- home
- Advanced Search
- Energy Research
- 12. Responsible consumption
- 11. Sustainability
- CN
- MY
- Energy Conversion and Management
- Energy Research
- 12. Responsible consumption
- 11. Sustainability
- CN
- MY
- Energy Conversion and Management
description Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Authors: Joseph C. Lam; Kevin K.W. Wan; Dalong Liu; C.L. Tsang;Abstract An attempt was made to develop multiple regression models for office buildings in the five major climates in China – severe cold, cold, hot summer and cold winter, mild, and hot summer and warm winter. A total of 12 key building design variables were identified through parametric and sensitivity analysis, and considered as inputs in the regression models. The coefficient of determination R2 varies from 0.89 in Harbin to 0.97 in Kunming, indicating that 89–97% of the variations in annual building energy use can be explained by the changes in the 12 parameters. A pseudo-random number generator based on three simple multiplicative congruential generators was employed to generate random designs for evaluation of the regression models. The difference between regression-predicted and DOE-simulated annual building energy use are largely within 10%. It is envisaged that the regression models developed can be used to estimate the likely energy savings/penalty during the initial design stage when different building schemes and design concepts are being considered.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2010.06.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 150 citations 150 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2010.06.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Hongsheng Zhang; Hongbin Zhao; Zhenlin Li;Abstract A new air-cooled gas-steam combined cycle cogeneration system with absorption heat pump for recovering waste heat from exhausted steam of the steam turbine to achieve double effects of waste heat recovery and water saving is proposed based on a conventional water-cooled gas-steam combined cycle cogeneration system in the paper. The property criteria variation is analyzed before and after modification. In addition, the exergy analyses of primary equipments are carried out based upon the exergy analysis theory. The results demonstrate that the net generating power is approximately increased by 11,082 kW, equivalent coal consumption is reduced by 2.71 g/kWh, the net overall thermal efficiency is improved by 0.91% with 334,245 kW heating load at 100% load of the gas turbine in the modified system. Besides, the overall exergy loss is decreased by 6448 kW and exergy efficiency is improved by 0.98%. The overall property of the whole system is improved. The results show that the property reduction caused by air-cooling modification can be made up by the property improvement due to waste heat recovery. Moreover, the cooling circulating water can be saved by 1196.34 kg/s. The presented measure can not only improve performance of the system but also simultaneously achieve energy and water saving on the premise of satisfying user needs, which has a wide application potential in the water-shortage regions.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.11.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.11.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Penghua Guo; Tiantian Li; Ben Xu; Xinhai Xu; Jingyin Li;Abstract Interest in solar chimney power plant (SCPP) has seen resurgence due to the continuously increasing awareness on environmental concerns, particularly greenhouse gas emissions from fossil fuels, since the 21st century. Although remarkable advances in the understanding of SCPP have been achieved through extensive theoretical, experimental, and numerical studies with different focuses on various aspects of the SCPP technology, no industrial scale SCPP has been built. In response to these new scientific advances and challenges for commercialization, seven questions, including parameter influences, turbine design, flow and heat transfer characteristics, similarity analysis, and hybrid systems, are presented in this work. In addition, answers and current understanding are included to provide succinct links to latest knowledge and identify areas that require further research.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.12.063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 76 citations 76 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.12.063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Lin Gao; Sheng Li; Song He;Abstract The coal gasification process is one of the main exergy destruction contributors in polygeneration systems and has considerable energy saving potential. In the present study, for improving the performance of the polygeneration system, the coal-steam gasification method was employed to integrate a novel methanol-electricity polygeneration system. The results indicated that the energy efficiency of the novel system was 63.3% with a chemical-to-power output ratio of 8.4, while the energy efficiency of the traditional system is 51.3% at the optimal unreacted syngas recycling ratio. Exergy analysis results revealed that the system exergy destruction in the coal–steam gasification process is 7.5% smaller than that in the GE gasification process, and eliminating the air separation unit can reduce the exergy destruction of the system by 4.3%. Additionally, the energy saving contributions of gasification process improvement and system integration were quantitatively evaluated. When the chemical-to-power output ratio increased from 1.9 to 11.9, the energy saving contributions of the system integration and gasification process improvement ranged from 9.8% to 15.1% and 11.9% to 12.9%, respectively.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.113931&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 34 citations 34 popularity Top 10% influence Average impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.113931&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2001Publisher:Elsevier BV Authors: M.Z. Abdulmuin; T.M.I. Alamsyah; D. Mukhlishien; Teuku Meurah Indra Mahlia;Abstract Malaysia and Indonesia are the largest producers of palm oil product. The palm oil industry has contributed the biggest income to the countries for many years. Moreover, palm oils has emerged as one of the most important oils in the world’s oils and the market of fats. About 90% of palm oil is used as food related products worldwide, and the other 10% is used for basic raw material for soap. There are more than a hundred palm oil processing mills in the two countries. As such, a lot of savings can be done by using the fiber and shell from the processing wastes as an alternative fuel for electricity generation for this industry. This paper deals with energy conversion from the fiber and shell of the industry wastes as an alternative energy source for the palm oil mill industry in the two countries mentioned. The study concentrates on using the fiber and shell obtained from the processing of palm oil as fuels for the boiler instead of fossil fuel. In addition, the possibility of excess air and fuel air ratio for the fiber and shell combustion process is also discussed. Furthermore, it has been found that the shell and fiber alone can supply more steam and electricity than is required. Some palm oil mills in Malaysia and Indonesia have applied this strategy successfully. The FELDA palm oil mill, with the capacity 30–60 tons FFB/h, in Sungai Tengi, Selangor, Malaysia has been selected for this research.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2001 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0196-8904(00)00166-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 135 citations 135 popularity Top 1% influence Top 1% impulse Average Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2001 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0196-8904(00)00166-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Elsevier BV Zhigang Jiang; Zhouyang Ding; Hua Zhang; Wei Cai; Ying Liu;Remanufacturing has received extensive attention due to its advantages in material and energy saving, emission reduction and is often considered a viable approach for the realization of a circular economy. Remanufacturing ecological performance reflects the ability of an enterprise to balance economic and environmental benefits. Therefore, evaluating the remanufacturing ecological performance is of great significance for leveraging the benefits of remanufacturing and promoting the concept of sustainability and the implementation of a circular economy in the industry. To this end, a set of data-driven techniques, i.e., data envelopment analysis, R clustering and grey relational analysis, are deployed to analyze and evaluate the ecological performance of a remanufacturing process. The effectiveness and feasibility of the proposed method are illustrated via a case study of remanufacturing for hydraulic cylinder and boom cylinder. Furthermore, a number of critical factors, e.g., energy-saving rate, remanufacturing process cost and rate of remanufacturing, for end-of-life products have been identified as the key drivers impacting the remanufacturing ecological performance. So as to improve remanufacturing ecological performance, optimizing production technology, implementing lean remanufacturing and raising public acceptability over remanufacturing products are effective measures. The research results of the present work can provide support for remanufacturing enterprises to guide and improve their ecological performance and formulate better development strategies.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2019.111844&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 86 citations 86 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
download 265download downloads 265 Powered bymore_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2019.111844&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Shangeetha Ganesan; Irma Nurfitri; Mashitah M. Yusoff; Gaanty Pragas Maniam; Noor Hindryawati;Abstract For many years, the cost of production has been the main barrier in commercializing biodiesel, globally. It has been well researched and established in the literature that the cost of feedstock is the major contributor. Biodiesel producers are forced to choose between edible and non-edible feedstock. The use of edible feedstock sparks concern in terms of food security while the inedible feedstock needs additional pretreatment steps. On the other hand, the wide availability of edible feedstock guarantees the supply while the choice of non-edible results in a non-continuous or non-ready supply. With these complications in mind, this review attempts to identify possible solutions by exploring the potential of waste edible oils and waste catalysts in biodiesel preparation. Since edible oils are available and used abundantly, waste or used edible oils have the potential to provide plentiful feedstock for biodiesel. In addition, since traditional homogeneous catalysts are less competent in transesterifying waste/used oils, this review includes the possibility of heterogeneous catalysts from waste sources that are able to aid the transesterification reaction with success.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2013.04.042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 97 citations 97 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2013.04.042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: Jingyin Li; Yuan Wang; Yunfeng Wang; Penghua Guo;Abstract The optimal turbine pressure drop ratio fopt for a solar chimney power plant (SCPP) is investigated using an analytical approach and 3D numerical simulations. Results indicate that the solar radiation and ambient temperature have obvious influences to the optimal turbine pressure drop ratio fopt and an improved performance of the SCPP system leads to a high fopt. The performance comparison between the cases with different collector shapes, a circular collector and a square collector with the same area, is conducted for the first time. It is found that the m-th power law assumption can also be applied to the SCPP system with a square collector; the values of fopt for the cases with a square collector are close to those for the cases with a circular collector. A fitting equation with variables of solar radiation and ambient temperature is obtained using the simulation results of the Spanish prototype; the results reveal that the fopt of the Spanish prototype ranges from 0.90 to 0.94 under normal climate conditions. This paper provides an approach to the preliminary estimation of plant performance, and reference data for an optimal pressure drop through solar chimney turbines.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2015.10.076&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 54 citations 54 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2015.10.076&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Funded by:ARC | Discovery Early Career Re...ARC| Discovery Early Career Researcher Award - Grant ID: DE200100892Guomin Zhang; Haihua Zhang; Jiyuan Tu; Yao Tao; Yao Tao; Long Shi; Xiang Fang; Xiang Fang;Abstract A type of smart window using thermochromic glazing (TCG) is a promising technology for green buildings owing to the self-regulating feature and low-maintenance need. Its most important feature, thermo-optical properties that regulate the blockage of solar heat, is directly linked to the variation of surface temperatures. However, challenges from the inhomogeneity of thermo-optical properties, the coupled solar radiation and natural convection, and varying outdoor conditions all seriously hinder the understanding of its mechanism. In this paper, a validated Computational Fluid Dynamics (CFD) model achieves the simulation of inhomogeneous tinting of TCG by defining the thermo-optical properties of each finite volume according to the surface temperature. Solar radiation and natural convection at outdoor, indoor and the cavity are solved to reflect glazing temperature more accurately. The case studies compared six different switching temperatures in the range of 20 ∼ 42.5 °C with a transition gradient of 10 °C. Averaged meteorological data for both summer and winter, sunny days and cloudy days are selected to present realistic climate impacts. The result reveals the overall saving in transmitted solar radiation in summer and heating penalties in winter. It suggests the best switching temperatures for each climate condition. With the seasonal operation, the highest saving in solar heat gain is 20.9% when adopting a switching temperature of 25–35 °C, while the lowest saving can be negative, meaning TCG is not suitable for those climate zones. The proposed evaluation criteria help to quantify the applicability of TCG with the input of the summer/winter day ratio and sunny/cloudy ratio. The best region to apply TCG is where summer days are longer and winter solar radiation is significantly lower. The in-depth understanding of this temperature-sensitive process benefits the optimization of TCG in buildings, especially for its seasonal operation needs.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.115058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.115058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Xiaosong Su; Yang Huixian; Xuchao Wang; Zhongbing Liu; Yongqiang Luo; Ling Zhang;Abstract Photovoltaic (PV) windows are promising to reduce building net energy usage by power generation, cooling and lighting loads reduction. However, their shading effect usually leads to the rise of heating loads. A novel reversible PV window was proposed, which shared the same performance of a common one in summer but improved the solar energy utilization efficiency in winter by rotating the PV glazing into the room and reducing the heat lost to the environment. A numerical model of the proposed PV window was developed and validated with experimental data. By using the model, the thermal and electrical performance of the proposed PV window was investigated in the heating periods of Beijing and the influence of key factors on it was revealed. In comparison with a common double-glazed PV window, though the proposed one generated less electric power, its benefits from heating loads reduction outperformed the power reduction. In winter, its net electricity saving increased with the decrease of PV transparency and with the increase of glazing transmittance, and it could be 1.42–10.78, 15.67–34.57 and 18.81–39.78 kWh·m−2 lower than the reference one in naturally ventilated, non-ventilated and auto modes, respectively.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114925&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114925&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Authors: Joseph C. Lam; Kevin K.W. Wan; Dalong Liu; C.L. Tsang;Abstract An attempt was made to develop multiple regression models for office buildings in the five major climates in China – severe cold, cold, hot summer and cold winter, mild, and hot summer and warm winter. A total of 12 key building design variables were identified through parametric and sensitivity analysis, and considered as inputs in the regression models. The coefficient of determination R2 varies from 0.89 in Harbin to 0.97 in Kunming, indicating that 89–97% of the variations in annual building energy use can be explained by the changes in the 12 parameters. A pseudo-random number generator based on three simple multiplicative congruential generators was employed to generate random designs for evaluation of the regression models. The difference between regression-predicted and DOE-simulated annual building energy use are largely within 10%. It is envisaged that the regression models developed can be used to estimate the likely energy savings/penalty during the initial design stage when different building schemes and design concepts are being considered.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2010.06.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 150 citations 150 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2010.06.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Hongsheng Zhang; Hongbin Zhao; Zhenlin Li;Abstract A new air-cooled gas-steam combined cycle cogeneration system with absorption heat pump for recovering waste heat from exhausted steam of the steam turbine to achieve double effects of waste heat recovery and water saving is proposed based on a conventional water-cooled gas-steam combined cycle cogeneration system in the paper. The property criteria variation is analyzed before and after modification. In addition, the exergy analyses of primary equipments are carried out based upon the exergy analysis theory. The results demonstrate that the net generating power is approximately increased by 11,082 kW, equivalent coal consumption is reduced by 2.71 g/kWh, the net overall thermal efficiency is improved by 0.91% with 334,245 kW heating load at 100% load of the gas turbine in the modified system. Besides, the overall exergy loss is decreased by 6448 kW and exergy efficiency is improved by 0.98%. The overall property of the whole system is improved. The results show that the property reduction caused by air-cooling modification can be made up by the property improvement due to waste heat recovery. Moreover, the cooling circulating water can be saved by 1196.34 kg/s. The presented measure can not only improve performance of the system but also simultaneously achieve energy and water saving on the premise of satisfying user needs, which has a wide application potential in the water-shortage regions.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.11.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.11.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Penghua Guo; Tiantian Li; Ben Xu; Xinhai Xu; Jingyin Li;Abstract Interest in solar chimney power plant (SCPP) has seen resurgence due to the continuously increasing awareness on environmental concerns, particularly greenhouse gas emissions from fossil fuels, since the 21st century. Although remarkable advances in the understanding of SCPP have been achieved through extensive theoretical, experimental, and numerical studies with different focuses on various aspects of the SCPP technology, no industrial scale SCPP has been built. In response to these new scientific advances and challenges for commercialization, seven questions, including parameter influences, turbine design, flow and heat transfer characteristics, similarity analysis, and hybrid systems, are presented in this work. In addition, answers and current understanding are included to provide succinct links to latest knowledge and identify areas that require further research.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.12.063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 76 citations 76 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.12.063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Lin Gao; Sheng Li; Song He;Abstract The coal gasification process is one of the main exergy destruction contributors in polygeneration systems and has considerable energy saving potential. In the present study, for improving the performance of the polygeneration system, the coal-steam gasification method was employed to integrate a novel methanol-electricity polygeneration system. The results indicated that the energy efficiency of the novel system was 63.3% with a chemical-to-power output ratio of 8.4, while the energy efficiency of the traditional system is 51.3% at the optimal unreacted syngas recycling ratio. Exergy analysis results revealed that the system exergy destruction in the coal–steam gasification process is 7.5% smaller than that in the GE gasification process, and eliminating the air separation unit can reduce the exergy destruction of the system by 4.3%. Additionally, the energy saving contributions of gasification process improvement and system integration were quantitatively evaluated. When the chemical-to-power output ratio increased from 1.9 to 11.9, the energy saving contributions of the system integration and gasification process improvement ranged from 9.8% to 15.1% and 11.9% to 12.9%, respectively.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.113931&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 34 citations 34 popularity Top 10% influence Average impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.113931&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2001Publisher:Elsevier BV Authors: M.Z. Abdulmuin; T.M.I. Alamsyah; D. Mukhlishien; Teuku Meurah Indra Mahlia;Abstract Malaysia and Indonesia are the largest producers of palm oil product. The palm oil industry has contributed the biggest income to the countries for many years. Moreover, palm oils has emerged as one of the most important oils in the world’s oils and the market of fats. About 90% of palm oil is used as food related products worldwide, and the other 10% is used for basic raw material for soap. There are more than a hundred palm oil processing mills in the two countries. As such, a lot of savings can be done by using the fiber and shell from the processing wastes as an alternative fuel for electricity generation for this industry. This paper deals with energy conversion from the fiber and shell of the industry wastes as an alternative energy source for the palm oil mill industry in the two countries mentioned. The study concentrates on using the fiber and shell obtained from the processing of palm oil as fuels for the boiler instead of fossil fuel. In addition, the possibility of excess air and fuel air ratio for the fiber and shell combustion process is also discussed. Furthermore, it has been found that the shell and fiber alone can supply more steam and electricity than is required. Some palm oil mills in Malaysia and Indonesia have applied this strategy successfully. The FELDA palm oil mill, with the capacity 30–60 tons FFB/h, in Sungai Tengi, Selangor, Malaysia has been selected for this research.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2001 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0196-8904(00)00166-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 135 citations 135 popularity Top 1% influence Top 1% impulse Average Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2001 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0196-8904(00)00166-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Elsevier BV Zhigang Jiang; Zhouyang Ding; Hua Zhang; Wei Cai; Ying Liu;Remanufacturing has received extensive attention due to its advantages in material and energy saving, emission reduction and is often considered a viable approach for the realization of a circular economy. Remanufacturing ecological performance reflects the ability of an enterprise to balance economic and environmental benefits. Therefore, evaluating the remanufacturing ecological performance is of great significance for leveraging the benefits of remanufacturing and promoting the concept of sustainability and the implementation of a circular economy in the industry. To this end, a set of data-driven techniques, i.e., data envelopment analysis, R clustering and grey relational analysis, are deployed to analyze and evaluate the ecological performance of a remanufacturing process. The effectiveness and feasibility of the proposed method are illustrated via a case study of remanufacturing for hydraulic cylinder and boom cylinder. Furthermore, a number of critical factors, e.g., energy-saving rate, remanufacturing process cost and rate of remanufacturing, for end-of-life products have been identified as the key drivers impacting the remanufacturing ecological performance. So as to improve remanufacturing ecological performance, optimizing production technology, implementing lean remanufacturing and raising public acceptability over remanufacturing products are effective measures. The research results of the present work can provide support for remanufacturing enterprises to guide and improve their ecological performance and formulate better development strategies.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2019.111844&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 86 citations 86 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
download 265download downloads 265 Powered bymore_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2019.111844&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Shangeetha Ganesan; Irma Nurfitri; Mashitah M. Yusoff; Gaanty Pragas Maniam; Noor Hindryawati;Abstract For many years, the cost of production has been the main barrier in commercializing biodiesel, globally. It has been well researched and established in the literature that the cost of feedstock is the major contributor. Biodiesel producers are forced to choose between edible and non-edible feedstock. The use of edible feedstock sparks concern in terms of food security while the inedible feedstock needs additional pretreatment steps. On the other hand, the wide availability of edible feedstock guarantees the supply while the choice of non-edible results in a non-continuous or non-ready supply. With these complications in mind, this review attempts to identify possible solutions by exploring the potential of waste edible oils and waste catalysts in biodiesel preparation. Since edible oils are available and used abundantly, waste or used edible oils have the potential to provide plentiful feedstock for biodiesel. In addition, since traditional homogeneous catalysts are less competent in transesterifying waste/used oils, this review includes the possibility of heterogeneous catalysts from waste sources that are able to aid the transesterification reaction with success.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2013.04.042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 97 citations 97 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2013.04.042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: Jingyin Li; Yuan Wang; Yunfeng Wang; Penghua Guo;Abstract The optimal turbine pressure drop ratio fopt for a solar chimney power plant (SCPP) is investigated using an analytical approach and 3D numerical simulations. Results indicate that the solar radiation and ambient temperature have obvious influences to the optimal turbine pressure drop ratio fopt and an improved performance of the SCPP system leads to a high fopt. The performance comparison between the cases with different collector shapes, a circular collector and a square collector with the same area, is conducted for the first time. It is found that the m-th power law assumption can also be applied to the SCPP system with a square collector; the values of fopt for the cases with a square collector are close to those for the cases with a circular collector. A fitting equation with variables of solar radiation and ambient temperature is obtained using the simulation results of the Spanish prototype; the results reveal that the fopt of the Spanish prototype ranges from 0.90 to 0.94 under normal climate conditions. This paper provides an approach to the preliminary estimation of plant performance, and reference data for an optimal pressure drop through solar chimney turbines.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2015.10.076&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 54 citations 54 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2015.10.076&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Funded by:ARC | Discovery Early Career Re...ARC| Discovery Early Career Researcher Award - Grant ID: DE200100892Guomin Zhang; Haihua Zhang; Jiyuan Tu; Yao Tao; Yao Tao; Long Shi; Xiang Fang; Xiang Fang;Abstract A type of smart window using thermochromic glazing (TCG) is a promising technology for green buildings owing to the self-regulating feature and low-maintenance need. Its most important feature, thermo-optical properties that regulate the blockage of solar heat, is directly linked to the variation of surface temperatures. However, challenges from the inhomogeneity of thermo-optical properties, the coupled solar radiation and natural convection, and varying outdoor conditions all seriously hinder the understanding of its mechanism. In this paper, a validated Computational Fluid Dynamics (CFD) model achieves the simulation of inhomogeneous tinting of TCG by defining the thermo-optical properties of each finite volume according to the surface temperature. Solar radiation and natural convection at outdoor, indoor and the cavity are solved to reflect glazing temperature more accurately. The case studies compared six different switching temperatures in the range of 20 ∼ 42.5 °C with a transition gradient of 10 °C. Averaged meteorological data for both summer and winter, sunny days and cloudy days are selected to present realistic climate impacts. The result reveals the overall saving in transmitted solar radiation in summer and heating penalties in winter. It suggests the best switching temperatures for each climate condition. With the seasonal operation, the highest saving in solar heat gain is 20.9% when adopting a switching temperature of 25–35 °C, while the lowest saving can be negative, meaning TCG is not suitable for those climate zones. The proposed evaluation criteria help to quantify the applicability of TCG with the input of the summer/winter day ratio and sunny/cloudy ratio. The best region to apply TCG is where summer days are longer and winter solar radiation is significantly lower. The in-depth understanding of this temperature-sensitive process benefits the optimization of TCG in buildings, especially for its seasonal operation needs.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.115058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.115058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Xiaosong Su; Yang Huixian; Xuchao Wang; Zhongbing Liu; Yongqiang Luo; Ling Zhang;Abstract Photovoltaic (PV) windows are promising to reduce building net energy usage by power generation, cooling and lighting loads reduction. However, their shading effect usually leads to the rise of heating loads. A novel reversible PV window was proposed, which shared the same performance of a common one in summer but improved the solar energy utilization efficiency in winter by rotating the PV glazing into the room and reducing the heat lost to the environment. A numerical model of the proposed PV window was developed and validated with experimental data. By using the model, the thermal and electrical performance of the proposed PV window was investigated in the heating periods of Beijing and the influence of key factors on it was revealed. In comparison with a common double-glazed PV window, though the proposed one generated less electric power, its benefits from heating loads reduction outperformed the power reduction. In winter, its net electricity saving increased with the decrease of PV transparency and with the increase of glazing transmittance, and it could be 1.42–10.78, 15.67–34.57 and 18.81–39.78 kWh·m−2 lower than the reference one in naturally ventilated, non-ventilated and auto modes, respectively.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114925&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114925&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu