- home
- Advanced Search
- Energy Research
- Open Access
- US
- CN
- DE
- BE
- SA
- Energy Research
- Open Access
- US
- CN
- DE
- BE
- SA
description Publicationkeyboard_double_arrow_right Article 2016Publisher:Elsevier BV Annalisa Manera; Mingjun Wang; Mingjun Wang; Suizheng Qiu; Guanghui Su;Abstract The improvement of thermodynamic efficiency of power plants is of great interest for the whole energy industry. The use of Kalina cycle has a great potential to improve the thermal efficiency of a nuclear power plant. This cycle uses a mixture of ammonia and water as working fluid. In this paper, we discuss the development of an Ammonia-Water mixture Property Code (AWProC). The estimation of the mixture properties are based on the Gibbs free energy functions. The code is verified and validated against experimental data available in the literature and REFPROP code. It is shown that AWProC can accurately estimate the thermodynamic properties of ammonia-water mixtures over a wide range of conditions, including high temperature and pressure regions. The code is then used to investigate the feasibility of applying the Kalina cycle to a typical Pressurizer Water Reactor (PWR) plant as an effective way to improve the plant efficiency. The fundamental of Basic-Kalina (B-K) cycle is described in detail firstly. Then, two modified configurations, Recuperation-Kalina (R-K) and Flash-Kalina (F-K) cycles respectively, are proposed for a typical 1000 MWe PWR. The simulation results indicate that the R-K type cycle can reach about 31.2% efficiency with simple equipment requirements, while the F-K type cycle can reach efficiencies up to about 34.8%, but at the expenses of a slightly more complex design. The present work demonstrates the applicability of the Kalina cycle as a way to improve the thermal efficiency of a nuclear power plant. This concept is meaningful for improving nuclear power plants economic and competitiveness.
Progress in Nuclear ... arrow_drop_down Progress in Nuclear EnergyArticle . 2016License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)Progress in Nuclear EnergyArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routeshybrid 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Progress in Nuclear ... arrow_drop_down Progress in Nuclear EnergyArticle . 2016License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)Progress in Nuclear EnergyArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2018Publisher:Elsevier BV Kimberly E. Baugh; Mikhail Zhizhin; Mikhail Zhizhin; Morgan Bazilian; Feng-Chi Hsu; Tilottama Ghosh; Christopher D. Elvidge;In this paper, we compare 2015 satellite-derived natural gas (gas) flaring data with the greenhouse gas reduction targets presented by those countries in their nationally determined contributions (NDC) under the United Nations Framework Convention on Climate Change (UNFCCC) Paris Agreement. Converting from flaring to utilization is an attractive option for reducing emissions. The analysis rates the potential role of reduction of gas flaring in meeting country-specific NDC targets. The analysis includes three categories of flaring: upstream in oil and gas production areas, downstream at refineries and transport facilities, and industrial (e.g., coal mines, landfills, water treatment plants, etc.). Upstream flaring dominates with 90.6% of all flaring. Global flaring represents less than 2% of the NDC reduction target. However, most gas flaring is concentrated in a limited set of countries, leaving the possibility that flaring reduction could contribute a sizeable portion of the NDC targets for specific countries. States that could fully meet their NDC targets through gas flaring reductions include: Yemen (240%), Algeria (197%), and Iraq (136%). Countries which could meet a substantial portion of their NDC targets with gas flaring reductions include: Gabon (94%), Algeria (48%), Venezuela (47%), Iran (34%), and Sudan (33%). On the other hand, several countries with large flared gas volumes could only meet a small portion of their NDC targets from gas flaring reductions, including the Russian Federation (2.4%) and the USA (0.1%). These findings may be useful in guiding national level efforts to meet NDC greenhouse gas reduction targets. Keywords: VIIRS, Gas flaring, Nightfire, Nationally determined contributions, UN climate agreement
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 123 citations 123 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2015Publisher:MDPI AG Authors: Koo, Kyung; Patten, Bernard; Madden, Marguerite;doi: 10.3390/f6041208
Alpine, subalpine and boreal tree species, of low genetic diversity and adapted to low optimal temperatures, are vulnerable to the warming effects of global climate change. The accurate prediction of these species’ distributions in response to climate change is critical for effective planning and management. The goal of this research is to predict climate change effects on the distribution of red spruce (Picea rubens Sarg.) in the Great Smoky Mountains National Park (GSMNP), eastern USA. Climate change is, however, conflated with other environmental factors, making its assessment a complex systems problem in which indirect effects are significant in causality. Predictions were made by linking a tree growth simulation model, red spruce growth model (ARIM.SIM), to a GIS spatial model, red spruce habitat model (ARIM.HAB). ARIM.SIM quantifies direct and indirect interactions between red spruce and its growth factors, revealing the latter to be dominant. ARIM.HAB spatially distributes the ARIM.SIM simulations under the assumption that greater growth reflects higher probabilities of presence. ARIM.HAB predicts the future habitat suitability of red spruce based on growth predictions of ARIM.SIM under climate change and three air pollution scenarios: 10% increase, no change and 10% decrease. Results show that suitable habitats shrink most when air pollution increases. Higher temperatures cause losses of most low-elevation habitats. Increased precipitation and air pollution produce acid rain, which causes loss of both low- and high-elevation habitats. The general prediction is that climate change will cause contraction of red spruce habitats at both lower and higher elevations in GSMNP, and the effects will be exacerbated by increased air pollution. These predictions provide valuable information for understanding potential impacts of global climate change on the spatiotemporal distribution of red spruce habitats in GSMNP.
Forests arrow_drop_down ForestsOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/1999-4907/6/4/1208/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Forests arrow_drop_down ForestsOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/1999-4907/6/4/1208/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2022Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Jiawei Zhang; Hongyang Jia; Ning Zhang;<p>Increasing renewable energy penetrations bring complex feasibility and stability problems. Data-driven methods are applied in extracting and embedding these feasibility and stability rules in power system operations and planning. This paper presents a method of alternate support vector machine decision trees for rule extraction problems. The method has significant improvements to the classical decision-tree-based algorithms in terms of efficiency, stability and versatility. Finally, we apply the method to several power and energy system scenarios to show its effectiveness.</p>
https://doi.org/10.3... arrow_drop_down https://doi.org/10.36227/techr...Article . 2022 . Peer-reviewedLicense: CC BY NC SAData sources: Crossrefhttps://doi.org/10.36227/techr...Article . 2022 . Peer-reviewedLicense: CC BY NC SAData sources: CrossrefIEEE Transactions on Power SystemsArticle . 2023 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routeshybrid 17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.3... arrow_drop_down https://doi.org/10.36227/techr...Article . 2022 . Peer-reviewedLicense: CC BY NC SAData sources: Crossrefhttps://doi.org/10.36227/techr...Article . 2022 . Peer-reviewedLicense: CC BY NC SAData sources: CrossrefIEEE Transactions on Power SystemsArticle . 2023 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Report , Other literature type 2011Publisher:Office of Scientific and Technical Information (OSTI) Authors: Zavadil, Kevin Robert; Hickner; Michael A. (Pennsylvania State University; University Park; +3 AuthorsZavadil, Kevin Robert; Hickner; Michael A. (Pennsylvania State University; University Park; PA); Gross; Matthew L. (Pennsylvania State University;doi: 10.2172/1011683
The Proliferation Assessment (program area - Things Thin) within the Defense Systems and Assessment Investment Area desires high energy density and long-lived power sources with moderate currents (mA) that can be used as building blocks in platforms for the continuous monitoring of chemical, biological, and radiological agents. Fuel cells can be an optimum choice for a power source because of the high energy densities that are possible with liquid fuels. Additionally, power generation and fuel storage can be decoupled in a fuel cell for independent control of energy and power density for customized, application-driven power solutions. Direct methanol fuel cells (DMFC) are explored as a possible concept to develop into ultrathin or two-dimensional power sources. New developments in nanotechnology, advanced fabrication techniques, and materials science are exploited to create a planar DMFC that could be co-located with electronics in a chip format. Carbon nanotubes and pyrolyzed polymers are used as building block electrodes - porous, mechanically compliant current collectors. Directed assembly methods including surface functionalization and layer-by-layer deposition with polyelectrolytes are used to pattern, build, and add functionality to these electrodes. These same techniques are used to incorporate nanoscale selective electrocatalyst into the carbon electrodes to provide a high density more » of active electron transfer sites for the methanol oxidation and oxygen reduction reactions. The resulting electrodes are characterized in terms of their physical properties, electrocatalytic function, and selectivity to better understand how processing impacts their performance attributes. The basic function of a membrane electrode assembly is demonstrated for several prototype devices. « less
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2020Publisher:MDPI AG Syed Afaq Ali Shah; Muhammad Hassan Sayyad; Karim Khan; Kai Guo; Fei Shen; Jinghua Sun; Ayesha Khan Tareen; Yubin Gong; Zhongyi Guo;doi: 10.3390/en13195092
Since its invention in 2009, Perovskite solar cells (PSCs) has attracted great attention because of its low cost, numerous options of efficiency enhancement, ease of manufacturing and high-performance. Within a short span of time, the PSC has already outperformed thin-film and multicrystalline silicon solar cells. A current certified efficiency of 25.2% demonstrates that it has the potential to replace its forerunner generations. However, to commercialize PSCs, some problems need to be addressed. The toxic nature of lead which is the major component of light absorbing layer, and inherited stability issues of fabricated devices are the major hurdles in the industrialization of this technology. Therefore, new researching areas focus on the lead-free metal halide perovskites with analogous optical and photovoltaic performances. Tin being nontoxic and as one of group IV(A) elements, is considered as the most suitable alternate for lead because of their similarities in chemical properties. Efficiencies exceeding 13% have been recorded using Tin halide perovskite based devices. This review summarizes progress made so far in this field, mainly focusing on the stability and photovoltaic performances. Role of different cations and their composition on device performances and stability have been involved and discussed. With a considerable room for enhancement of both efficiency and device stability, different optimized strategies reported so far have also been presented. Finally, the future developing trends and prospects of the PSCs are analyzed and forecasted.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 45 citations 45 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2024Embargo end date: 22 Oct 2024Publisher:Elsevier BV Authors: Aamir Dean; Elsadig Mahdi;The research focus has shifted towards lightweight structures with high energy absorption capabilities due to advancements in automotive safety technology. This study specifically investigates the impact of cross-sectional area on the energy absorption characteristics of hemispherical composite shells. The experimental phase involves characterizing a glass fiber epoxy composite, followed by the manufacture of hemispherical composite shell specimens with varying cross-sectional areas. These specimens undergo quasi-static axial compressive loading, and the energy absorption parameters are analyzed. The results indicate a significant influence of the composite cross-sectional area on the crushing behavior of hemispherical shells, with a observed decrease in specific energy absorption as the cross-sectional area increases. Additionally, a 3D Finite Element (FE) model is created using ABAQUS FE code to numerically simulate the crushing process. The model's predictions are compared and validated against experimentally measured values, demonstrating a satisfactory correlation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Leijiao Ge; Jun Yan; Yonghui Sun; Zhongguan Wang;doi: 10.3390/en15114164
In recent years, the accelerating climate change and intensifying natural disasters have called for more renewable, resilient, and reliable energy from more distributed sources to more diversified consumers, resulting in a pressing need for advanced situational awareness of modern smart distribution systems [...]
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2017Publisher:MDPI AG Baohua Xie; Jiangxin Gu; Junbao Yu; Guangxuan Han; Xunhua Zheng; Yu Xu; Haitao Lin;doi: 10.3390/atmos8100181
Land use changes from cropland to orchards in Eastern China have raised serious concerns about the regional nitrogen (N) cycle and greenhouse gas balance. We measured soil nitrous oxide (N2O) emissions and methane (CH4) uptake using manual static chambers in an apple orchard. The primary aims were to assess the effect of N fertilizer application on gas fluxes and quantify the site-specific N2O emission factor (EFd). Field experiments were arranged in a randomized block design with three N input rates (0, 800 and 2600/2000 kg N ha−1 year−1). We found that orchard soils were a negligible CH4 sink (−1.1 to −0.4 kg C ha−1 year−1). Annual N2O emissions responded positively to N input rates, ranging from 34.1 to 60.3 kg N ha−1 year−1. EFd ranged from 1.00% to 1.65% with a mean of 1.34%. The extremely large background emissions of N2O (34.1–34.3 kg N ha−1 year−1) most likely originated from nitrate accumulation in the soil profile because of historical overuse of N fertilizer. We conclude that (1) site-specific EFd is suitable for assessing regional direct N2O emissions from upland orchards; and (2) conventional fertilization regimes must be avoided, and reduced N input rates are recommended in the study region.
Atmosphere arrow_drop_down AtmosphereOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2073-4433/8/10/181/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 23 citations 23 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Atmosphere arrow_drop_down AtmosphereOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2073-4433/8/10/181/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2023Publisher:Frontiers Media SA Funded by:EC | IntelCompEC| IntelCompPapadaki, Lydia; Stavridis, Charalampos; Koundouri, Phoebe; Grypari, Ioanna; Kazbek, Madina; Papageorgiou, Haris; Theodossiou, Nicolaos;The phenomena of climate change transcend all national and regional boundaries. To address this complex challenge, we must determine the areas of the country of interest, in this case, Greece, that have been most adversely affected by climate. Greece is surrounded by water, and a significant part of its GDP is derived from the marine and maritime industries, including tourism. Since the start of the IntelComp project, a Preparatory Living Lab (PLL) has been planned and delivered, feeding into the development of the IntelComp platform and the Living Lab on Climate Change Adaptation. The study's results lead to the conclusion that one of the most important challenges in tackling climate change is the decarbonisation challenge, specifically the shift to renewable energy sources and the investments that must be made. Several EU and national policy frameworks, including the European Green Deal, the Climate Law, the National Long-term Strategy for 2050 (on the Climate and Energy), highlight the decarbonisation as one of the major challenges in the climate change pledge. This will be the primary subject of the IntelComp climate change case study. PLLs also led to the identification of policy questions and useful data sources to aid the IntelComp project's launch. While previous research on co-production has primarily focused on involving citizens through public participation processes in order to gain their support, trust, and insights in structured decision-making processes, our approach opens a new channel for incorporating external knowledge into problem-solving processes. The IntelComp project will aid in policy development by providing pertinent tools co-developed with the final users that will provide insights and analysis in the field of STI (Science, Technology, Innovation) encompassing all of the Energy areas mentioned above.
Frontiers in Environ... arrow_drop_down Frontiers in Environmental EconomicsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefOnline Research Database In TechnologyArticle . 2023Data sources: Online Research Database In TechnologyFrontiers in Environmental EconomicsArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Frontiers in Environ... arrow_drop_down Frontiers in Environmental EconomicsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefOnline Research Database In TechnologyArticle . 2023Data sources: Online Research Database In TechnologyFrontiers in Environmental EconomicsArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
description Publicationkeyboard_double_arrow_right Article 2016Publisher:Elsevier BV Annalisa Manera; Mingjun Wang; Mingjun Wang; Suizheng Qiu; Guanghui Su;Abstract The improvement of thermodynamic efficiency of power plants is of great interest for the whole energy industry. The use of Kalina cycle has a great potential to improve the thermal efficiency of a nuclear power plant. This cycle uses a mixture of ammonia and water as working fluid. In this paper, we discuss the development of an Ammonia-Water mixture Property Code (AWProC). The estimation of the mixture properties are based on the Gibbs free energy functions. The code is verified and validated against experimental data available in the literature and REFPROP code. It is shown that AWProC can accurately estimate the thermodynamic properties of ammonia-water mixtures over a wide range of conditions, including high temperature and pressure regions. The code is then used to investigate the feasibility of applying the Kalina cycle to a typical Pressurizer Water Reactor (PWR) plant as an effective way to improve the plant efficiency. The fundamental of Basic-Kalina (B-K) cycle is described in detail firstly. Then, two modified configurations, Recuperation-Kalina (R-K) and Flash-Kalina (F-K) cycles respectively, are proposed for a typical 1000 MWe PWR. The simulation results indicate that the R-K type cycle can reach about 31.2% efficiency with simple equipment requirements, while the F-K type cycle can reach efficiencies up to about 34.8%, but at the expenses of a slightly more complex design. The present work demonstrates the applicability of the Kalina cycle as a way to improve the thermal efficiency of a nuclear power plant. This concept is meaningful for improving nuclear power plants economic and competitiveness.
Progress in Nuclear ... arrow_drop_down Progress in Nuclear EnergyArticle . 2016License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)Progress in Nuclear EnergyArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routeshybrid 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Progress in Nuclear ... arrow_drop_down Progress in Nuclear EnergyArticle . 2016License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)Progress in Nuclear EnergyArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2018Publisher:Elsevier BV Kimberly E. Baugh; Mikhail Zhizhin; Mikhail Zhizhin; Morgan Bazilian; Feng-Chi Hsu; Tilottama Ghosh; Christopher D. Elvidge;In this paper, we compare 2015 satellite-derived natural gas (gas) flaring data with the greenhouse gas reduction targets presented by those countries in their nationally determined contributions (NDC) under the United Nations Framework Convention on Climate Change (UNFCCC) Paris Agreement. Converting from flaring to utilization is an attractive option for reducing emissions. The analysis rates the potential role of reduction of gas flaring in meeting country-specific NDC targets. The analysis includes three categories of flaring: upstream in oil and gas production areas, downstream at refineries and transport facilities, and industrial (e.g., coal mines, landfills, water treatment plants, etc.). Upstream flaring dominates with 90.6% of all flaring. Global flaring represents less than 2% of the NDC reduction target. However, most gas flaring is concentrated in a limited set of countries, leaving the possibility that flaring reduction could contribute a sizeable portion of the NDC targets for specific countries. States that could fully meet their NDC targets through gas flaring reductions include: Yemen (240%), Algeria (197%), and Iraq (136%). Countries which could meet a substantial portion of their NDC targets with gas flaring reductions include: Gabon (94%), Algeria (48%), Venezuela (47%), Iran (34%), and Sudan (33%). On the other hand, several countries with large flared gas volumes could only meet a small portion of their NDC targets from gas flaring reductions, including the Russian Federation (2.4%) and the USA (0.1%). These findings may be useful in guiding national level efforts to meet NDC greenhouse gas reduction targets. Keywords: VIIRS, Gas flaring, Nightfire, Nationally determined contributions, UN climate agreement
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 123 citations 123 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2015Publisher:MDPI AG Authors: Koo, Kyung; Patten, Bernard; Madden, Marguerite;doi: 10.3390/f6041208
Alpine, subalpine and boreal tree species, of low genetic diversity and adapted to low optimal temperatures, are vulnerable to the warming effects of global climate change. The accurate prediction of these species’ distributions in response to climate change is critical for effective planning and management. The goal of this research is to predict climate change effects on the distribution of red spruce (Picea rubens Sarg.) in the Great Smoky Mountains National Park (GSMNP), eastern USA. Climate change is, however, conflated with other environmental factors, making its assessment a complex systems problem in which indirect effects are significant in causality. Predictions were made by linking a tree growth simulation model, red spruce growth model (ARIM.SIM), to a GIS spatial model, red spruce habitat model (ARIM.HAB). ARIM.SIM quantifies direct and indirect interactions between red spruce and its growth factors, revealing the latter to be dominant. ARIM.HAB spatially distributes the ARIM.SIM simulations under the assumption that greater growth reflects higher probabilities of presence. ARIM.HAB predicts the future habitat suitability of red spruce based on growth predictions of ARIM.SIM under climate change and three air pollution scenarios: 10% increase, no change and 10% decrease. Results show that suitable habitats shrink most when air pollution increases. Higher temperatures cause losses of most low-elevation habitats. Increased precipitation and air pollution produce acid rain, which causes loss of both low- and high-elevation habitats. The general prediction is that climate change will cause contraction of red spruce habitats at both lower and higher elevations in GSMNP, and the effects will be exacerbated by increased air pollution. These predictions provide valuable information for understanding potential impacts of global climate change on the spatiotemporal distribution of red spruce habitats in GSMNP.
Forests arrow_drop_down ForestsOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/1999-4907/6/4/1208/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Forests arrow_drop_down ForestsOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/1999-4907/6/4/1208/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2022Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Jiawei Zhang; Hongyang Jia; Ning Zhang;<p>Increasing renewable energy penetrations bring complex feasibility and stability problems. Data-driven methods are applied in extracting and embedding these feasibility and stability rules in power system operations and planning. This paper presents a method of alternate support vector machine decision trees for rule extraction problems. The method has significant improvements to the classical decision-tree-based algorithms in terms of efficiency, stability and versatility. Finally, we apply the method to several power and energy system scenarios to show its effectiveness.</p>
https://doi.org/10.3... arrow_drop_down https://doi.org/10.36227/techr...Article . 2022 . Peer-reviewedLicense: CC BY NC SAData sources: Crossrefhttps://doi.org/10.36227/techr...Article . 2022 . Peer-reviewedLicense: CC BY NC SAData sources: CrossrefIEEE Transactions on Power SystemsArticle . 2023 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routeshybrid 17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.3... arrow_drop_down https://doi.org/10.36227/techr...Article . 2022 . Peer-reviewedLicense: CC BY NC SAData sources: Crossrefhttps://doi.org/10.36227/techr...Article . 2022 . Peer-reviewedLicense: CC BY NC SAData sources: CrossrefIEEE Transactions on Power SystemsArticle . 2023 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Report , Other literature type 2011Publisher:Office of Scientific and Technical Information (OSTI) Authors: Zavadil, Kevin Robert; Hickner; Michael A. (Pennsylvania State University; University Park; +3 AuthorsZavadil, Kevin Robert; Hickner; Michael A. (Pennsylvania State University; University Park; PA); Gross; Matthew L. (Pennsylvania State University;doi: 10.2172/1011683
The Proliferation Assessment (program area - Things Thin) within the Defense Systems and Assessment Investment Area desires high energy density and long-lived power sources with moderate currents (mA) that can be used as building blocks in platforms for the continuous monitoring of chemical, biological, and radiological agents. Fuel cells can be an optimum choice for a power source because of the high energy densities that are possible with liquid fuels. Additionally, power generation and fuel storage can be decoupled in a fuel cell for independent control of energy and power density for customized, application-driven power solutions. Direct methanol fuel cells (DMFC) are explored as a possible concept to develop into ultrathin or two-dimensional power sources. New developments in nanotechnology, advanced fabrication techniques, and materials science are exploited to create a planar DMFC that could be co-located with electronics in a chip format. Carbon nanotubes and pyrolyzed polymers are used as building block electrodes - porous, mechanically compliant current collectors. Directed assembly methods including surface functionalization and layer-by-layer deposition with polyelectrolytes are used to pattern, build, and add functionality to these electrodes. These same techniques are used to incorporate nanoscale selective electrocatalyst into the carbon electrodes to provide a high density more » of active electron transfer sites for the methanol oxidation and oxygen reduction reactions. The resulting electrodes are characterized in terms of their physical properties, electrocatalytic function, and selectivity to better understand how processing impacts their performance attributes. The basic function of a membrane electrode assembly is demonstrated for several prototype devices. « less
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2020Publisher:MDPI AG Syed Afaq Ali Shah; Muhammad Hassan Sayyad; Karim Khan; Kai Guo; Fei Shen; Jinghua Sun; Ayesha Khan Tareen; Yubin Gong; Zhongyi Guo;doi: 10.3390/en13195092
Since its invention in 2009, Perovskite solar cells (PSCs) has attracted great attention because of its low cost, numerous options of efficiency enhancement, ease of manufacturing and high-performance. Within a short span of time, the PSC has already outperformed thin-film and multicrystalline silicon solar cells. A current certified efficiency of 25.2% demonstrates that it has the potential to replace its forerunner generations. However, to commercialize PSCs, some problems need to be addressed. The toxic nature of lead which is the major component of light absorbing layer, and inherited stability issues of fabricated devices are the major hurdles in the industrialization of this technology. Therefore, new researching areas focus on the lead-free metal halide perovskites with analogous optical and photovoltaic performances. Tin being nontoxic and as one of group IV(A) elements, is considered as the most suitable alternate for lead because of their similarities in chemical properties. Efficiencies exceeding 13% have been recorded using Tin halide perovskite based devices. This review summarizes progress made so far in this field, mainly focusing on the stability and photovoltaic performances. Role of different cations and their composition on device performances and stability have been involved and discussed. With a considerable room for enhancement of both efficiency and device stability, different optimized strategies reported so far have also been presented. Finally, the future developing trends and prospects of the PSCs are analyzed and forecasted.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 45 citations 45 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2024Embargo end date: 22 Oct 2024Publisher:Elsevier BV Authors: Aamir Dean; Elsadig Mahdi;The research focus has shifted towards lightweight structures with high energy absorption capabilities due to advancements in automotive safety technology. This study specifically investigates the impact of cross-sectional area on the energy absorption characteristics of hemispherical composite shells. The experimental phase involves characterizing a glass fiber epoxy composite, followed by the manufacture of hemispherical composite shell specimens with varying cross-sectional areas. These specimens undergo quasi-static axial compressive loading, and the energy absorption parameters are analyzed. The results indicate a significant influence of the composite cross-sectional area on the crushing behavior of hemispherical shells, with a observed decrease in specific energy absorption as the cross-sectional area increases. Additionally, a 3D Finite Element (FE) model is created using ABAQUS FE code to numerically simulate the crushing process. The model's predictions are compared and validated against experimentally measured values, demonstrating a satisfactory correlation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Leijiao Ge; Jun Yan; Yonghui Sun; Zhongguan Wang;doi: 10.3390/en15114164
In recent years, the accelerating climate change and intensifying natural disasters have called for more renewable, resilient, and reliable energy from more distributed sources to more diversified consumers, resulting in a pressing need for advanced situational awareness of modern smart distribution systems [...]
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2017Publisher:MDPI AG Baohua Xie; Jiangxin Gu; Junbao Yu; Guangxuan Han; Xunhua Zheng; Yu Xu; Haitao Lin;doi: 10.3390/atmos8100181
Land use changes from cropland to orchards in Eastern China have raised serious concerns about the regional nitrogen (N) cycle and greenhouse gas balance. We measured soil nitrous oxide (N2O) emissions and methane (CH4) uptake using manual static chambers in an apple orchard. The primary aims were to assess the effect of N fertilizer application on gas fluxes and quantify the site-specific N2O emission factor (EFd). Field experiments were arranged in a randomized block design with three N input rates (0, 800 and 2600/2000 kg N ha−1 year−1). We found that orchard soils were a negligible CH4 sink (−1.1 to −0.4 kg C ha−1 year−1). Annual N2O emissions responded positively to N input rates, ranging from 34.1 to 60.3 kg N ha−1 year−1. EFd ranged from 1.00% to 1.65% with a mean of 1.34%. The extremely large background emissions of N2O (34.1–34.3 kg N ha−1 year−1) most likely originated from nitrate accumulation in the soil profile because of historical overuse of N fertilizer. We conclude that (1) site-specific EFd is suitable for assessing regional direct N2O emissions from upland orchards; and (2) conventional fertilization regimes must be avoided, and reduced N input rates are recommended in the study region.
Atmosphere arrow_drop_down AtmosphereOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2073-4433/8/10/181/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 23 citations 23 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Atmosphere arrow_drop_down AtmosphereOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2073-4433/8/10/181/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2023Publisher:Frontiers Media SA Funded by:EC | IntelCompEC| IntelCompPapadaki, Lydia; Stavridis, Charalampos; Koundouri, Phoebe; Grypari, Ioanna; Kazbek, Madina; Papageorgiou, Haris; Theodossiou, Nicolaos;The phenomena of climate change transcend all national and regional boundaries. To address this complex challenge, we must determine the areas of the country of interest, in this case, Greece, that have been most adversely affected by climate. Greece is surrounded by water, and a significant part of its GDP is derived from the marine and maritime industries, including tourism. Since the start of the IntelComp project, a Preparatory Living Lab (PLL) has been planned and delivered, feeding into the development of the IntelComp platform and the Living Lab on Climate Change Adaptation. The study's results lead to the conclusion that one of the most important challenges in tackling climate change is the decarbonisation challenge, specifically the shift to renewable energy sources and the investments that must be made. Several EU and national policy frameworks, including the European Green Deal, the Climate Law, the National Long-term Strategy for 2050 (on the Climate and Energy), highlight the decarbonisation as one of the major challenges in the climate change pledge. This will be the primary subject of the IntelComp climate change case study. PLLs also led to the identification of policy questions and useful data sources to aid the IntelComp project's launch. While previous research on co-production has primarily focused on involving citizens through public participation processes in order to gain their support, trust, and insights in structured decision-making processes, our approach opens a new channel for incorporating external knowledge into problem-solving processes. The IntelComp project will aid in policy development by providing pertinent tools co-developed with the final users that will provide insights and analysis in the field of STI (Science, Technology, Innovation) encompassing all of the Energy areas mentioned above.
Frontiers in Environ... arrow_drop_down Frontiers in Environmental EconomicsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefOnline Research Database In TechnologyArticle . 2023Data sources: Online Research Database In TechnologyFrontiers in Environmental EconomicsArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Frontiers in Environ... arrow_drop_down Frontiers in Environmental EconomicsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefOnline Research Database In TechnologyArticle . 2023Data sources: Online Research Database In TechnologyFrontiers in Environmental EconomicsArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
