- home
- Advanced Search
- Energy Research
- Open Access
- Closed Access
- US
- CN
- CA
- Energy Research
- Open Access
- Closed Access
- US
- CN
- CA
description Publicationkeyboard_double_arrow_right Article 2022Publisher:Frontiers Media SA Hannah von Hammerstein; Renee O. Setter; Martin van Aswegen; Jens J. Currie; Stephanie H. Stack; Stephanie H. Stack;Anthropogenic greenhouse gas emissions are triggering changes in global climate and warming the ocean. This will affect many marine organisms, particularly those with high site fidelity and habitat temperature preferences, such as humpback whales on their breeding grounds. To study the impacts of a warming ocean on marine organisms, large-scale projections of climatic variables are crucial. Global models are of 0.25 - 1° (~25-100 km) resolution, and not ideal to predict localized changes. Here, we provide 0.05° resolution (~5 km) sea surface temperature (SST) projections, statistically downscaled using the delta method. We illustrate the shifting isotherms of the critical 21 and 28°C boundaries, which border the climatic envelope that humpback whales prefer for their breeding grounds, over the course of the 21st century on a decadal temporal resolution. Results show by the end of the 21st century, 35% of humpback whale breeding areas will experience SSTs above or within 1°C of current thresholds if present-day social, economic, and technological trends continue (‘middle of the road’ CMIP6 greenhouse gas trajectory SSP2-RCP4.5). This number rises to 67% under the scenario describing rapid economic growth in carbon-intensive industries (‘fossil-fueled development’ CMIP6 greenhouse gas trajectory SSP5-RCP8.5). These projections highlight the importance of reducing global greenhouse gas emissions and minimizing further SST increases to preserve ecological integrity of humpback whale breeding areas. In this context, our results emphasize the need to focus on protection of critical ocean habitat and to provide high-resolution climate data for this purpose.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 15 selected citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Shengyuan Li; Zhonghua Gou;doi: 10.3390/land12101956
In the context of climate change and rural revitalization, numerous solar photovoltaic (PV) panels are being installed on village roofs and lands, impacting the enjoyment of the new rural landscape characterized by PV panels. However, the visual acceptance of PV panels in rural areas of China is not yet fully understood. This study aims to identify and correlate three key influential factors that contribute to the acceptance and appreciation of PV panels in China’s rural settings. A quasi-experiment was conducted, incorporating diverse landscapes into six rural settings, each containing both the original landscape and PV panels. The findings demonstrated that the original rural landscape was significantly more scenic than PV panels, and factors contributing to the appreciation of traditional landscapes, such as nostalgia, played a vital role in rejecting PV panels. Conversely, renewable energy-related factors, such as economic stakes and moral desirability, were found to contribute to the acceptance of PV panels. This study contributes to the strategic planning and design of solar PV panels in rural landscapes, taking into consideration social acceptance and local contexts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 2 selected citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2019Publisher:Elsevier BV Lv He; Li Jingyuan; Yu Xiumin; Li Mengliang; Yang Tian;Abstract In this paper, the effects of hydrogen blending radio and EGR rate on combustion and emission characteristics of a PFI gasoline engine with hydrogen direct-injection have been investigated by numerical modeling methods using a new generation of CFD simulation software CONVERGE. Results showed that compared with original engine, hydrogen direct-injection PFI gasoline engine had a better performance on combustion characteristics, but it also had a disadvantage of increasing NOx emissions. With the increase of hydrogen blending radio, combustion duration shortened and CA50 advanced and was closer to TDC. And CO and THC emissions decreased, however NOx emission increased. The variations of the combustion and emission characteristics followed by the increase of the EGR rate were exactly the opposite to the change of hydrogen blending radio. Considering both the combustion and emission characteristics, using moderate EGR rate (15%~20%) under high hydrogen blending radio (15%~20%) condition can realize the simultaneous improvement of combustion and emission performance.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 19 selected citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2020Publisher:Elsevier BV Chengjun Wang; Weidong Liang; Yueyue Yang; Fang Liu; Hanxue Sun; Zhaoqi Zhu; An Li;Abstract The development of high-performance shape-stable phase change materials composites (ss-PCMCs) with enhanced thermal conductivity and high phase change enthalpy is of great importance for thermal energy storage. Herein, we report the creation of novel ss-PCMCs by incorporation of organic PCMs (1-hexadecanamine (HDA) and palmitic acid (PA)) into the biomass carbon aerogels (BCAs refer to sunflower receptacle spongy carbon aerogel (r-CA) and sunflower stem carbon aerogel (s-CA)) through a simple vacuum infusion. Due to their abundant porosity, light weight and high specific surface area, organic PCMs can be spontaneously loaded into BCAs with an ultrahigh loading rate of up to 1988 wt%. The obtained of PCM/BCAs composites show high phase change enthalpy of ranging from 207.9 kJ kg−1 to 271 kJ kg−1, in addition to their excellent thermal stability and recyclability, e.g., their phase change enthalpy nearly remains unchanged even after 50 times of melting/freezing cycles. The PCM/BCAs composites also show an enhanced thermal conductivity. Furthermore, the light-to-thermal conversion efficiency was found to be promising candidates for light-to-thermal energy storage applications on basis of their 75.6% for HDA/r-CA and 67.8% for HDA/s-CA, respectively, making them abundant resource, cost-efficiency, simple and scalable fabrication process.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.141 selected citations 141 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Report , Other literature type 1993Publisher:Office of Scientific and Technical Information (OSTI) Authors: Tyson, K. S.;doi: 10.2172/10107273
The US Department of Energy (DOE) is using the total fuel cycle analysis (TFCA) methodology to evaluate energy choices. The National Energy Strategy (NES) identifies TFCA as a tool to describe and quantify the environmental, social, and economic costs and benefits associated with energy alternatives. A TFCA should quantify inputs and outputs, their impacts on society, and the value of those impacts that occur from each activity involved in producing and using fuels, cradle-to-grave. New fuels and energy technologies can be consistently evaluated and compared using TFCA, providing a sound basis for ranking policy options that expand the fuel choices available to consumers. This study is limited to creating an inventory of inputs and outputs for three transportation fuels: (1) reformulated gasoline (RFG) that meets the standards of the Clean Air Act Amendments of 1990 (CAAA) using methyl tertiary butyl ether (MTBE); (2) gasohol (E10), a mixture of 10% ethanol made from municipal solid waste (MSW) and 90% gasoline; and (3) E95, a mixture of 5% gasoline and 95% ethanol made from energy crops such as grasses and trees. The ethanol referred to in this study is produced from lignocellulosic material-trees, grass, and organic wastes -- called biomass. The biomass is converted to ethanol using an experimental technology described in more detail later. Corn-ethanol is not discussed in this report. This study is limited to estimating an inventory of inputs and outputs for each fuel cycle, similar to a mass balance study, for several reasons: (1) to manage the size of the project; (2) to provide the data required for others to conduct site-specific impact analysis on a case-by-case basis; (3) to reduce data requirements associated with projecting future environmental baselines and other variables that require an internally consistent scenario.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.30 selected citations 30 popularity Top 10% influence Top 1% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Springer Science and Business Media LLC Funded by:NSF | EAGER SitS: Quantifying t...NSF| EAGER SitS: Quantifying the value of information for sensor placements to improve soil signals for agricultural water managementAuthors: Sourav Mukherjee; Ashok Kumar Mishra; Jakob Zscheischler; Dara Entekhabi;AbstractClimate change amplifies dry and hot extremes, yet the mechanism, extent, scope, and temporal scale of causal linkages between dry and hot extremes remain underexplored. Here using the concept of system dynamics, we investigate cross-scale interactions within dry-to-hot and hot-to-dry extreme event networks and quantify the magnitude, temporal-scale, and physical drivers of cascading effects (CEs) of drying-on-heating and vice-versa, across the globe. We find that locations exhibiting exceptionally strong CE (hotspots) for dry-to-hot and hot-to-dry extremes generally coincide. However, the CEs differ strongly in their timescale of interaction, hydroclimatic drivers, and sensitivity to changes in the soil-plant-atmosphere continuum and background aridity. The CE of drying-on-heating in the hotspot locations reaches its peak immediately driven by the compounding influence of vapor pressure deficit, potential evapotranspiration, and precipitation. In contrast, the CE of heating-on-drying peaks gradually dominated by concurrent changes in potential evapotranspiration, precipitation, and net-radiation with the effect of vapor pressure deficit being strongly controlled by ecosystem isohydricity and background aridity. Our results help improve our understanding of the causal linkages and the predictability of compound extremes and related impacts.
Nature Communication... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 54 selected citations 54 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature Communication... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:MDPI AG Authors: Sébastien M. R. Dente; Toshiyuki Shimizu; Tao Wang; Seiji Hashimoto;doi: 10.3390/su12208730
The current organization of water supply systems demands drinking standards for all the households’ usage of water. Few dual water systems, i.e., systems in which the quality of the water supplied is differentiated by types of use, exist but are mainly circumscribed to developing countries. Besides, bath and showers are so far considered as a potable use of water despite only drinking and cooking activities requiring the high-quality standards of potable water. The present work demonstrates how the principles of dual water systems can be incorporated into the sustainable concept of product-service system (PSS) using a dual water system of a municipal water supply treatment plant in France as a case study. The PSS is based on the water quality, and the bathing activity of households is considered with a dedicated standard for the first time. Two systems are considered, S1 and S2, supplied with the same raw water quality and treated with drinking (S1) bathing standards (S2). The quality parameters considered are total organic carbon (TOC) and turbidity (T) and the potential savings related to costs, material, and energy consumptions are assessed using EVALEAU as a process modeling tool. The treatment lines consisted of powdered activated carbon (PAC) addition, coagulation, flocculation, settling, and rapid sand filtration. Results show that material consumption can be reduced by 41% mainly through the decrease in chemical consumption associated with the change of requirement for the TOC parameter. On the opposite, energy consumption was found dependent on the water of volume treated rather than its quality leading to only marginal savings. The cost was decreased by 37% as a result of the reduction of the chemicals consumed.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/20/8730/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 2 selected citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/20/8730/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Shan Hu; Xin Zhou; Da Yan; Fei Guo; Tianzhen Hong; Yi Jiang;Among the sufficiency, efficiency, and renewable frameworks for reducing energy use and energy-related carbon emissions, Building Energy Sufficiency (BES) is gaining attention from policy makers and engineers. Despite the significant role of the building sector in the success of national energy and climate plans, there is a lack of research on the drivers, technologies, and effective policy instruments required to achieve BES in the building operational phase. To fill this gap, this study presents a systematic review of the definition and paradigm of BES and concludes that BES should address both occupant demand and energy or emissions requirements simultaneously. The characteristics of occupant demand in building services are divided into four dimensions: time and space, quality and quantity, control and adjustment, and flexibility. Technical options regarding the building architecture, the envelope system, and the building energy system are reviewed. Finally, policy implications and recommendations are discussed. The multiple benefits and multidisciplinary nature of BES justify further research and accelerated policy implementation in developed and developing countries.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2023License: CC BY NCFull-Text: https://escholarship.org/uc/item/7mz5b1sdData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of CaliforniaRenewable and Sustainable Energy ReviewsArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen 55 selected citations 55 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2023License: CC BY NCFull-Text: https://escholarship.org/uc/item/7mz5b1sdData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of CaliforniaRenewable and Sustainable Energy ReviewsArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:BMJ Funded by:UKRI | Skyfarer - enabling drone..., NIH | Assessing the Relative an...UKRI| Skyfarer - enabling drone powered medical logistics in the UK ,NIH| Assessing the Relative and Absolute Risk for site-Specific Cancer Mortality attributed to Household Air PollutionTeja Nagaradona; Bryan A Bassig; Dean Hosgood; Roel C H Vermeulen; Bofu Ning; Wei Jie Seow; Wei Hu; Lützen Portengen; Jason Wong; Xiao-Ou Shu; Wei Zheng; Nathan Appel; Yu-Tang Gao; Qiu-Yin Cai; Gong Yang; Ying Chen; George Downward; Jihua Li; Kaiyun Yang; Lauren McCullough; Debra Silverman; Yunchao Huang; Qing Lan;Objectives Never-smoking women in Xuanwei (XW), China, have some of the highest lung cancer rates in the country. This has been attributed to the combustion of smoky coal used for indoor cooking and heating. The aim of this study was to evaluate the spectrum of cause-specific mortality in this unique population, including among those who use smokeless coal, considered ‘cleaner’ coal in XW, as this has not been well-characterised. Design Cohort study. Setting XW, a rural region of China where residents routinely burn coal for indoor cooking and heating. Participants Age-adjusted, cause-specific mortality rates between 1976 and 2011 were calculated and compared among lifetime smoky and smokeless coal users in a cohort of 42 420 men and women from XW. Mortality rates for XW women were compared with those for a cohort of predominately never-smoking women in Shanghai. Results Mortality in smoky coal users was driven by cancer (41%), with lung cancer accounting for 88% of cancer deaths. In contrast, cardiovascular disease (CVD) accounted for 32% of deaths among smokeless coal users, with 7% of deaths from cancer. Total cancer mortality was four times higher among smoky coal users relative to smokeless coal users, particularly for lung cancer (standardised rate ratio (SRR)=17.6). Smokeless coal users had higher mortality rates of CVD (SRR=2.9) and pneumonia (SRR=2.5) compared with smoky coal users. These patterns were similar in men and women, even though XW women rarely smoked cigarettes. Women in XW, regardless of coal type used, had over a threefold higher rate of overall mortality, and most cause-specific outcomes were elevated compared with women in Shanghai. Conclusions Cause-specific mortality burden differs in XW based on the lifetime use of different coal types. These observations provide evidence that eliminating all coal use for indoor cooking and heating is an important next step in improving public health particularly in developing countries.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 2 selected citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2021Publisher:Springer Science and Business Media LLC Funded by:NSF | Dimensions: Collaborative...NSF| Dimensions: Collaborative Research: Community genomic drivers of moss microbiome assembly and function in rapidly changing Alaskan ecosystemsJulia E. M. Stuart; Hannah Holland-Moritz; Mélanie Jean; Samantha N. Miller; José Miguel Ponciano; Stuart F. McDaniel; Michelle C. Mack;pmid: 34319437
Moss-associated N2 fixation by epiphytic microbes is a key biogeochemical process in nutrient-limited high-latitude ecosystems. Abiotic drivers, such as temperature and moisture, and the identity of host mosses are critical sources of variation in N2 fixation rates. An understanding of the potential interaction between these factors is essential for predicting N inputs as moss communities change with the climate. To further understand the drivers and results of N2 fixation rate variation, we obtained natural abundance values of C and N isotopes and an associated rate of N2 fixation with 15N2 gas incubations in 34 moss species collected in three regions across Alaska, USA. We hypothesized that δ15N values would increase toward 0‰ with higher N2 fixation to reflect the increasing contribution of fixed N2 in moss biomass. Second, we hypothesized that δ13C and N2 fixation would be positively related, as enriched δ13C signatures reflect abiotic conditions favorable to N2 fixation. We expected that the magnitude of these relationships would vary among types of host mosses, reflecting differences in anatomy and habitat. We found little support for our first hypothesis, with only a modest positive relationship between N2 fixation rates and δ15N in a structural equation model. We found a significant positive relationship between δ13C and N2 fixation only in Hypnales, where the probability of N2 fixation activity reached 95% when δ13C values exceeded - 30.4‰. We conclude that moisture and temperature interact strongly with host moss identity in determining the extent to which abiotic conditions impact associated N2 fixation rates.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.6 selected citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
description Publicationkeyboard_double_arrow_right Article 2022Publisher:Frontiers Media SA Hannah von Hammerstein; Renee O. Setter; Martin van Aswegen; Jens J. Currie; Stephanie H. Stack; Stephanie H. Stack;Anthropogenic greenhouse gas emissions are triggering changes in global climate and warming the ocean. This will affect many marine organisms, particularly those with high site fidelity and habitat temperature preferences, such as humpback whales on their breeding grounds. To study the impacts of a warming ocean on marine organisms, large-scale projections of climatic variables are crucial. Global models are of 0.25 - 1° (~25-100 km) resolution, and not ideal to predict localized changes. Here, we provide 0.05° resolution (~5 km) sea surface temperature (SST) projections, statistically downscaled using the delta method. We illustrate the shifting isotherms of the critical 21 and 28°C boundaries, which border the climatic envelope that humpback whales prefer for their breeding grounds, over the course of the 21st century on a decadal temporal resolution. Results show by the end of the 21st century, 35% of humpback whale breeding areas will experience SSTs above or within 1°C of current thresholds if present-day social, economic, and technological trends continue (‘middle of the road’ CMIP6 greenhouse gas trajectory SSP2-RCP4.5). This number rises to 67% under the scenario describing rapid economic growth in carbon-intensive industries (‘fossil-fueled development’ CMIP6 greenhouse gas trajectory SSP5-RCP8.5). These projections highlight the importance of reducing global greenhouse gas emissions and minimizing further SST increases to preserve ecological integrity of humpback whale breeding areas. In this context, our results emphasize the need to focus on protection of critical ocean habitat and to provide high-resolution climate data for this purpose.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 15 selected citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Shengyuan Li; Zhonghua Gou;doi: 10.3390/land12101956
In the context of climate change and rural revitalization, numerous solar photovoltaic (PV) panels are being installed on village roofs and lands, impacting the enjoyment of the new rural landscape characterized by PV panels. However, the visual acceptance of PV panels in rural areas of China is not yet fully understood. This study aims to identify and correlate three key influential factors that contribute to the acceptance and appreciation of PV panels in China’s rural settings. A quasi-experiment was conducted, incorporating diverse landscapes into six rural settings, each containing both the original landscape and PV panels. The findings demonstrated that the original rural landscape was significantly more scenic than PV panels, and factors contributing to the appreciation of traditional landscapes, such as nostalgia, played a vital role in rejecting PV panels. Conversely, renewable energy-related factors, such as economic stakes and moral desirability, were found to contribute to the acceptance of PV panels. This study contributes to the strategic planning and design of solar PV panels in rural landscapes, taking into consideration social acceptance and local contexts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 2 selected citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2019Publisher:Elsevier BV Lv He; Li Jingyuan; Yu Xiumin; Li Mengliang; Yang Tian;Abstract In this paper, the effects of hydrogen blending radio and EGR rate on combustion and emission characteristics of a PFI gasoline engine with hydrogen direct-injection have been investigated by numerical modeling methods using a new generation of CFD simulation software CONVERGE. Results showed that compared with original engine, hydrogen direct-injection PFI gasoline engine had a better performance on combustion characteristics, but it also had a disadvantage of increasing NOx emissions. With the increase of hydrogen blending radio, combustion duration shortened and CA50 advanced and was closer to TDC. And CO and THC emissions decreased, however NOx emission increased. The variations of the combustion and emission characteristics followed by the increase of the EGR rate were exactly the opposite to the change of hydrogen blending radio. Considering both the combustion and emission characteristics, using moderate EGR rate (15%~20%) under high hydrogen blending radio (15%~20%) condition can realize the simultaneous improvement of combustion and emission performance.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 19 selected citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2020Publisher:Elsevier BV Chengjun Wang; Weidong Liang; Yueyue Yang; Fang Liu; Hanxue Sun; Zhaoqi Zhu; An Li;Abstract The development of high-performance shape-stable phase change materials composites (ss-PCMCs) with enhanced thermal conductivity and high phase change enthalpy is of great importance for thermal energy storage. Herein, we report the creation of novel ss-PCMCs by incorporation of organic PCMs (1-hexadecanamine (HDA) and palmitic acid (PA)) into the biomass carbon aerogels (BCAs refer to sunflower receptacle spongy carbon aerogel (r-CA) and sunflower stem carbon aerogel (s-CA)) through a simple vacuum infusion. Due to their abundant porosity, light weight and high specific surface area, organic PCMs can be spontaneously loaded into BCAs with an ultrahigh loading rate of up to 1988 wt%. The obtained of PCM/BCAs composites show high phase change enthalpy of ranging from 207.9 kJ kg−1 to 271 kJ kg−1, in addition to their excellent thermal stability and recyclability, e.g., their phase change enthalpy nearly remains unchanged even after 50 times of melting/freezing cycles. The PCM/BCAs composites also show an enhanced thermal conductivity. Furthermore, the light-to-thermal conversion efficiency was found to be promising candidates for light-to-thermal energy storage applications on basis of their 75.6% for HDA/r-CA and 67.8% for HDA/s-CA, respectively, making them abundant resource, cost-efficiency, simple and scalable fabrication process.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.141 selected citations 141 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Report , Other literature type 1993Publisher:Office of Scientific and Technical Information (OSTI) Authors: Tyson, K. S.;doi: 10.2172/10107273
The US Department of Energy (DOE) is using the total fuel cycle analysis (TFCA) methodology to evaluate energy choices. The National Energy Strategy (NES) identifies TFCA as a tool to describe and quantify the environmental, social, and economic costs and benefits associated with energy alternatives. A TFCA should quantify inputs and outputs, their impacts on society, and the value of those impacts that occur from each activity involved in producing and using fuels, cradle-to-grave. New fuels and energy technologies can be consistently evaluated and compared using TFCA, providing a sound basis for ranking policy options that expand the fuel choices available to consumers. This study is limited to creating an inventory of inputs and outputs for three transportation fuels: (1) reformulated gasoline (RFG) that meets the standards of the Clean Air Act Amendments of 1990 (CAAA) using methyl tertiary butyl ether (MTBE); (2) gasohol (E10), a mixture of 10% ethanol made from municipal solid waste (MSW) and 90% gasoline; and (3) E95, a mixture of 5% gasoline and 95% ethanol made from energy crops such as grasses and trees. The ethanol referred to in this study is produced from lignocellulosic material-trees, grass, and organic wastes -- called biomass. The biomass is converted to ethanol using an experimental technology described in more detail later. Corn-ethanol is not discussed in this report. This study is limited to estimating an inventory of inputs and outputs for each fuel cycle, similar to a mass balance study, for several reasons: (1) to manage the size of the project; (2) to provide the data required for others to conduct site-specific impact analysis on a case-by-case basis; (3) to reduce data requirements associated with projecting future environmental baselines and other variables that require an internally consistent scenario.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.30 selected citations 30 popularity Top 10% influence Top 1% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Springer Science and Business Media LLC Funded by:NSF | EAGER SitS: Quantifying t...NSF| EAGER SitS: Quantifying the value of information for sensor placements to improve soil signals for agricultural water managementAuthors: Sourav Mukherjee; Ashok Kumar Mishra; Jakob Zscheischler; Dara Entekhabi;AbstractClimate change amplifies dry and hot extremes, yet the mechanism, extent, scope, and temporal scale of causal linkages between dry and hot extremes remain underexplored. Here using the concept of system dynamics, we investigate cross-scale interactions within dry-to-hot and hot-to-dry extreme event networks and quantify the magnitude, temporal-scale, and physical drivers of cascading effects (CEs) of drying-on-heating and vice-versa, across the globe. We find that locations exhibiting exceptionally strong CE (hotspots) for dry-to-hot and hot-to-dry extremes generally coincide. However, the CEs differ strongly in their timescale of interaction, hydroclimatic drivers, and sensitivity to changes in the soil-plant-atmosphere continuum and background aridity. The CE of drying-on-heating in the hotspot locations reaches its peak immediately driven by the compounding influence of vapor pressure deficit, potential evapotranspiration, and precipitation. In contrast, the CE of heating-on-drying peaks gradually dominated by concurrent changes in potential evapotranspiration, precipitation, and net-radiation with the effect of vapor pressure deficit being strongly controlled by ecosystem isohydricity and background aridity. Our results help improve our understanding of the causal linkages and the predictability of compound extremes and related impacts.
Nature Communication... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 54 selected citations 54 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature Communication... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:MDPI AG Authors: Sébastien M. R. Dente; Toshiyuki Shimizu; Tao Wang; Seiji Hashimoto;doi: 10.3390/su12208730
The current organization of water supply systems demands drinking standards for all the households’ usage of water. Few dual water systems, i.e., systems in which the quality of the water supplied is differentiated by types of use, exist but are mainly circumscribed to developing countries. Besides, bath and showers are so far considered as a potable use of water despite only drinking and cooking activities requiring the high-quality standards of potable water. The present work demonstrates how the principles of dual water systems can be incorporated into the sustainable concept of product-service system (PSS) using a dual water system of a municipal water supply treatment plant in France as a case study. The PSS is based on the water quality, and the bathing activity of households is considered with a dedicated standard for the first time. Two systems are considered, S1 and S2, supplied with the same raw water quality and treated with drinking (S1) bathing standards (S2). The quality parameters considered are total organic carbon (TOC) and turbidity (T) and the potential savings related to costs, material, and energy consumptions are assessed using EVALEAU as a process modeling tool. The treatment lines consisted of powdered activated carbon (PAC) addition, coagulation, flocculation, settling, and rapid sand filtration. Results show that material consumption can be reduced by 41% mainly through the decrease in chemical consumption associated with the change of requirement for the TOC parameter. On the opposite, energy consumption was found dependent on the water of volume treated rather than its quality leading to only marginal savings. The cost was decreased by 37% as a result of the reduction of the chemicals consumed.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/20/8730/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 2 selected citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/20/8730/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Shan Hu; Xin Zhou; Da Yan; Fei Guo; Tianzhen Hong; Yi Jiang;Among the sufficiency, efficiency, and renewable frameworks for reducing energy use and energy-related carbon emissions, Building Energy Sufficiency (BES) is gaining attention from policy makers and engineers. Despite the significant role of the building sector in the success of national energy and climate plans, there is a lack of research on the drivers, technologies, and effective policy instruments required to achieve BES in the building operational phase. To fill this gap, this study presents a systematic review of the definition and paradigm of BES and concludes that BES should address both occupant demand and energy or emissions requirements simultaneously. The characteristics of occupant demand in building services are divided into four dimensions: time and space, quality and quantity, control and adjustment, and flexibility. Technical options regarding the building architecture, the envelope system, and the building energy system are reviewed. Finally, policy implications and recommendations are discussed. The multiple benefits and multidisciplinary nature of BES justify further research and accelerated policy implementation in developed and developing countries.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2023License: CC BY NCFull-Text: https://escholarship.org/uc/item/7mz5b1sdData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of CaliforniaRenewable and Sustainable Energy ReviewsArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen 55 selected citations 55 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2023License: CC BY NCFull-Text: https://escholarship.org/uc/item/7mz5b1sdData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of CaliforniaRenewable and Sustainable Energy ReviewsArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:BMJ Funded by:UKRI | Skyfarer - enabling drone..., NIH | Assessing the Relative an...UKRI| Skyfarer - enabling drone powered medical logistics in the UK ,NIH| Assessing the Relative and Absolute Risk for site-Specific Cancer Mortality attributed to Household Air PollutionTeja Nagaradona; Bryan A Bassig; Dean Hosgood; Roel C H Vermeulen; Bofu Ning; Wei Jie Seow; Wei Hu; Lützen Portengen; Jason Wong; Xiao-Ou Shu; Wei Zheng; Nathan Appel; Yu-Tang Gao; Qiu-Yin Cai; Gong Yang; Ying Chen; George Downward; Jihua Li; Kaiyun Yang; Lauren McCullough; Debra Silverman; Yunchao Huang; Qing Lan;Objectives Never-smoking women in Xuanwei (XW), China, have some of the highest lung cancer rates in the country. This has been attributed to the combustion of smoky coal used for indoor cooking and heating. The aim of this study was to evaluate the spectrum of cause-specific mortality in this unique population, including among those who use smokeless coal, considered ‘cleaner’ coal in XW, as this has not been well-characterised. Design Cohort study. Setting XW, a rural region of China where residents routinely burn coal for indoor cooking and heating. Participants Age-adjusted, cause-specific mortality rates between 1976 and 2011 were calculated and compared among lifetime smoky and smokeless coal users in a cohort of 42 420 men and women from XW. Mortality rates for XW women were compared with those for a cohort of predominately never-smoking women in Shanghai. Results Mortality in smoky coal users was driven by cancer (41%), with lung cancer accounting for 88% of cancer deaths. In contrast, cardiovascular disease (CVD) accounted for 32% of deaths among smokeless coal users, with 7% of deaths from cancer. Total cancer mortality was four times higher among smoky coal users relative to smokeless coal users, particularly for lung cancer (standardised rate ratio (SRR)=17.6). Smokeless coal users had higher mortality rates of CVD (SRR=2.9) and pneumonia (SRR=2.5) compared with smoky coal users. These patterns were similar in men and women, even though XW women rarely smoked cigarettes. Women in XW, regardless of coal type used, had over a threefold higher rate of overall mortality, and most cause-specific outcomes were elevated compared with women in Shanghai. Conclusions Cause-specific mortality burden differs in XW based on the lifetime use of different coal types. These observations provide evidence that eliminating all coal use for indoor cooking and heating is an important next step in improving public health particularly in developing countries.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 2 selected citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2021Publisher:Springer Science and Business Media LLC Funded by:NSF | Dimensions: Collaborative...NSF| Dimensions: Collaborative Research: Community genomic drivers of moss microbiome assembly and function in rapidly changing Alaskan ecosystemsJulia E. M. Stuart; Hannah Holland-Moritz; Mélanie Jean; Samantha N. Miller; José Miguel Ponciano; Stuart F. McDaniel; Michelle C. Mack;pmid: 34319437
Moss-associated N2 fixation by epiphytic microbes is a key biogeochemical process in nutrient-limited high-latitude ecosystems. Abiotic drivers, such as temperature and moisture, and the identity of host mosses are critical sources of variation in N2 fixation rates. An understanding of the potential interaction between these factors is essential for predicting N inputs as moss communities change with the climate. To further understand the drivers and results of N2 fixation rate variation, we obtained natural abundance values of C and N isotopes and an associated rate of N2 fixation with 15N2 gas incubations in 34 moss species collected in three regions across Alaska, USA. We hypothesized that δ15N values would increase toward 0‰ with higher N2 fixation to reflect the increasing contribution of fixed N2 in moss biomass. Second, we hypothesized that δ13C and N2 fixation would be positively related, as enriched δ13C signatures reflect abiotic conditions favorable to N2 fixation. We expected that the magnitude of these relationships would vary among types of host mosses, reflecting differences in anatomy and habitat. We found little support for our first hypothesis, with only a modest positive relationship between N2 fixation rates and δ15N in a structural equation model. We found a significant positive relationship between δ13C and N2 fixation only in Hypnales, where the probability of N2 fixation activity reached 95% when δ13C values exceeded - 30.4‰. We conclude that moisture and temperature interact strongly with host moss identity in determining the extent to which abiotic conditions impact associated N2 fixation rates.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.6 selected citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
