Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
  • Access
    Clear
  • Type
  • Year range
    Clear
  • Field of Science
  • Funder
  • SDG [Beta]
  • Country
    Clear
  • Language
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
128,961 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • 2016-2025
  • Open Access
  • Restricted
  • Open Source
  • CN
  • GB
  • PL
  • KG

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Grubler, Arnulf; Wilson, Charlie; Bento, Nuno; Boza-Kiss, Benigna; +17 Authors

    The database presents the scenario results of an exploratory research, carried out at the International Institute for Applied Systems Analysis (IIASA): the Low Energy Demand (LED) study (Grubler et al. 2018). The LED scenario explored how far transformative changes that combine technological changes, end-use efficiency, and new business models for energy service provision can lead for lowering energy demand, and how these changes could drive deep decarbonisation in the long-term. The scenario development methodology included a bottom-up analysis of how currently existing, though often embryonic, social, institutional, and technological trends could become mainstream with resulting step-changes in efficiency and resulting lowered energy demand. The bottom-up demand estimations were then further explored for their supply side and emissions and climate implications with a top-down modeling framework drawing on the Shared Socioeconomic Pathways (SSP) framework (Riahi et al. 2017). The results show that global final energy demands can be drastically reduced in 2050, to around 245 EJ/yr, or 40% lower than today, whilst significantly expanding human welfare and reducing global development inequalities. According to the knowledge of the authors, LED is the lowest long-term global energy demand scenario ever published. The LED scenario meets the 1.5°C climate target in 2100 without overshoot and keeps the global mean temperature increase below 1.5°C with a probability of more than 60%, without requiring controversial negative emission technologies, such as bioenergy with carbon capture and storage (BECCS), that figure prominently in the emission scenario literature (Rogelj et al. 2015, Anderson and Peters 2016, Creutzig et al. 2016, Smith et al. 2016). Furthermore, the beneficial impacts of the LED scenario on a range of other sustainable development goals are also shown, demonstrating that efficiency of energy services provision plays a critical role in reaching low-energy futures without compromising increased living standards in the Global South, while at the same time reducing adverse social and environmental impacts of climate mitigation strategies that focus predominantly on large-scale supply-side transformations. The research is published in a peer-reviewed article in Nature Energy (Grubler et al. 2018) with ample supplementary information. Water consumption and withdrawal data are published in Parkinson et al. (2018). The data is available for download from the LED Database. The content of the LED database and any derived analysis may only be used for non-commercial scientific publications, articles, educational purposes, figures and data tables provided that the source reference pursuant to section 'Required citation' is included and all relevant publications are correctly cited. Partial reproductions of the database content may be stored in online repositories, if this is necessary to comply with a journal's data archiving and access requirements. Such reproductions must be limited to the scope of the manuscript in question, and must include a hyperlink to the source database hosted at https://db1.ene.iiasa.ac.at/LEDDB and the download date from the source database. However, any wholesale duplication, translation, reworking, processing, arrangement, transformation, or reproduction through the internet or any other channels, of the https://db1.ene.iiasa.ac.at/LEDDEB for commercial or non-commercial purposes is not permitted without the explicit written approval of IIASA.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ZENODO
    Dataset . 2018
    Data sources: Datacite
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ZENODO
    Dataset . 2018
    Data sources: Datacite
    ZENODO
    Dataset . 2018
    Data sources: ZENODO
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility27
    visibilityviews27
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ZENODO
      Dataset . 2018
      Data sources: Datacite
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ZENODO
      Dataset . 2018
      Data sources: Datacite
      ZENODO
      Dataset . 2018
      Data sources: ZENODO
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Horton, Tammy; Serpell-Stevens, Amanda; Domedel, Georgina Valls; Bett, Brian James;

    These data record the results of processing otter trawl catches (OTSB14; Merrett & Marshall, 1980) from the National Oceanography Centre (NOC, UK) long-term study of the Porcupine Abyssal Plain (PAP), including the PAP-Sustained Observatory time-series. The data concern catches recovered during the RRS Charles Darwin Cruise 158 in 2004. Lampitt, R.S. et al. (2010). RRS Charles Darwin Cruise 158, 15-28 Jun 2004, Vigo-Fairlie. Ocean biogeochemistry. Southampton, UK: National Oceanography Centre, Southampton, 53 pp. (National Oceanography Centre Southampton Cruise Report, No. 55).| https://www.bodc.ac.uk/resources/inventories/cruise_inventory/reports/cd158.pdf

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Global Biodiversity ...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Global Biodiversity Information Facility
    Dataset . 2024
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Global Biodiversity ...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Global Biodiversity Information Facility
      Dataset . 2024
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Hemmings, Peter Jonathan;
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Surrey Research Insi...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Surrey Research Insight
    Dataset . 2024
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Surrey Research Insi...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Surrey Research Insight
      Dataset . 2024
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Shuert, Courtney; Halsey, Lewis; Pomeroy, Patrick; Twiss, Sean;

    1. Judicious management of energy can be invaluable for animal survival and reproductive success. Capital breeding mammals typically transfer energy to their young at extremely high rates while undergoing prolonged fasting, making lactation a tremendously energy demanding period. Effective management of the competing demands of the mother’s energy needs and those of her offspring is presumably fundamental to maximising lifetime reproductive success. 2. How does the mother maximise her chances of successfully rearing her pup, by ensuring that both her pup and herself have sufficient energy during this ‘energetic fast’? While energy management models were first discussed in the 1990s, application of this analytical technique is still very much in its infancy. Recent work suggests that a broad range of species exhibit ‘energy compensation’; during periods when they expend more energy on activity, their bodies partially compensate by reducing background (basal) metabolic rate as an adaptation to limit overall energy expenditure. However, the value of energy management models in understanding animal ecology is presently unclear. 3. We investigate whether energy management models provide insights into the breeding strategy of phocid seals. Not only do we expect lactating seals to display energy compensation because of their breeding strategy of high energy transfer while fasting, but we anticipate that mothers exhibiting a lack of energy compensation are less likely to rear offspring successfully. 4. On the Isle of May in Scotland, we collected heart rate data as a proxy for energy expenditure in 52 known individual grey seal (Halichoerus grypus) mothers, repeatedly across three years of breeding. We provide evidence that grey seal mothers typically exhibit energy compensation during lactation by down-regulating their background metabolic rate to limit daily energy expenditure during periods when other energy costs are relatively high. However, individuals that fail to energy compensate during the lactation period are more likely to end lactation earlier than expected. 5. Our study is the first to demonstrate the importance of energy compensation to an animal’s reproductive expenditure. Moreover, our multi-seasonal data indicate that environmental stressors may reduce the capacity of some individuals to follow the energy compensation strategy.  The data included here represents a summary of 5,219 segments of collected heart rate data for 51 known female grey seals ('ID') during their lactation period on the Isle of May, Scotland using animal-borne heart rate monitors. In short, these data summarize daily measures of minimum heart rate ('min_fH'; minimum value of mean heart rate, a proxy for background energy expenditures), mean heart rate ('mean_fH'; a proxy for daily energy expenditure), and auxiliary heart rate ('d.aux_fH', mean heart rate minus minimum heart rate; a proxy for auxiliary energy expenditure) in order to quantify energy management strategies during lactation across three separate breeding seasons ('Year') both within- and across-individuals. These heart rate metrics for each seal were determined by analysing multiple 15-min heart rate segments across a day ('n_seg') after processing and filtering of raw interbeat-interval data to remove any measurement artifacts. All heart rate data were collected in real time across the breeding colony and logged on a portable base station computer. More information heart rate data collection and filtering can be found in the main text and supplement of JAE-2019-00935.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2020
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2020
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2020
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility17
    visibilityviews17
    downloaddownloads12
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2020
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2020
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2020
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Dongqin Xia; Yazhou Li; Tingting Zhang; Yanling He; +2 Authors

    Public acceptance (PA) is nowadays essential for the sustainable development of nuclear energy and becomes animportant issue for research community. Although some studies had investigated the factors influencing PA ofnuclear energy, few researches were founded to verify the impact of cultural values. This research proposed atheoretical model to explore how individualism and collectivism, as an important dimension of culture, moderated the relevance between perceived risk/benefit and PA. A questionnaire survey was conducted nationwidein China whose number of under-construction nuclear power plants ranks first in the world, and received 887valid responses. The analysis of moderating effect showed individualism weakened the relevance betweenperceived benefit and PA, whereas collectivism had no significant moderating role on the relevance betweenperceived benefit and PA. Collectivism strengthened the relevance between perceived risk and PA, whereasindividualism had no significant moderating role on the relevance between perceived risk and PA. Moreover,perceived benefit was confirmed to be a more important predictor for PA than perceived risk. The abovementioned findings could not only provide new insights that help to understand the difference in energy policiesbetween China and the developed countries, but also provide new reference and guidance for the future policymaking. Public acceptance (PA) is nowadays essential for the sustainable development of nuclear energy and becomes animportant issue for research community. Although some studies had investigated the factors influencing PA ofnuclear energy, few researches were founded to verify the impact of cultural values. This research proposed atheoretical model to explore how individualism and collectivism, as an important dimension of culture, moderated the relevance between perceived risk/benefit and PA. A questionnaire survey was conducted nationwidein China whose number of under-construction nuclear power plants ranks first in the world, and received 887valid responses. The analysis of moderating effect showed individualism weakened the relevance betweenperceived benefit and PA, whereas collectivism had no significant moderating role on the relevance betweenperceived benefit and PA. Collectivism strengthened the relevance between perceived risk and PA, whereasindividualism had no significant moderating role on the relevance between perceived risk and PA. Moreover,perceived benefit was confirmed to be a more important predictor for PA than perceived risk. The abovementioned findings could not only provide new insights that help to understand the difference in energy policiesbetween China and the developed countries, but also provide new reference and guidance for the future policymaking.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.57760/sc...
    Dataset . 2022
    License: CC BY NC
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.57760/sc...
      Dataset . 2022
      License: CC BY NC
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Mills, Maria; Riutta, Terhi; Malhi, Yadvinder; Ewers, Robert M; +1 Authors

    Description: The eddy covariance technique was used to record continuous, non-invasive measurements of CO2, H2O and energy exchange between the ecosystem and the atmosphere. The measuring system consists of a semi-open path infrared gas analyser LI-7200 (LI-COR, USA), and a CSAT3 Sonic Anemometer (Campbell Scientific, USA) at a measuring height of 52 m over a canopy height of ~25 m. Data were recorded at a frequency of 20 Hz that was treated using the post-processing software EddyPro® (v.7.0.6; www.licor.com/eddypro) to compute fluxes for each 30-minute averaging period. To treat the raw fluxes, primary data processing steps were applied, including spike removal (Vickers, 1997 J Atmos Ocean Technol), coordinate rotation, block averaging detrending of CO2, H2O and sonic temperature, time lag compensation using covariance maximisation detection method, random uncertainty estimation (Finkelstein et al. 2001 Journal of Geophysical Research Atmospheres), computation of turbulent fluxes and mean fluxes, spectral corrections (Moncrieff et al. 1997 J Hydrol Amst) using correction of low-pass filtering effects, planar fit rotation (Wilczak et al. 2001 Boundary Layer Meteorol) and quality flagging policy (Göckede et al. 2006 Boundary Layer Meteorol). Eddy covariance meteorological data from above and below canopy is available at DOI 10.5281/zenodo.3888374. Cells with -9999 represent not enough data collected, which can be regarded as NA. This data has been collected over a heavily logged landscape between 2012 - 2018, please note 2016 was removed from this dataset. Before 2015, the landscape was ~10 years recovering from it's previous round of logging (four times logged). During 2015 the landscape was salvaged logged, removing 75% of tree stand basal area. The first data sheet, named "Raw_data" contains all raw fluxes that have been treated by EddyPro, which have not been filtered or quality controlled. The second sheet, named "Daily_fluxes" contains daily mean fluxes of net ecosystem CO2 exchange (NEE), ecosystem respirationn (Reco) and gross primary productivity and their associated standard errors. Net ecosystem CO2 exchange (NEE) was calculated by adding the estimated CO2 storage flux to the observed CO2 flux. Data was subjecto quality control including the removal of quality flags 4 and 5 (Göckede et al. 2006 Boundary Layer Meteorol) and the application of a mean u* threshold of >0.29 m s-1 to the dataset, as established using the package "REddyProc" (v.1.2; (Wultzer et al. 2019 Biogeosciences)) in based on the Moving Point Method (Reichstein et al. 2005, GCB). Data was subsequently gap filled and partitioned, as descripted within the variable methods of this sheet. This data was part of an analysis of carbon fluxes within three periods of data collection: in 2012 – 2013, which captured the four-times logged ecosystem ~10 years after its previous round of logging, in 2015 during a new round of active salvage logging, and in 2017 – 2018 when the ecosystem was recovery 2-3 years after the salvage logging. Days with large standard errors for Reco (> ± 5 µmol m−2 s−1) were deemed as bad quality and removed from the dataset and we used only days that had four or more observed half-hourly values of NEE. Of the final dataset , 29.5% of the half-hourly values are original observed fluxes, and 70.5% gap-filled. Of the 455 days remaining after all filtering processes were applied, 65 days were during the 10-years recovery phase (2012-2013), 100 during the active salvage logging (2015) and 290 during the 2-3 years recovery from active salvage logging phase (2017-2018). Project: This dataset was collected as part of the following SAFE research project: Changing carbon dioxide and water budgets from deforestation and habitat modification XML metadata: GEMINI compliant metadata for this dataset is available here Files: This consists of 1 file: SAFE_EC_byYear.xlsx SAFE_EC_byYear.xlsx This file contains dataset metadata and 6 data tables: Raw_data_2012_2013 (described in worksheet Raw_data_2012_2013) Description: EddyPro output of eddy covariance data collected at 52m at the top of the flux tower. Number of fields: 105 Number of data rows: 24213 Fields: Location: SAFE flux tower location name, as in the SAFE Gazetteer (Field type: location) date: Date of the end of the averaging period (Field type: date) time: Time of the end of the averaging period (Field type: time) DOY: decimal day of year (Field type: numeric) daytime: Daytime or nightime, 1 = daytime, 0 = nighttime (Field type: numeric) file_records: Number of valid records found in the raw file (or set of raw files) (Field type: numeric) used_records: Number of valid records used for current the averaging period (Field type: numeric) Tau: Corrected momentum flux (Field type: numeric) qc_Tau: Quality flag for momentum flux, Göckede et al., 2006: A system based on 5 quality grades. "0" is best, "5" is worst (Field type: numeric) rand_err_Tau: Random error for momentum flux, if selected (Field type: numeric) H: Corrected sensible heat flux (Field type: numeric) qc_H: Quality flag for sensible heat flux, Göckede et al., 2006: A system based on 5 quality grades. "0" is best, "5" is worst (Field type: numeric) rand_err_H: Random error for momentum flux, if selected (Field type: numeric) LE: Corrected latent heat flux (Field type: numeric) qc_LE: Quality flag of latent heat flux based on Göckede et al., 2006: A system based on 5 quality grades. "0" is best, "5" is worst (Field type: numeric) rand_err_LE: Random error for latent heat flux, if selected (Field type: numeric) co2_flux: CO2 flux (Field type: numeric) qc_co2_flux: Quality flag for CO2 flux, Göckede et al., 2006: A system based on 5 quality grades. "0" is best, "5" is worst (Field type: numeric) rand_err_co2_flux: Random error of CO2 flux (Field type: numeric) h2o_flux: H2O flux (Field type: numeric) qc_h2o_flux: Quality flag of H20 flux, Göckede et al., 2006: A system based on 5 quality grades. "0" is best, "5" is worst (Field type: numeric) rand_err_h2o_flux: Random error of CO2 flux (Field type: numeric) H_strg: Estimate of storage sensible heat flux (Field type: numeric) LE_strg: Estimate of storage latent heat flux (Field type: numeric) co2_strg: Estimate of storage CO2 flux (Field type: numeric) h2o_strg: Estimate of storage H20 flux (Field type: numeric) co2_v.adv: Estimate of vertical advection flux of CO2 (Field type: numeric) h2o_v.adv: Estimate of vertical advection flux of H20 (Field type: numeric) co2_molar_density: Measured or estimated molar density of gas (Field type: numeric) co2_mole_fraction: Measured or estimated mole fraction of gas (Field type: numeric) co2_mixing_ratio: Measured or estimated mixing ratio of gas (Field type: numeric) co2_time_lag: Time lag used to synchronize gas time series (Field type: numeric) co2_def_timelag: Flag: whether the reported time lag is the default (1) or calculated (0) (Field type: numeric) h2o_molar_density: Measured or estimated molar density of gas (Field type: numeric) h2o_mole_fraction: Measured or estimated mole fraction of gas (Field type: numeric) h2o_mixing_ratio: Measured or estimated mixing ratio of gas (Field type: numeric) h2o_time_lag: Time lag used to synchronize gas time series (Field type: numeric) h2o_def_timelag: Flag: whether the reported time lag is the default (1) or calculated (0) (Field type: numeric) sonic_temperature: Mean temperature of ambient air as measured by the anemometer (Field type: numeric) air_temperature: Mean temperature of ambient air, either calculated from high frequency air temperature readings, or estimated from sonic temperature (Field type: numeric) air_pressure: Mean pressure of ambient air, either calculated from high frequency air pressure readings, or estimated based on site altitude (barometric pressure) (Field type: numeric) air_density: Density of ambient air (Field type: numeric) air_heat_capacity: Specific heat at constant pressure of ambient air (Field type: numeric) air_molar_volume: Molar volume of ambient air (Field type: numeric) ET: Evapotranspiration flux (Field type: numeric) water_vapor_density: Ambient mass density of water vapor (Field type: numeric) e: Ambient water vapor partial pressure (Field type: numeric) es: Ambient water vapor partial pressure at saturation (Field type: numeric) specific_humidity: Ambient specific humidity on a mass basis (Field type: numeric) RH: Ambient relative humidity (Field type: numeric) VPD: Ambient water vapor pressure deficit (Field type: numeric) Tdew: Ambient dew point temperature (Field type: numeric) u_unrot: Wind component along the u anemometer axis (Field type: numeric) v_unrot: Wind component along the v anemometer axis (Field type: numeric) w_unrot: Wind component along the w anemometer axis (Field type: numeric) u_rot: Rotated u wind component (mean wind speed) (Field type: numeric) v_rot: Rotated v wind component (should be zero) (Field type: numeric) w_rot: Rotated w wind component (should be zero) (Field type: numeric) wind_speed: Mean wind speed (Field type: numeric) max_wind_speed: Maximum instantaneous wind speed (Field type: numeric) wind_dir: Direction from which the wind blows, with respect to Geographic or Magnetic north (Field type: numeric) yaw: First rotation angle (Field type: numeric) pitch: Second rotation angle (Field type: numeric) u.: Friction velocity (Field type: numeric) TKE: Turbulent kinetic energy (Field type: numeric) L: Monin-Obukhov length (Field type: numeric) X.z.d..L: Monin-Obukhov stability parameter - (z-d)/L (Field type: numeric) bowen_ratio: Sensible heat flux to latent heat flux ratio (Field type: numeric) T.: Scaling temperature (Field type: numeric) model: Model for footprint estimation, 1- Kljun et al. (2004): A crosswind integrated parameterization of footprint estimations obtained with a 3D Lagrangian model by means of a scaling procedure.2 - Kormann and Meixner (2001): A crosswind integrated model based on the solution of the two dimensional advection-diffusion equation given by van Ulden (1978) and others for power-law profiles in wind velocity and eddy diffusivity, 3 - Hsieh et al. (2000): A crosswind integrated model based on the former model of Gash (1986) and on simulations with a Lagrangian stochastic model. (Field type: numeric) x_peak: Along-wind distance providing <1% contribution to turbulent fluxes (Field type: numeric) x_offset: Along-wind distance providing the highest (peak) contribution to turbulent fluxes (Field type: numeric) x_10.: Along-wind distance providing 10% (cumulative) contribution to turbulent fluxes (Field type: numeric) x_30.: Along-wind distance providing 30% (cumulative) contribution to turbulent fluxes (Field type: numeric) x_50.: Along-wind distance providing 50% (cumulative) contribution to turbulent fluxes (Field type: numeric) x_70.: Along-wind distance providing 70% (cumulative) contribution to turbulent fluxes (Field type: numeric) x_90.: Along-wind distance providing 90% (cumulative) contribution to turbulent fluxes (Field type: numeric) un_Tau: Uncorrected momentum flux (Field type: numeric) Tau_scf: Spectral correction factor for momentum flux (Field type: numeric) un_H: Uncorrected sensible heat flux (Field type: numeric) H_scf: Spectral correction factor for sensible heat flux (Field type: numeric) un_LE: Uncorrected latent heat flux (Field type: numeric) LE_scf: Spectral correction factor for latent heat flux (Field type: numeric) un_co2_flux: Uncorrected gas flux (Field type: numeric) co2_scf: Spectral correction factor for gas flux (Field type: numeric) un_h2o_flux: Uncorrected gas flux (Field type: numeric) h2o_scf: Spectral correction factor for gas flux (Field type: numeric) spikes_hf: Hard flags for individual variables for spike test (Field type: numeric) amplitude_resolution_hf: Hard flags for individual variables for amplitude resolution (Field type: numeric) drop_out_hf: Hard flags for individual variables for drop-out test (Field type: numeric) absolute_limits_hf: Hard flags for individual variables for absolute limits (Field type: numeric) skewness_kurtosis_hf: Hard flags for individual variables for skewness and kurtosis (Field type: numeric) skewness_kurtosis_sf: Soft flags for individual variables for skewness and kurtosis test (Field type: numeric) discontinuities_hf: Hard flags for individual variables for discontinuities test (Field type: numeric) discontinuities_sf: Soft flags for individual variables for discontinuities test (Field type: numeric) timelag_hf: Hard flags for gas concentration for time lag test (Field type: numeric) timelag_sf: Soft flags for gas concentration for time lag test (Field type: numeric) attack_angle_hf: Hard flags for gas concentration for time lag test (Field type: numeric) non_steady_wind_hf: Soft flags for gas concentration for time lag test (Field type: numeric) u_spikes: Number of spikes detected and eliminated for rotated u wind component (Field type: numeric) v_spikes: Number of spikes detected and eliminated forrotated v wind component (Field type: numeric) w_spikes: Number of spikes detected and eliminated for rotated w wind component (Field type: numeric) ts_spikes: Number of spikes detected and eliminated for ts variable (Field type: numeric) co2_spikes: Number of spikes detected and eliminated for co2 variable (Field type: numeric) h2o_spikes: Number of spikes detected and eliminated for h2o variable (Field type: numeric) Raw_data_2014 (described in worksheet Raw_data_2014) Description: EddyPro output of eddy covariance data collected at 52m at the top of the flux tower. There is a significant data gap, with some intermittent records available during the daytime, between 17/2/2014-17/06/2014 due to the problems in the power supply. Number of fields: 105 Number of data rows: 17520 Fields: Location: SAFE flux tower location name, as in the SAFE Gazetteer (Field type: location) date: Date of the end of the averaging period (Field type: date) time: Time of the end of the averaging period (Field type: time) DOY: decimal day of year (Field type: numeric) daytime: Daytime or nightime, 1 = daytime, 0 = nighttime (Field type: numeric) file_records: Number of valid records found in the raw file (or set of raw files) (Field type: numeric) used_records: Number of valid records used for current the averaging period (Field type: numeric) Tau: Corrected momentum flux (Field type: numeric) qc_Tau: Quality flag for momentum flux, Göckede et al., 2006: A system based on 5 quality grades. "0" is best, "5" is worst (Field type: numeric) rand_err_Tau: Random error for momentum flux, if selected (Field type: numeric) H: Corrected sensible heat flux (Field type: numeric) qc_H: Quality flag for sensible heat flux, Göckede et al., 2006: A system based on 5 quality grades. "0" is best, "5" is worst (Field type: numeric) rand_err_H: Random error for momentum flux, if selected (Field type: numeric) LE: Corrected latent heat flux (Field type: numeric) qc_LE: Quality flag of latent heat flux based on Göckede et al., 2006: A system based on 5 quality grades. "0" is best, "5" is worst (Field type: numeric) rand_err_LE: Random error for latent heat flux, if selected (Field type: numeric) co2_flux: CO2 flux (Field type: numeric) qc_co2_flux: Quality flag for CO2 flux, Göckede et al., 2006: A system based on 5 quality grades. "0" is best, "5" is worst (Field type: numeric) rand_err_co2_flux: Random error of CO2 flux (Field type: numeric) h2o_flux: H2O flux (Field type: numeric) qc_h2o_flux: Quality flag of H20 flux, Göckede et al., 2006: A system based on 5 quality grades. "0" is best,

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2022
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2022
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2022
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility128
    visibilityviews128
    downloaddownloads16
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2022
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2022
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2022
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Moreira, Francisco; Martins, Ricardo C.; Catry, Ines; D'Amico, Marcello;

    1. Anthropogenic structures are mainly known to have negative impacts on wildlife populations but sometimes arethey can be beneficial. Power lines are a main driver of bird mortality through collision or electrocution, but electricity pylons are also commonly used for nest building by some species. Birds and nests cause power outages that need to be tackled by electricity companies. However, the use of pylons by threatened species provides an opportunity for conservation purposes. 2. In this study, we described an empirical modelling approach to predict the circumstances under which circumstances nesting birds use electricity pylons are used by nesting birds. We focused on white storks Ciconia ciconia, a species that has been increasingly using electricity pylons for nesting across Europe. 3. In a country-level census in Portugal, we found a total of 1348 white stork nests in 668 of the 8680 very high-tension power line pylons occurring in the distribution range of this colonial species, with spatial clustering in pylon occupation up to a distance of 30 km. The number of nests in each used pylon ranged from 1 to 21 (mean±SD= 2.2±2.06). 4. The main drivers of pylon use by nesting storks were distance to major feeding areas (rice fields, landfills and large wetlands), with more intensive use closer to these features, followed by land cover type surrounding each pylon. Pylon type and age, and stork population density in the region, had comparatively less importance. 5. Synthesis and applications. Our approach can be used to plan both for species conservation and minimising damage to infrastructures. For power lines, we outline: (i) planning power line routes to take account of the probability of pylon use; (ii) applying nesting deterrent devices (to reduce bird mortality and power outage risk) and providing nesting platforms (to promote bird use) on suitable pylons; and (iii) selecting adequate pylon types to promote or inhibit nesting. White stork nests in power line pylons and associated variablesNumber of nests of white storks in very high tension power line pylons in Portugal, in 2007, and associated variables to model the drivers of pylon use. Information on nest occurrence collected in the field, through aerial surveys. Explanatory variables from land cover information data, stork censuses and information provided by the power line company (REN).Data for storks paper.xlsx

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2019
    License: CC 0
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    B2FIND
    Dataset . 2018
    Data sources: B2FIND
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    EASY
    Dataset . 2018
    Data sources: EASY
    DRYAD
    Dataset . 2019
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility19
    visibilityviews19
    downloaddownloads8
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2019
      License: CC 0
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      B2FIND
      Dataset . 2018
      Data sources: B2FIND
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      EASY
      Dataset . 2018
      Data sources: EASY
      DRYAD
      Dataset . 2019
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Goddard, Nigel; Kilgour, Jonathan; Pullinger, Martin; Arvind, D.K; +14 Authors

    The IDEAL Household Energy Dataset comprises data from 255 UK homes. Alongside electric and gas data from each home the corpus contains individual room temperature and humidity readings and temperature readings from the boiler. For 39 of the 255 homes more detailed data is available, including individual electrical appliance use data, and data on individual radiators. Sensor data is augmented by anonymised survey data and metadata including occupant demographics, self-reported energy awareness and attitudes, and building, room and appliance characteristics. The 00README.txt download summarizes the contents of the other files. documentation.zip - dataset documentation; metadata_and_surveys.zip - information about participating households and responses to surveys that were taken; coding.zip - example code for working with the dataset in Python; household_sensors.zip - Household-level sensor data; room_and_appliance_sensors.zip - Room and appliance level sensor data; auxiliary.zip - Other sensor data.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Edinburgh DataSharearrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Edinburgh DataShare
    Dataset . 2020
    License: CC BY
    Edinburgh DataShare
    Dataset . 2021
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    2
    citations2
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Edinburgh DataSharearrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Edinburgh DataShare
      Dataset . 2020
      License: CC BY
      Edinburgh DataShare
      Dataset . 2021
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Chua, Kenny; Liew, Jia Huan; Wilkinson, Clare; Ahmad, Amirrudin; +2 Authors

    Studies have shown that food chain length is governed by interactions between species richness, ecosystem size, and resource availability. While redundant trophic links may buffer impacts of species loss on food chain length, higher extinction risks associated with predators may result in bottom-heavy food webs with shorter food chains. The lack of consensus in earlier empirical studies relating species richness and food chain length reflects the need to account robustly for the factors described above. In response to this, we conducted an empirical study to elucidate impacts of land-use change on food chain length in tropical forest streams of Southeast Asia. Despite species losses associated with forest loss at our study areas, results from amino acid isotope analyses showed that food chain length was not linked to land use, ecosystem size or resource availability. Correspondingly, species losses did not have a significant effect on occurrence likelihoods of all trophic guilds except herbivores. Impacts of species losses were likely buffered by high levels of initial trophic redundancy, which declined with canopy cover. Declines in trophic redundancy were most drastic amongst invertivorous fishes. Declines in redundancy across trophic guilds were also more pronounced in wider and more resource-rich streams. While our study found limited evidence for immediate land-use impacts on stream food chains, the potential loss of trophic redundancy in the longer term implies increasing vulnerability of streams to future perturbations, as long as land conversion continues unabated.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2021
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2021
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility19
    visibilityviews19
    downloaddownloads15
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2021
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2021
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Zhang, Jie; Wu, Tongwen; Shi, Xueli; Zhang, Fang; +6 Authors

    Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.CMIP.BCC.BCC-ESM1.amip' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The BCC-ESM 1 climate model, released in 2017, includes the following components: atmos: BCC_AGCM3_LR (T42; 128 x 64 longitude/latitude; 26 levels; top level 2.19 hPa), atmosChem: BCC-AGCM3-Chem, land: BCC_AVIM2, ocean: MOM4 (1/3 deg 10S-10N, 1/3-1 deg 10-30 N/S, and 1 deg in high latitudes; 360 x 232 longitude/latitude; 40 levels; top grid cell 0-10 m), seaIce: SIS2. The model was run by the Beijing Climate Center, Beijing 100081, China (BCC) in native nominal resolutions: atmos: 250 km, atmosChem: 250 km, land: 250 km, ocean: 50 km, seaIce: 50 km.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ World Data Center fo...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    World Data Center for Climate
    Dataset . 2023
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ World Data Center fo...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      World Data Center for Climate
      Dataset . 2023
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
128,961 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Grubler, Arnulf; Wilson, Charlie; Bento, Nuno; Boza-Kiss, Benigna; +17 Authors

    The database presents the scenario results of an exploratory research, carried out at the International Institute for Applied Systems Analysis (IIASA): the Low Energy Demand (LED) study (Grubler et al. 2018). The LED scenario explored how far transformative changes that combine technological changes, end-use efficiency, and new business models for energy service provision can lead for lowering energy demand, and how these changes could drive deep decarbonisation in the long-term. The scenario development methodology included a bottom-up analysis of how currently existing, though often embryonic, social, institutional, and technological trends could become mainstream with resulting step-changes in efficiency and resulting lowered energy demand. The bottom-up demand estimations were then further explored for their supply side and emissions and climate implications with a top-down modeling framework drawing on the Shared Socioeconomic Pathways (SSP) framework (Riahi et al. 2017). The results show that global final energy demands can be drastically reduced in 2050, to around 245 EJ/yr, or 40% lower than today, whilst significantly expanding human welfare and reducing global development inequalities. According to the knowledge of the authors, LED is the lowest long-term global energy demand scenario ever published. The LED scenario meets the 1.5°C climate target in 2100 without overshoot and keeps the global mean temperature increase below 1.5°C with a probability of more than 60%, without requiring controversial negative emission technologies, such as bioenergy with carbon capture and storage (BECCS), that figure prominently in the emission scenario literature (Rogelj et al. 2015, Anderson and Peters 2016, Creutzig et al. 2016, Smith et al. 2016). Furthermore, the beneficial impacts of the LED scenario on a range of other sustainable development goals are also shown, demonstrating that efficiency of energy services provision plays a critical role in reaching low-energy futures without compromising increased living standards in the Global South, while at the same time reducing adverse social and environmental impacts of climate mitigation strategies that focus predominantly on large-scale supply-side transformations. The research is published in a peer-reviewed article in Nature Energy (Grubler et al. 2018) with ample supplementary information. Water consumption and withdrawal data are published in Parkinson et al. (2018). The data is available for download from the LED Database. The content of the LED database and any derived analysis may only be used for non-commercial scientific publications, articles, educational purposes, figures and data tables provided that the source reference pursuant to section 'Required citation' is included and all relevant publications are correctly cited. Partial reproductions of the database content may be stored in online repositories, if this is necessary to comply with a journal's data archiving and access requirements. Such reproductions must be limited to the scope of the manuscript in question, and must include a hyperlink to the source database hosted at https://db1.ene.iiasa.ac.at/LEDDB and the download date from the source database. However, any wholesale duplication, translation, reworking, processing, arrangement, transformation, or reproduction through the internet or any other channels, of the https://db1.ene.iiasa.ac.at/LEDDEB for commercial or non-commercial purposes is not permitted without the explicit written approval of IIASA.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ZENODO
    Dataset . 2018
    Data sources: Datacite
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ZENODO
    Dataset . 2018
    Data sources: Datacite
    ZENODO
    Dataset . 2018
    Data sources: ZENODO
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility27
    visibilityviews27
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ZENODO
      Dataset . 2018
      Data sources: Datacite
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ZENODO
      Dataset . 2018
      Data sources: Datacite
      ZENODO
      Dataset . 2018
      Data sources: ZENODO
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Horton, Tammy; Serpell-Stevens, Amanda; Domedel, Georgina Valls; Bett, Brian James;

    These data record the results of processing otter trawl catches (OTSB14; Merrett & Marshall, 1980) from the National Oceanography Centre (NOC, UK) long-term study of the Porcupine Abyssal Plain (PAP), including the PAP-Sustained Observatory time-series. The data concern catches recovered during the RRS Charles Darwin Cruise 158 in 2004. Lampitt, R.S. et al. (2010). RRS Charles Darwin Cruise 158, 15-28 Jun 2004, Vigo-Fairlie. Ocean biogeochemistry. Southampton, UK: National Oceanography Centre, Southampton, 53 pp. (National Oceanography Centre Southampton Cruise Report, No. 55).| https://www.bodc.ac.uk/resources/inventories/cruise_inventory/reports/cd158.pdf

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Global Biodiversity ...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Global Biodiversity Information Facility
    Dataset . 2024
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Global Biodiversity ...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Global Biodiversity Information Facility
      Dataset . 2024
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Hemmings, Peter Jonathan;
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Surrey Research Insi...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Surrey Research Insight
    Dataset . 2024
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Surrey Research Insi...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Surrey Research Insight
      Dataset . 2024
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Shuert, Courtney; Halsey, Lewis; Pomeroy, Patrick; Twiss, Sean;

    1. Judicious management of energy can be invaluable for animal survival and reproductive success. Capital breeding mammals typically transfer energy to their young at extremely high rates while undergoing prolonged fasting, making lactation a tremendously energy demanding period. Effective management of the competing demands of the mother’s energy needs and those of her offspring is presumably fundamental to maximising lifetime reproductive success. 2. How does the mother maximise her chances of successfully rearing her pup, by ensuring that both her pup and herself have sufficient energy during this ‘energetic fast’? While energy management models were first discussed in the 1990s, application of this analytical technique is still very much in its infancy. Recent work suggests that a broad range of species exhibit ‘energy compensation’; during periods when they expend more energy on activity, their bodies partially compensate by reducing background (basal) metabolic rate as an adaptation to limit overall energy expenditure. However, the value of energy management models in understanding animal ecology is presently unclear. 3. We investigate whether energy management models provide insights into the breeding strategy of phocid seals. Not only do we expect lactating seals to display energy compensation because of their breeding strategy of high energy transfer while fasting, but we anticipate that mothers exhibiting a lack of energy compensation are less likely to rear offspring successfully. 4. On the Isle of May in Scotland, we collected heart rate data as a proxy for energy expenditure in 52 known individual grey seal (Halichoerus grypus) mothers, repeatedly across three years of breeding. We provide evidence that grey seal mothers typically exhibit energy compensation during lactation by down-regulating their background metabolic rate to limit daily energy expenditure during periods when other energy costs are relatively high. However, individuals that fail to energy compensate during the lactation period are more likely to end lactation earlier than expected. 5. Our study is the first to demonstrate the importance of energy compensation to an animal’s reproductive expenditure. Moreover, our multi-seasonal data indicate that environmental stressors may reduce the capacity of some individuals to follow the energy compensation strategy.  The data included here represents a summary of 5,219 segments of collected heart rate data for 51 known female grey seals ('ID') during their lactation period on the Isle of May, Scotland using animal-borne heart rate monitors. In short, these data summarize daily measures of minimum heart rate ('min_fH'; minimum value of mean heart rate, a proxy for background energy expenditures), mean heart rate ('mean_fH'; a proxy for daily energy expenditure), and auxiliary heart rate ('d.aux_fH', mean heart rate minus minimum heart rate; a proxy for auxiliary energy expenditure) in order to quantify energy management strategies during lactation across three separate breeding seasons ('Year') both within- and across-individuals. These heart rate metrics for each seal were determined by analysing multiple 15-min heart rate segments across a day ('n_seg') after processing and filtering of raw interbeat-interval data to remove any measurement artifacts. All heart rate data were collected in real time across the breeding colony and logged on a portable base station computer. More information heart rate data collection and filtering can be found in the main text and supplement of JAE-2019-00935.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2020
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2020
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2020
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility17
    visibilityviews17
    downloaddownloads12
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2020
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2020
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2020
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Dongqin Xia; Yazhou Li; Tingting Zhang; Yanling He; +2 Authors

    Public acceptance (PA) is nowadays essential for the sustainable development of nuclear energy and becomes animportant issue for research community. Although some studies had investigated the factors influencing PA ofnuclear energy, few researches were founded to verify the impact of cultural values. This research proposed atheoretical model to explore how individualism and collectivism, as an important dimension of culture, moderated the relevance between perceived risk/benefit and PA. A questionnaire survey was conducted nationwidein China whose number of under-construction nuclear power plants ranks first in the world, and received 887valid responses. The analysis of moderating effect showed individualism weakened the relevance betweenperceived benefit and PA, whereas collectivism had no significant moderating role on the relevance betweenperceived benefit and PA. Collectivism strengthened the relevance between perceived risk and PA, whereasindividualism had no significant moderating role on the relevance between perceived risk and PA. Moreover,perceived benefit was confirmed to be a more important predictor for PA than perceived risk. The abovementioned findings could not only provide new insights that help to understand the difference in energy policiesbetween China and the developed countries, but also provide new reference and guidance for the future policymaking. Public acceptance (PA) is nowadays essential for the sustainable development of nuclear energy and becomes animportant issue for research community. Although some studies had investigated the factors influencing PA ofnuclear energy, few researches were founded to verify the impact of cultural values. This research proposed atheoretical model to explore how individualism and collectivism, as an important dimension of culture, moderated the relevance between perceived risk/benefit and PA. A questionnaire survey was conducted nationwidein China whose number of under-construction nuclear power plants ranks first in the world, and received 887valid responses. The analysis of moderating effect showed individualism weakened the relevance betweenperceived benefit and PA, whereas collectivism had no significant moderating role on the relevance betweenperceived benefit and PA. Collectivism strengthened the relevance between perceived risk and PA, whereasindividualism had no significant moderating role on the relevance between perceived risk and PA. Moreover,perceived benefit was confirmed to be a more important predictor for PA than perceived risk. The abovementioned findings could not only provide new insights that help to understand the difference in energy policiesbetween China and the developed countries, but also provide new reference and guidance for the future policymaking.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.57760/sc...
    Dataset . 2022
    License: CC BY NC
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.57760/sc...
      Dataset . 2022
      License: CC BY NC
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Mills, Maria; Riutta, Terhi; Malhi, Yadvinder; Ewers, Robert M; +1 Authors

    Description: The eddy covariance technique was used to record continuous, non-invasive measurements of CO2, H2O and energy exchange between the ecosystem and the atmosphere. The measuring system consists of a semi-open path infrared gas analyser LI-7200 (LI-COR, USA), and a CSAT3 Sonic Anemometer (Campbell Scientific, USA) at a measuring height of 52 m over a canopy height of ~25 m. Data were recorded at a frequency of 20 Hz that was treated using the post-processing software EddyPro® (v.7.0.6; www.licor.com/eddypro) to compute fluxes for each 30-minute averaging period. To treat the raw fluxes, primary data processing steps were applied, including spike removal (Vickers, 1997 J Atmos Ocean Technol), coordinate rotation, block averaging detrending of CO2, H2O and sonic temperature, time lag compensation using covariance maximisation detection method, random uncertainty estimation (Finkelstein et al. 2001 Journal of Geophysical Research Atmospheres), computation of turbulent fluxes and mean fluxes, spectral corrections (Moncrieff et al. 1997 J Hydrol Amst) using correction of low-pass filtering effects, planar fit rotation (Wilczak et al. 2001 Boundary Layer Meteorol) and quality flagging policy (Göckede et al. 2006 Boundary Layer Meteorol). Eddy covariance meteorological data from above and below canopy is available at DOI 10.5281/zenodo.3888374. Cells with -9999 represent not enough data collected, which can be regarded as NA. This data has been collected over a heavily logged landscape between 2012 - 2018, please note 2016 was removed from this dataset. Before 2015, the landscape was ~10 years recovering from it's previous round of logging (four times logged). During 2015 the landscape was salvaged logged, removing 75% of tree stand basal area. The first data sheet, named "Raw_data" contains all raw fluxes that have been treated by EddyPro, which have not been filtered or quality controlled. The second sheet, named "Daily_fluxes" contains daily mean fluxes of net ecosystem CO2 exchange (NEE), ecosystem respirationn (Reco) and gross primary productivity and their associated standard errors. Net ecosystem CO2 exchange (NEE) was calculated by adding the estimated CO2 storage flux to the observed CO2 flux. Data was subjecto quality control including the removal of quality flags 4 and 5 (Göckede et al. 2006 Boundary Layer Meteorol) and the application of a mean u* threshold of >0.29 m s-1 to the dataset, as established using the package "REddyProc" (v.1.2; (Wultzer et al. 2019 Biogeosciences)) in based on the Moving Point Method (Reichstein et al. 2005, GCB). Data was subsequently gap filled and partitioned, as descripted within the variable methods of this sheet. This data was part of an analysis of carbon fluxes within three periods of data collection: in 2012 – 2013, which captured the four-times logged ecosystem ~10 years after its previous round of logging, in 2015 during a new round of active salvage logging, and in 2017 – 2018 when the ecosystem was recovery 2-3 years after the salvage logging. Days with large standard errors for Reco (> ± 5 µmol m−2 s−1) were deemed as bad quality and removed from the dataset and we used only days that had four or more observed half-hourly values of NEE. Of the final dataset , 29.5% of the half-hourly values are original observed fluxes, and 70.5% gap-filled. Of the 455 days remaining after all filtering processes were applied, 65 days were during the 10-years recovery phase (2012-2013), 100 during the active salvage logging (2015) and 290 during the 2-3 years recovery from active salvage logging phase (2017-2018). Project: This dataset was collected as part of the following SAFE research project: Changing carbon dioxide and water budgets from deforestation and habitat modification XML metadata: GEMINI compliant metadata for this dataset is available here Files: This consists of 1 file: SAFE_EC_byYear.xlsx SAFE_EC_byYear.xlsx This file contains dataset metadata and 6 data tables: Raw_data_2012_2013 (described in worksheet Raw_data_2012_2013) Description: EddyPro output of eddy covariance data collected at 52m at the top of the flux tower. Number of fields: 105 Number of data rows: 24213 Fields: Location: SAFE flux tower location name, as in the SAFE Gazetteer (Field type: location) date: Date of the end of the averaging period (Field type: date) time: Time of the end of the averaging period (Field type: time) DOY: decimal day of year (Field type: numeric) daytime: Daytime or nightime, 1 = daytime, 0 = nighttime (Field type: numeric) file_records: Number of valid records found in the raw file (or set of raw files) (Field type: numeric) used_records: Number of valid records used for current the averaging period (Field type: numeric) Tau: Corrected momentum flux (Field type: numeric) qc_Tau: Quality flag for momentum flux, Göckede et al., 2006: A system based on 5 quality grades. "0" is best, "5" is worst (Field type: numeric) rand_err_Tau: Random error for momentum flux, if selected (Field type: numeric) H: Corrected sensible heat flux (Field type: numeric) qc_H: Quality flag for sensible heat flux, Göckede et al., 2006: A system based on 5 quality grades. "0" is best, "5" is worst (Field type: numeric) rand_err_H: Random error for momentum flux, if selected (Field type: numeric) LE: Corrected latent heat flux (Field type: numeric) qc_LE: Quality flag of latent heat flux based on Göckede et al., 2006: A system based on 5 quality grades. "0" is best, "5" is worst (Field type: numeric) rand_err_LE: Random error for latent heat flux, if selected (Field type: numeric) co2_flux: CO2 flux (Field type: numeric) qc_co2_flux: Quality flag for CO2 flux, Göckede et al., 2006: A system based on 5 quality grades. "0" is best, "5" is worst (Field type: numeric) rand_err_co2_flux: Random error of CO2 flux (Field type: numeric) h2o_flux: H2O flux (Field type: numeric) qc_h2o_flux: Quality flag of H20 flux, Göckede et al., 2006: A system based on 5 quality grades. "0" is best, "5" is worst (Field type: numeric) rand_err_h2o_flux: Random error of CO2 flux (Field type: numeric) H_strg: Estimate of storage sensible heat flux (Field type: numeric) LE_strg: Estimate of storage latent heat flux (Field type: numeric) co2_strg: Estimate of storage CO2 flux (Field type: numeric) h2o_strg: Estimate of storage H20 flux (Field type: numeric) co2_v.adv: Estimate of vertical advection flux of CO2 (Field type: numeric) h2o_v.adv: Estimate of vertical advection flux of H20 (Field type: numeric) co2_molar_density: Measured or estimated molar density of gas (Field type: numeric) co2_mole_fraction: Measured or estimated mole fraction of gas (Field type: numeric) co2_mixing_ratio: Measured or estimated mixing ratio of gas (Field type: numeric) co2_time_lag: Time lag used to synchronize gas time series (Field type: numeric) co2_def_timelag: Flag: whether the reported time lag is the default (1) or calculated (0) (Field type: numeric) h2o_molar_density: Measured or estimated molar density of gas (Field type: numeric) h2o_mole_fraction: Measured or estimated mole fraction of gas (Field type: numeric) h2o_mixing_ratio: Measured or estimated mixing ratio of gas (Field type: numeric) h2o_time_lag: Time lag used to synchronize gas time series (Field type: numeric) h2o_def_timelag: Flag: whether the reported time lag is the default (1) or calculated (0) (Field type: numeric) sonic_temperature: Mean temperature of ambient air as measured by the anemometer (Field type: numeric) air_temperature: Mean temperature of ambient air, either calculated from high frequency air temperature readings, or estimated from sonic temperature (Field type: numeric) air_pressure: Mean pressure of ambient air, either calculated from high frequency air pressure readings, or estimated based on site altitude (barometric pressure) (Field type: numeric) air_density: Density of ambient air (Field type: numeric) air_heat_capacity: Specific heat at constant pressure of ambient air (Field type: numeric) air_molar_volume: Molar volume of ambient air (Field type: numeric) ET: Evapotranspiration flux (Field type: numeric) water_vapor_density: Ambient mass density of water vapor (Field type: numeric) e: Ambient water vapor partial pressure (Field type: numeric) es: Ambient water vapor partial pressure at saturation (Field type: numeric) specific_humidity: Ambient specific humidity on a mass basis (Field type: numeric) RH: Ambient relative humidity (Field type: numeric) VPD: Ambient water vapor pressure deficit (Field type: numeric) Tdew: Ambient dew point temperature (Field type: numeric) u_unrot: Wind component along the u anemometer axis (Field type: numeric) v_unrot: Wind component along the v anemometer axis (Field type: numeric) w_unrot: Wind component along the w anemometer axis (Field type: numeric) u_rot: Rotated u wind component (mean wind speed) (Field type: numeric) v_rot: Rotated v wind component (should be zero) (Field type: numeric) w_rot: Rotated w wind component (should be zero) (Field type: numeric) wind_speed: Mean wind speed (Field type: numeric) max_wind_speed: Maximum instantaneous wind speed (Field type: numeric) wind_dir: Direction from which the wind blows, with respect to Geographic or Magnetic north (Field type: numeric) yaw: First rotation angle (Field type: numeric) pitch: Second rotation angle (Field type: numeric) u.: Friction velocity (Field type: numeric) TKE: Turbulent kinetic energy (Field type: numeric) L: Monin-Obukhov length (Field type: numeric) X.z.d..L: Monin-Obukhov stability parameter - (z-d)/L (Field type: numeric) bowen_ratio: Sensible heat flux to latent heat flux ratio (Field type: numeric) T.: Scaling temperature (Field type: numeric) model: Model for footprint estimation, 1- Kljun et al. (2004): A crosswind integrated parameterization of footprint estimations obtained with a 3D Lagrangian model by means of a scaling procedure.2 - Kormann and Meixner (2001): A crosswind integrated model based on the solution of the two dimensional advection-diffusion equation given by van Ulden (1978) and others for power-law profiles in wind velocity and eddy diffusivity, 3 - Hsieh et al. (2000): A crosswind integrated model based on the former model of Gash (1986) and on simulations with a Lagrangian stochastic model. (Field type: numeric) x_peak: Along-wind distance providing <1% contribution to turbulent fluxes (Field type: numeric) x_offset: Along-wind distance providing the highest (peak) contribution to turbulent fluxes (Field type: numeric) x_10.: Along-wind distance providing 10% (cumulative) contribution to turbulent fluxes (Field type: numeric) x_30.: Along-wind distance providing 30% (cumulative) contribution to turbulent fluxes (Field type: numeric) x_50.: Along-wind distance providing 50% (cumulative) contribution to turbulent fluxes (Field type: numeric) x_70.: Along-wind distance providing 70% (cumulative) contribution to turbulent fluxes (Field type: numeric) x_90.: Along-wind distance providing 90% (cumulative) contribution to turbulent fluxes (Field type: numeric) un_Tau: Uncorrected momentum flux (Field type: numeric) Tau_scf: Spectral correction factor for momentum flux (Field type: numeric) un_H: Uncorrected sensible heat flux (Field type: numeric) H_scf: Spectral correction factor for sensible heat flux (Field type: numeric) un_LE: Uncorrected latent heat flux (Field type: numeric) LE_scf: Spectral correction factor for latent heat flux (Field type: numeric) un_co2_flux: Uncorrected gas flux (Field type: numeric) co2_scf: Spectral correction factor for gas flux (Field type: numeric) un_h2o_flux: Uncorrected gas flux (Field type: numeric) h2o_scf: Spectral correction factor for gas flux (Field type: numeric) spikes_hf: Hard flags for individual variables for spike test (Field type: numeric) amplitude_resolution_hf: Hard flags for individual variables for amplitude resolution (Field type: numeric) drop_out_hf: Hard flags for individual variables for drop-out test (Field type: numeric) absolute_limits_hf: Hard flags for individual variables for absolute limits (Field type: numeric) skewness_kurtosis_hf: Hard flags for individual variables for skewness and kurtosis (Field type: numeric) skewness_kurtosis_sf: Soft flags for individual variables for skewness and kurtosis test (Field type: numeric) discontinuities_hf: Hard flags for individual variables for discontinuities test (Field type: numeric) discontinuities_sf: Soft flags for individual variables for discontinuities test (Field type: numeric) timelag_hf: Hard flags for gas concentration for time lag test (Field type: numeric) timelag_sf: Soft flags for gas concentration for time lag test (Field type: numeric) attack_angle_hf: Hard flags for gas concentration for time lag test (Field type: numeric) non_steady_wind_hf: Soft flags for gas concentration for time lag test (Field type: numeric) u_spikes: Number of spikes detected and eliminated for rotated u wind component (Field type: numeric) v_spikes: Number of spikes detected and eliminated forrotated v wind component (Field type: numeric) w_spikes: Number of spikes detected and eliminated for rotated w wind component (Field type: numeric) ts_spikes: Number of spikes detected and eliminated for ts variable (Field type: numeric) co2_spikes: Number of spikes detected and eliminated for co2 variable (Field type: numeric) h2o_spikes: Number of spikes detected and eliminated for h2o variable (Field type: numeric) Raw_data_2014 (described in worksheet Raw_data_2014) Description: EddyPro output of eddy covariance data collected at 52m at the top of the flux tower. There is a significant data gap, with some intermittent records available during the daytime, between 17/2/2014-17/06/2014 due to the problems in the power supply. Number of fields: 105 Number of data rows: 17520 Fields: Location: SAFE flux tower location name, as in the SAFE Gazetteer (Field type: location) date: Date of the end of the averaging period (Field type: date) time: Time of the end of the averaging period (Field type: time) DOY: decimal day of year (Field type: numeric) daytime: Daytime or nightime, 1 = daytime, 0 = nighttime (Field type: numeric) file_records: Number of valid records found in the raw file (or set of raw files) (Field type: numeric) used_records: Number of valid records used for current the averaging period (Field type: numeric) Tau: Corrected momentum flux (Field type: numeric) qc_Tau: Quality flag for momentum flux, Göckede et al., 2006: A system based on 5 quality grades. "0" is best, "5" is worst (Field type: numeric) rand_err_Tau: Random error for momentum flux, if selected (Field type: numeric) H: Corrected sensible heat flux (Field type: numeric) qc_H: Quality flag for sensible heat flux, Göckede et al., 2006: A system based on 5 quality grades. "0" is best, "5" is worst (Field type: numeric) rand_err_H: Random error for momentum flux, if selected (Field type: numeric) LE: Corrected latent heat flux (Field type: numeric) qc_LE: Quality flag of latent heat flux based on Göckede et al., 2006: A system based on 5 quality grades. "0" is best, "5" is worst (Field type: numeric) rand_err_LE: Random error for latent heat flux, if selected (Field type: numeric) co2_flux: CO2 flux (Field type: numeric) qc_co2_flux: Quality flag for CO2 flux, Göckede et al., 2006: A system based on 5 quality grades. "0" is best, "5" is worst (Field type: numeric) rand_err_co2_flux: Random error of CO2 flux (Field type: numeric) h2o_flux: H2O flux (Field type: numeric) qc_h2o_flux: Quality flag of H20 flux, Göckede et al., 2006: A system based on 5 quality grades. "0" is best,

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2022
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2022
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2022
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility128
    visibilityviews128
    downloaddownloads16
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2022
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2022
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2022
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Moreira, Francisco; Martins, Ricardo C.; Catry, Ines; D'Amico, Marcello;

    1. Anthropogenic structures are mainly known to have negative impacts on wildlife populations but sometimes arethey can be beneficial. Power lines are a main driver of bird mortality through collision or electrocution, but electricity pylons are also commonly used for nest building by some species. Birds and nests cause power outages that need to be tackled by electricity companies. However, the use of pylons by threatened species provides an opportunity for conservation purposes. 2. In this study, we described an empirical modelling approach to predict the circumstances under which circumstances nesting birds use electricity pylons are used by nesting birds. We focused on white storks Ciconia ciconia, a species that has been increasingly using electricity pylons for nesting across Europe. 3. In a country-level census in Portugal, we found a total of 1348 white stork nests in 668 of the 8680 very high-tension power line pylons occurring in the distribution range of this colonial species, with spatial clustering in pylon occupation up to a distance of 30 km. The number of nests in each used pylon ranged from 1 to 21 (mean±SD= 2.2±2.06). 4. The main drivers of pylon use by nesting storks were distance to major feeding areas (rice fields, landfills and large wetlands), with more intensive use closer to these features, followed by land cover type surrounding each pylon. Pylon type and age, and stork population density in the region, had comparatively less importance. 5. Synthesis and applications. Our approach can be used to plan both for species conservation and minimising damage to infrastructures. For power lines, we outline: (i) planning power line routes to take account of the probability of pylon use; (ii) applying nesting deterrent devices (to reduce bird mortality and power outage risk) and providing nesting platforms (to promote bird use) on suitable pylons; and (iii) selecting adequate pylon types to promote or inhibit nesting. White stork nests in power line pylons and associated variablesNumber of nests of white storks in very high tension power line pylons in Portugal, in 2007, and associated variables to model the drivers of pylon use. Information on nest occurrence collected in the field, through aerial surveys. Explanatory variables from land cover information data, stork censuses and information provided by the power line company (REN).Data for storks paper.xlsx

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2019
    License: CC 0
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    B2FIND
    Dataset . 2018
    Data sources: B2FIND
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    EASY
    Dataset . 2018
    Data sources: EASY
    DRYAD
    Dataset . 2019
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility19
    visibilityviews19
    downloaddownloads8
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2019
      License: CC 0
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      B2FIND
      Dataset . 2018
      Data sources: B2FIND
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      EASY
      Dataset . 2018
      Data sources: EASY
      DRYAD
      Dataset . 2019
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Goddard, Nigel; Kilgour, Jonathan; Pullinger, Martin; Arvind, D.K; +14 Authors

    The IDEAL Household Energy Dataset comprises data from 255 UK homes. Alongside electric and gas data from each home the corpus contains individual room temperature and humidity readings and temperature readings from the boiler. For 39 of the 255 homes more detailed data is available, including individual electrical appliance use data, and data on individual radiators. Sensor data is augmented by anonymised survey data and metadata including occupant demographics, self-reported energy awareness and attitudes, and building, room and appliance characteristics. The 00README.txt download summarizes the contents of the other files. documentation.zip - dataset documentation; metadata_and_surveys.zip - information about participating households and responses to surveys that were taken; coding.zip - example code for working with the dataset in Python; household_sensors.zip - Household-level sensor data; room_and_appliance_sensors.zip - Room and appliance level sensor data; auxiliary.zip - Other sensor data.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Edinburgh DataSharearrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Edinburgh DataShare
    Dataset . 2020
    License: CC BY
    Edinburgh DataShare
    Dataset . 2021
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    2
    citations2
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Edinburgh DataSharearrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Edinburgh DataShare
      Dataset . 2020
      License: CC BY
      Edinburgh DataShare
      Dataset . 2021
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Chua, Kenny; Liew, Jia Huan; Wilkinson, Clare; Ahmad, Amirrudin; +2 Authors

    Studies have shown that food chain length is governed by interactions between species richness, ecosystem size, and resource availability. While redundant trophic links may buffer impacts of species loss on food chain length, higher extinction risks associated with predators may result in bottom-heavy food webs with shorter food chains. The lack of consensus in earlier empirical studies relating species richness and food chain length reflects the need to account robustly for the factors described above. In response to this, we conducted an empirical study to elucidate impacts of land-use change on food chain length in tropical forest streams of Southeast Asia. Despite species losses associated with forest loss at our study areas, results from amino acid isotope analyses showed that food chain length was not linked to land use, ecosystem size or resource availability. Correspondingly, species losses did not have a significant effect on occurrence likelihoods of all trophic guilds except herbivores. Impacts of species losses were likely buffered by high levels of initial trophic redundancy, which declined with canopy cover. Declines in trophic redundancy were most drastic amongst invertivorous fishes. Declines in redundancy across trophic guilds were also more pronounced in wider and more resource-rich streams. While our study found limited evidence for immediate land-use impacts on stream food chains, the potential loss of trophic redundancy in the longer term implies increasing vulnerability of streams to future perturbations, as long as land conversion continues unabated.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2021
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2021
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility19
    visibilityviews19
    downloaddownloads15
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2021
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2021
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Zhang, Jie; Wu, Tongwen; Shi, Xueli; Zhang, Fang; +6 Authors

    Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.CMIP.BCC.BCC-ESM1.amip' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The BCC-ESM 1 climate model, released in 2017, includes the following components: atmos: BCC_AGCM3_LR (T42; 128 x 64 longitude/latitude; 26 levels; top level 2.19 hPa), atmosChem: BCC-AGCM3-Chem, land: BCC_AVIM2, ocean: MOM4 (1/3 deg 10S-10N, 1/3-1 deg 10-30 N/S, and 1 deg in high latitudes; 360 x 232 longitude/latitude; 40 levels; top grid cell 0-10 m), seaIce: SIS2. The model was run by the Beijing Climate Center, Beijing 100081, China (BCC) in native nominal resolutions: atmos: 250 km, atmosChem: 250 km, land: 250 km, ocean: 50 km, seaIce: 50 km.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ World Data Center fo...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    World Data Center for Climate
    Dataset . 2023
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ World Data Center fo...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      World Data Center for Climate
      Dataset . 2023
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph