Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
  • Access
    Clear
  • Type
  • Year range
  • Field of Science
  • SDG [Beta]
    Clear
  • Country
    Clear
  • Language
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
33 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Embargo
  • 12. Responsible consumption
  • 6. Clean water
  • CN
  • US
  • CA
  • JP

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Adesina, Adeyemi;

    Engineered cementitious composites (ECCs) are special types of fibre-reinforced cementitious composites (FRCC) with higher strain capacity which can be achieved with low fibre volume as low as 2% and total elimination of coarse aggregates. Due to the outstanding performance of ECCs, they are suitable for various construction and repair applications. However, in order for ECCs to achieve their properties; a high amount of binder which is primarily composed of Portland cement (PC) is used alongside a special type of ultrafine silica sand (USS) which is different from the conventional natural fine aggregates. The production of PC is known to be detrimental to the environment due to its high carbon dioxide emissions coupled with the high consumption of natural resources. Thus, the high use of PC content in ECCs posed a sustainability threat. Similarly, the USS used in ECCs are not readily available everywhere and are expensive. The processing of the USS coupled with its transportation over long distances would also increase the cost and embodied carbon of ECCs. Hence, in order to promote more development and applications of ECCs for various applications; this dissertation aims to provide innovative ways to improve the sustainability of ECCs and their performances. This dissertation offers four solutions to improve the sustainability of ECCs which are (i) use of unconventional industrial by-products as partial replacement of PC (ii) total replacement of PC in ECCs with alternative sustainable binders (iii) replacement of USS in ECCs with recycled materials and (iv) the use of supplementary cementitious materials to replace a high volume of PC. The findings from this study revealed sustainable ECCs with acceptable mechanical and durability performance can be achieved with the use of alternative binders or replacement of the conventional USS used in ECC mixtures. The sustainability and cost assessment of the ECCs indicated that the incorporation of industrial by-products such as blast furnace slag (BFS) especially at higher content is beneficial to reducing the negative environmental impact and economic burden associated with ECCs compared to the conventional ECC. The sustainability index and cost index of the ECCs further showed that the use of BFS is more beneficial when the sustainability and cost of the ECCs are compared with the corresponding performance. Similarly, the use of recycled materials as an alternative to USS was found to result in a significant reduction in the embodied carbon and cost of ECCs. The use of recycled materials such as expanded glass (EG) as aggregates in ECCs was also found to improve the thermal insulation properties of ECCs making such ECC suitable for the production of building envelope elements.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Scholarship at UWind...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Scholarship at UWindsor
    Doctoral thesis . 2022
    License: CC BY NC ND
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Scholarship at UWind...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Scholarship at UWindsor
      Doctoral thesis . 2022
      License: CC BY NC ND
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Martha E. Crockatt;
    Martha E. Crockatt
    ORCID
    Harvested from ORCID Public Data File

    Martha E. Crockatt in OpenAIRE
    orcid Wim Clymans;
    Wim Clymans
    ORCID
    Harvested from ORCID Public Data File

    Wim Clymans in OpenAIRE
    Wim Clymans; David J. Palmer; +2 Authors

    Moisture availability is a strong determinant of decomposition rates in forests worldwide. Climate models suggest that many terrestrial ecosystems are at risk from future droughts, suggesting moisture limiting conditions will develop across a range of forests worldwide. The impacts of increasing drought conditions on forest carbon (C) fluxes due to shifts in organic matter decay rates may be poorly characterised due to limited experimental research. To appraise this question, we conducted a meta-analysis of forest drought experiment studies worldwide, examining spatial limits, knowledge gaps and potential biases. To identify limits to experimental knowledge, we projected the global distribution of forest drought experiments against spatially modelled estimates of (i) future precipitation change, (ii) ecosystem total above-ground C and (iii) soil C storage. Our assessment, involving 115 individual experimental study locations, found a mismatch between the distribution of forest drought experiments and regions with higher levels of future drought risk and C storage, such as Central America, Amazonia, the Atlantic Forest of Brazil, equatorial Africa and Indonesia. Decomposition rate responses in litter and soil were also relatively under-studied, with only 30 experiments specifically examining the potential experimental impacts of drought on C fluxes from soil or litter. We propose new approaches for engaging experimentally with forest drought research, utilising standardised protocols to appraise the impacts of drought on the C cycle, while targeting the most vulnerable and relevant forests.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Oxford University Re...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    AMBIO
    Article . 2021 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    AMBIO
    Article . 2022
    addClaim
    3
    citations3
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Oxford University Re...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      AMBIO
      Article . 2021 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      AMBIO
      Article . 2022
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Sikkema, Richard;
    Sikkema, Richard
    ORCID
    Harvested from ORCID Public Data File

    Sikkema, Richard in OpenAIRE
    orcid Junginger, Martin;
    Junginger, Martin
    ORCID
    Harvested from ORCID Public Data File

    Junginger, Martin in OpenAIRE
    McFarlane, Paul; Faaij, André;

    Some Parties (Countries) to the UNFCCC decided to include the carbon uptake by harvested wood products (HWP) in a new general accounting framework after 2012 (post Kyoto). The analysis aims to make a comparison between the cascaded use of HWP and the use of wood for energy. We combine the new HWP framework with an assumed increased 50 million m3harvest level in Canada and evaluate the impact of the GHG emissions over a 100-year period. Our reference case assumes all harvested wood is an immediate CO2emission (IPCC default) and no substitution effects, i.e. annual GHG emissions of 41 million tonnes CO2eq. In our wood utilization scenario's, harvested trees are allocated (in varying shares) to three end-products: construction wood, paper products and pellets for power production. In comparison with our base case, a combination of fossil fuel substitution, material substitution and temporary carbon uptake by HWP leads to significant decreases in GHG emissions. All scenario's show annual GHG emission between 18 and 21 million tonnes CO2eqexcept for triple use without recycling (at least 24 million tonnes CO2eq). We conclude that GHG emissions of our scenarios are substantially lower than IPCC default. However, it is difficult to incorporate one single method to account for GHG uptake and emissions by HWP, due to end use efficiency and recycling options. Further GHG allocation over individual countries is not straightforward and needs further research. © 2013 Elsevier Ltd.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Utrecht University R...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Science & Policy
    Article . 2013 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    54
    citations54
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Utrecht University R...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Science & Policy
      Article . 2013 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Saavedra, Casilda; W.Budd, William;

    Abstract This work focuses on the efforts being made by King County, Washington to respond to the challenges of global climate change, concentrating on both mitigation and adaptation. King County is a leader in the United States in the development and implementation of meaningful climate change efforts in local government. The county, in conjunction with ICLEI, recently produced a workbook on Preparing for Climate Change at the Local, Regional, and State levels. While the vast majority of local governments in the United States have only taken limited steps to respond to global warming, King County stands out as aggressively looking to move in a new direction. The King County Climate Plan is based on the conviction that climate change is both a problem and an opportunity for communities to improve environmental quality through mitigation of greenhouse gases and simultaneously build resilience to adapt to global climate change. Its exceptional combination of responsibilities in planning and opportunities makes this an invaluable experience to other local governments throughout the world. The work to be presented is a case study that examines the underlying issues and challenges faced by this jurisdiction in adopting its climate change plan; the development and adoption of the plan; issues associated with monitoring and sustaining these efforts; and the broader challenges of building more resilient and adaptive communities. The case study will focus both on procedural issues, as well as, on the types of mitigation and adaptive responses. One aspect of the paper will examine King County's efforts to link climate change efforts/policy/plans to other critical community concerns (e.g., issues of equity and race), and to the economic opportunities that have become critical motivators to successfully as moving forward the county attempts to establish itself as a global leader in meeting the challenges of global climate change.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao LAReferencia - Red F...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    UTP-RIDDA2
    Article . 2009
    Data sources: UTP-RIDDA2
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Habitat International
    Article . 2009 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    80
    citations80
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao LAReferencia - Red F...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      UTP-RIDDA2
      Article . 2009
      Data sources: UTP-RIDDA2
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Habitat International
      Article . 2009 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Cui Haiyun; Huang Zhixiong; orcid Serhat Yüksel;
    Serhat Yüksel
    ORCID
    Harvested from ORCID Public Data File

    Serhat Yüksel in OpenAIRE
    orcid Hasan Dinçer;
    Hasan Dinçer
    ORCID
    Harvested from ORCID Public Data File

    Hasan Dinçer in OpenAIRE

    Abstract This study aims to analyze the innovation strategies for the green supply chain management with QFD (quality function deployment) multidimensionally. The novelty of the study is to define the criteria of green supply chain for each stage of QFD and propose a hybrid model by IVIF (interval-valued intuitionistic fuzzy) DEMATEL (decision making trial and evaluation laboratory) and IVIF MOORA (Multi-Objective Optimization by Ratio Analysis) respectively. The results demonstrate that understanding the customer expectations with customer relation management is the most important innovation strategy for the green supply chain management in energy industry with the consecutive stages of QFD whereas benchmarking the competitive market environment has relatively the last seat in the ranking. Hence, it is recommended that energy companies should have an effective customer relationship management. In this context, these companies should make a detailed analysis to learn what their customers directly expect from them. With the help of this issue, these companies should generate their product and services based on these expectations. Additionally, it is also stated that new service and product development is also essential for energy companies to improve their innovativeness. For this purpose, a research and development department should be created, and the qualified people should be employed. Additionally, different opinions should be collected from various parties, such as customers, employees, and suppliers. Since customers who are satisfied will prefer these companies, the energy companies can catch the opportunity to increase their market share.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao İstanbul Medipol Uni...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    171
    citations171
    popularityTop 0.1%
    influenceTop 10%
    impulseTop 0.1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao İstanbul Medipol Uni...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Weiwei Dong; Guohua Zhao; orcid Serhat Yüksel;
    Serhat Yüksel
    ORCID
    Harvested from ORCID Public Data File

    Serhat Yüksel in OpenAIRE
    orcid Hasan Dinçer;
    Hasan Dinçer
    ORCID
    Harvested from ORCID Public Data File

    Hasan Dinçer in OpenAIRE
    +1 Authors

    Wind energy projects provide clean energy so that they should be increased to reach the sustainable development goals of the countries. However, current decision-making process should be improved for the effectiveness of these projects. Thus, critical factors should be considered to understand the significant indicators of the performance of the wind energy projects. This article aims to determine the factors that should be considered when deciding on wind energy investments. In this context, 9 different criteria belonging to 3 dimensions (project, firm, market) are determined based on literature review. Later, an analysis is carried out by using hesitant interval-valued intuitionistic fuzzy (IVIF) Decision Making Trial and Evaluation Laboratory (DEMATEL) to identify the most important factors. Furthermore, 4 different investment strategies in Boston Consultancy Group (BCG) matrix have been determined as alternatives. To determine which of these strategies is suitable for wind energy investments, the hesitant IVIF multi-objective optimization on the basis of ratio analysis (MOORA) method has been considered. Additionally, a comparative evaluation is also performed by using technique for order preference by similarity to ideal solution (TOPSIS) methodology. Similarly, sensitivity analysis is also made by considering 9 different cases. The analysis results of different methodologies are quite similar which shows the coherency and reliability of the findings. It is concluded that firm-based factors play the most significant role. It is also identified that technical development, financial performance and organizational effectiveness are the most significant criteria to make investment decision on wind energy projects. Furthermore, due to the market growth potential, it is recommended that wind energy investors increase their investments and strengthen their position in the market.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao İstanbul Medipol Uni...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable Energy
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    108
    citations108
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao İstanbul Medipol Uni...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable Energy
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Han, Zhihong; Gong, Lixin; orcid Chen, Huiwen;
    Chen, Huiwen
    ORCID
    Harvested from ORCID Public Data File

    Chen, Huiwen in OpenAIRE
    orcid Yüksel, Serhat;
    Yüksel, Serhat
    ORCID
    Harvested from ORCID Public Data File

    Yüksel, Serhat in OpenAIRE

    Climate change and rising global temperatures pose significant challenges for natural resource management. While developed economies have made progress in addressing these issues, emerging economies are still striving to achieve carbon neutrality, sustainable resource use, and environmental sustainability. This research aims to identify the factors driving carbon emissions in emerging economies over the past three decades. The study establishes a long-run relationship among the factors under investigation by employing various panel diagnostic methods. Non-parametric approaches are used to account for the non-symmetric distribution of panel data. The findings reveal that natural resource components have asymmetric impacts on carbon emissions, with oil rents reducing emissions and mineral rents increasing them. Economic growth and agricultural value added are identified as significant contributors to carbon emissions in the region. On the other hand, renewable energy consumption plays a crucial role in achieving carbon neutrality targets. Gross capital formation exhibits a mixed influence on carbon emissions, being positive and significant in lower quantiles and significantly negative in upper quantiles. These estimates are robust and align with existing literature. The study recommends sustainable resource abstraction and utilization, renewable energy production and consumption improvements, and enhanced capital formation. By providing empirical evidence and policy recommendations, this research contributes to understanding the relationship between these factors and their impact on carbon emissions, facilitating effective strategies for sustainable development and environmental preservation. Xinyang Normal University

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao İstanbul Medipol Uni...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Resources Policy
    Article . 2023 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    21
    citations21
    popularityAverage
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao İstanbul Medipol Uni...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Resources Policy
      Article . 2023 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid bw E.-A. Reinecke;
    E.-A. Reinecke
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    E.-A. Reinecke in OpenAIRE
    K. Takenaka; H. Ono; T. Kita; +4 Authors

    Abstract The safe decommissioning as well as decontamination of the radioactive waste resulting from the nuclear accident in Fukushima Daiichi represents a huge task for the next decade. At present, research and development on long-term safe storage containers has become an urgent task with international cooperation in Japan. One challenge is the generation of hydrogen and oxygen in significant amounts by means of radiolysis inside the containers, as the nuclear waste contains a large portion of sea water. The generation of radiolysis gases may lead to a significant pressure build-up inside the containers and to the formation of flammable gases with the risk of ignition and the loss of integrity. In the framework of the project “R&D on technology for reducing concentration of flammable gases generated in long-term waste storage containers” funded by the Japanese Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT), the potential application of catalytic recombiner devices inside the storage containers is investigated. In this context, a suitable catalyst based on the so-called intelligent automotive catalyst for use in a recombiner is under consideration. The catalyst is originally developed and mass-produced for automotive exhaust gas purification, and is characterized by having a self-healing function of precious metals (Pd, Pt and Rh) dissolved as a solid solution in the perovskite type oxides. The basic features of this catalyst have been tested in an experimental program. The test series in the REKO-4 facility has revealed the basic characteristics of the catalyst required for designing the recombiner system.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Juelich Shared Elect...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    International Journal of Hydrogen Energy
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    13
    citations13
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Juelich Shared Elect...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      International Journal of Hydrogen Energy
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid bw M-K.H Winkler;
    M-K.H Winkler
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    M-K.H Winkler in OpenAIRE
    K.F. Ettwig; orcid T.P.W. Vannecke;
    T.P.W. Vannecke
    ORCID
    Harvested from ORCID Public Data File

    T.P.W. Vannecke in OpenAIRE
    orcid bw K. Stultiens;
    K. Stultiens
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    K. Stultiens in OpenAIRE
    +3 Authors

    Anaerobic nitrogen removal technologies offer advantages in terms of energy and cost savings over conventional nitrification-denitrification systems. A mathematical model was constructed to evaluate the influence of process operation on the coexistence of nitrite dependent anaerobic methane oxidizing bacteria (n-damo) and anaerobic ammonium oxidizing bacteria (anammox) in a single granule. The nitrite and methane affinity constants of n-damo bacteria were measured experimentally. The biomass yield of n-damo bacteria was derived from experimental data and a thermodynamic state analysis. Through simulations, it was found that the possible survival of n-damo besides anammox bacteria was sensitive to the nitrite/ammonium influent ratio. If ammonium was supplied in excess, n-damo bacteria were outcompeted. At low biomass concentration, n-damo bacteria lost the competition against anammox bacteria. When the biomass loading closely matched the biomass concentration needed for full nutrient removal, strong substrate competition occurred resulting in oscillating removal rates. The simulation results further reveal that smaller granules enabled higher simultaneous ammonium and methane removal efficiencies. The implementation of simultaneous anaerobic methane and ammonium removal will decrease greenhouse gas emissions, but an economic analysis showed that adding anaerobic methane removal to a partial nitritation/anammox process may increase the aeration costs with over 20%. Finally, some considerations were given regarding the practical implementation of the process.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Radboud Repositoryarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Radboud Repository
    Article . 2015
    Data sources: Radboud Repository
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Water Research
    Article . 2015 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    71
    citations71
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Radboud Repositoryarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Radboud Repository
      Article . 2015
      Data sources: Radboud Repository
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Water Research
      Article . 2015 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Bright Akwasi Gyamfi; orcid Stephen Taiwo Onifade;
    Stephen Taiwo Onifade
    ORCID
    Harvested from ORCID Public Data File

    Stephen Taiwo Onifade in OpenAIRE
    orcid Elvis Kwame Ofori;
    Elvis Kwame Ofori
    ORCID
    Harvested from ORCID Public Data File

    Elvis Kwame Ofori in OpenAIRE

    AbstractIn the wake of the growing threats to humanity from climate change, we analyzed the information and communications technology (ICT)/education—environmental nexus from three distinct blocs including BRICS, MINT, and the G7 economies between 1990 and 2020. Two models were examined to reach the study's objectives. The first model evaluates whether education and ICT are essential for environmental sustainability via potential reduction in carbon emission. On the other hand, the second model fills an existing gap in extant studies by examining the prospect of education and ICT in influencing citizens on the importance of transition to renewable energy usage. Driscoll and Kraay estimator was employed as a panacea tool for cross‐sectional dependence and slope homogeneity while the fixed effect approach provides sufficient robustness checks on the findings. While some outcomes vary per bloc, others are relatively similar across the three blocs. Education level in school enrollment perspectives shows a negative significant pollution reduction effect across the three blocs, while only the G7 bloc performed better from human capital perspectives. The combined sample bloc shows that ICT also significantly reduces carbon emission, however, an individual bloc analysis refutes this stance for the MINT bloc. Additionally, while renewable energy cushions emissions in all the blocs, rapid urbanization, shows a positive CO2 emission impact except in the G7 bloc. Last, ICT and education significantly boost renewable energy usage only in the G7. Hence, governments and stakeholders in the blocs should gravitate toward greater investments in quality education and greener ICT infrastructures for a sustainable environment.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Istanbul Ticaret Uni...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Sustainable Development
    Article . 2022 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim
    37
    citations37
    popularityTop 10%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Istanbul Ticaret Uni...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Sustainable Development
      Article . 2022 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • chevron_right
Powered by OpenAIRE graph