- home
- Advanced Search
- Energy Research
- CN
- IT
- EC
- Renewable Energy
- Energy Research
- CN
- IT
- EC
- Renewable Energy
description Publicationkeyboard_double_arrow_right Article , Journal 2022 PortugalPublisher:Elsevier BV Authors:Celestino Rodrigues Ruivo;
Celestino Rodrigues Ruivo
Celestino Rodrigues Ruivo in OpenAIREXabier Apaolaza-Pagoaga;
Giovanni Di Nicola; Antonio Carrillo-Andrés;Xabier Apaolaza-Pagoaga
Xabier Apaolaza-Pagoaga in OpenAIREAbstract In the present work, the results of testing panel and box solar cookers are used to investigate the suitability of using the linear regression for estimation of the performance parameters of a solar cooker. The panel cooker and the box cooker were experimentally tested with glycerine and peanut oil, respectively. An exponential fitting to the plot of measured load temperature versus time is used to derive the linear regression between the instantaneous efficiency and the specific difference of temperature. The linear regression curve is compared with the corresponding experimental curve. Minor deviations are observed in the case of the panel cooker, but only in the middle part of the test. In the case of the box cooker, the deviations are very significant during the whole test. The present work presents the simplified formulation associated with the physical problem. It points out the importance of performing further research to develop a more accurate procedure. The determination of parameters based on the linear regression cannot be seen as a universal procedure applicable to all types of cookers. The opto-thermal ratio and the maximum achievable load temperature are overestimated.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.09.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 71visibility views 71 download downloads 50 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.09.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: Enrico Zambolin; Davide Del Col;Abstract The standard EN 12975-2 provides guidelines for testing solar collectors both in stationary and quasi-dynamic conditions. The second test method allows the optical efficiency of flat-plate collectors and even evacuated tube collectors to be determined by applying the extended multiple linear regression. However, in the case of tubular shape collectors, the available procedure requires a large number of data, above all for the determination of the transversal incidence angle modifier, which is the parameter describing the optical response of the absorber tube to the direct beam on the plane normal to the tube axis. Here, an improved procedure to determine the transversal incidence angle modifier is presented and validated against experimental data. For this purpose, efficiency tests in quasi-dynamic conditions have been performed following the standard EN 12975-2 on a U-tube evacuated tubular collector, using a cylindrical absorber, both with and without external CPC (compound parabolic concentrator) reflectors. The validation has been performed by comparing the efficiency curve and the curve of incidence angle modifier to the ones that are obtained by means of other available methods. The main advantages of the present new procedure are the followings: it provides a continuous curve of the incidence angle modifier and it does not require to subdivide the incidence angle range in many intervals. Therefore, it does not require a minimum number of data points for each data subset and thus it is less demanding in terms of required number of tests.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2011.11.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2011.11.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Oleg Gaidai; Christina Kalogeri; Chunyan Ji; Junliang Gao;Accurate estimation of extreme wave conditions is critical for offshore renewable energy activities and applications. Wave power is the transport of energy by wind waves, and the capture of that energy to do useful work. Wave energy converter (WEC) devices are designed to sustain the wave-induced loads that they experience during both operational and survival sea states. The extreme values of these forces are often a key cost driver for WEC designs. These extreme loads often occur during severe storms; therefore careful examination of harsh wave conditions during the device design process is needed. Consequently the development of a specific extreme condition modeling method is essential. This paper presents a novel method for estimating extreme wave statistics, based on the hourly measured wave height maxima at the location of interest. Wave measurements, analyzed in this paper, were collected at SEM-REV offshore sea station located near the coast of France, during years 2001–2010. Note that applied statistical methodology is general and can be well applied to a measured WEC response, and its technology risk assessment. Accurate estimation of extreme wave conditions is critical for offshore renewable energy activities and applications. SEM-REV is known French wave energy test site. The method, referred to as ACER method, is presented in brief detail. ACER method provides an accurate extreme value prediction, utilizing available data efficiently. In this study the estimated return level values, obtained by ACER method, are compared to the corresponding return level values obtained by Gumbel method. Based on the overall performance of the proposed method, it is concluded that the ACER method can provide a robust and accurate prediction of extreme wave height at a given location.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2016.09.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2016.09.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.01.094&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.01.094&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Hui Li; Yongbo Wang; Xiaoling Ma; Min Guo; Yan Li;Guoning Li;
Ping Cui; Shoujun Zhou; Mingzhi Yu;Guoning Li
Guoning Li in OpenAIREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.12.096&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu33 citations 33 popularity Top 10% influence Average impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.12.096&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Mengxue Song; Chonghao Qiu; Pengfei Ma; Jiawei Zhong; Zhuohan Zhang; Weiping Fang; Wenjing Song; Jianqiang Fan;Weikun Lai;
Weikun Lai
Weikun Lai in OpenAIREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2023.05.063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2023.05.063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Biying Yu; Zihao Zhao; Guangpu Zhao;Runying An;
+3 AuthorsRunying An
Runying An in OpenAIREBiying Yu; Zihao Zhao; Guangpu Zhao;Runying An;
Runying An
Runying An in OpenAIREFeihu Sun;
Ru Li; Xiaohan Peng;Feihu Sun
Feihu Sun in OpenAIREAbstract China has proposed the Renewable Portfolio Standard (RPS) policy to advance the stable development of renewable energy. The RPS requires each province to achieve a stated minimum share of renewable energy power in the total provincial power generation. However, there is an obvious mismatch between the actual capability of generating renewable power and the assigned responsibility for the share of renewable energy power based on the RPS in some provinces. Therefore, this study aims to optimize the renewable power dispatching strategy across provinces for satisfying the RPS requirements in China and to assess the corresponding pressure for each province. A renewable energy power dispatching model is developed, and an economically feasible strategy for dispatching renewable energy power in Chinese provinces in 2020–2022 was obtained. The results indicate that it is necessary to dispatch 395.2 and 140.4 TWh of hydropower and non-hydropower nationwide, respectively, in 2022 to fulfill the RPS target when the COVID-19 is effectively controlled worldwide. If COVID-19 cannot be effectively controlled, 376.6 and 127.8 TWh of hydropower and non-hydropower must be dispatched nationwide to fill the gap. Beijing, Tianjin, Shanghai, and Zhejiang are faced with a relatively high pressure under the RPS target. Finally, a path for each province to achieve its RPS target is proposed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.04.055&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 34 citations 34 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.04.055&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Authors: Laura Bellia;Francesco Minichiello;
Francesco Minichiello
Francesco Minichiello in OpenAIREFabrizio Ascione;
Fabrizio Ascione
Fabrizio Ascione in OpenAIREAbstract The European Energy Efficiency Building Directive 2002/91/CE, as well as other acts and funding programs, strongly promotes the adoption of passive strategies for buildings, in order to achieve indoor thermal comfort conditions above all in summer, so reducing or avoiding the use of air conditioning systems. In this paper, the energy performances achievable using an earth-to-air heat exchanger for an air-conditioned building have been evaluated for both winter and summer. By means of dynamic building energy performance simulation codes, the energy requirements of the systems have been analysed for different Italian climates, as a function of the main boundary conditions (such as the typology of soil, tube material, tube length and depth, velocity of the air crossing the tube, ventilation airflow rates, control modes). The earth-to-air heat exchanger has shown the highest efficiency for cold climates both in winter and summer. The possible coupling of this technology with other passive strategies has been also examined. Then, a technical-economic analysis has been carried out: this technology is economically acceptable (simple payback of 5–9 years) only in the cases of easy and cheap moving earth works; moreover, metallic tubes are not suitable. Finally, considering in summer a not fully air-conditioned building, only provided with diurnal ventilation coupled to an earth-to-air heat exchanger plus night-time ventilation, the possible indoor thermal comfort conditions have been evaluated.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2011.01.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 146 citations 146 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2011.01.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Hong Kong, China (People's Republic of)Publisher:Elsevier BV Authors: Kwong, TL; Yung, KF;handle: 10397/44000
Zinc oxide (ZnO) nanostar synthesized by simple and up-scalable microwave-assisted surfactant free hydrolysis method was applied as catalyst for biodiesel synthesis through one-step simultaneous esterification and transesterification from high free fatty acid (FFA) contaminated unrefined feedstock. It was found that ZnO nanostar catalyst was reacted with FFA to yield zinc oleate (ZnOl) as intermediate and finally became zinc glycerolate (ZnGly). With the re-deposition of ZnGly back to the ZnO nanostar catalyst at the end of the reaction, the catalyst can be easily recovered and stay active for five cycles. Furthermore, the rate of transesterification is highly promoted by the presence of FFA (6 wt.%) which makes it an efficient catalyst for low grade feedstock like waste cooking oil and crude plant oils.
Hong Kong Polytechni... arrow_drop_down Hong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2016License: CC BY NC NDFull-Text: http://hdl.handle.net/10397/44000Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2016.01.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hong Kong Polytechni... arrow_drop_down Hong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2016License: CC BY NC NDFull-Text: http://hdl.handle.net/10397/44000Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2016.01.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors:Peng Sun;
Peng Sun;Peng Sun
Peng Sun in OpenAIREPu-yan Nie;
Pu-yan Nie
Pu-yan Nie in OpenAIREBy establishing a two-stage model in which a monopolization firm first chooses R&D input and then the quantity of energy, this paper compares the different effects of two regulatory policies: feed-in tariff (FIT) and renewable portfolio standard (PRS). The results show that FIT is more efficient than RPS to increase the quantity of renewable energy (installed capacity) and to stimulate the R&D input to reduce costs. And RPS policy is more efficient to reduce the carbon emissions and to improve the consumer surplus. Apart from existing findings, we cannot obtain the accurate conclusion about the effects of social welfare under the two policies. The effects of two policies on the social welfare heavily depend on the level of negative externality.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2014.08.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 225 citations 225 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2014.08.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu