demonstrated. The active actuator film exhibits fully reversible and highly stable (>99.296% in 2700 cycles) thermal-mechanical conversion over a wide temperature window (from −60 °C to 80 °C). Importantly, 1T MoS2 film shows a fast response with the bending rate and the recovery rate of >1.090 rad s−1 and >0.978 rad s−1, respectively. The assembled actuator can lift 20 times its weight over several centimeters for more than 200 cycles. This work, for the first time, demonstrates the thermoresponsive characteristics of 1T MoS2 in developing the thermal actuator, which may open new opportunities for various applications, such as robotics, artificial muscles, and human assist devices.
Journal of Thermal S... arrow_drop_down Journal of Thermal Science and Engineering ApplicationsArticle . 2022 . Peer-reviewedLicense: ASME Site License AgreemenData sources: CrossrefQueensland University of Technology: QUT ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4055152&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Thermal S... arrow_drop_down Journal of Thermal Science and Engineering ApplicationsArticle . 2022 . Peer-reviewedLicense: ASME Site License AgreemenData sources: CrossrefQueensland University of Technology: QUT ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4055152&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Hanlin Liu; Liangchen Lu; Dapeng Sun; Peng Liu; Yiming Li; Tianlai Li; Xingan Liu;Covering thermal screen on the front roof is one of the most general methods to improve the thermal performance of the solar greenhouse in China. Thermal screen control, however, is operator-dependent and based on empirical strategies. In order to more effectively manage the thermal screen, an optimal control method based on solar radiation and temperature difference between indoor and outdoor was established. The influence of different factors on the control of greenhouse thermal screen is systematically analyzed and the control function of the greenhouse thermal screen was calculated. The empirical control formula was established based on simulation which lasted for 62 days. As a result, the two-factor control method can significantly improve the air temperature when the thermal screen is controlled, and it can increase the average air temperature by 0.53 °C. Comparing with temperature difference, solar radiation has a greater impact on the control of thermal screen. The control method based on temperature difference and solar radiation can save 7.2% energy in winter. The research can provide reference for energy saving and automatic control of Chinese solar greenhouse.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy13030821&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy13030821&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu