Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
667,739 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • US
  • CN
  • NL
  • DK

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

    Author: Daniel Vázquez Pombo (dvapo@elektro.dtu.dk) ------------------------------------------------------------------------------- This dataset corresponds to the results of the paper titled: "Multi-Horizon Data-Driven Wind Power Forecast: From Nowcast to 2 Days-Ahead" 4th International Conference on Smart Energy Systems and Technologies (SEST) - 2021 -> https://sites.univaasa.fi/sest2021/ Submmited: Dec 2020 Accepted: Feb 2021 Published: Sep 2021 ------------------------------------------------------------------------------- The folder contains all the results presented in the paper, for clarity. Additional resources might be supplied under request. -------------------------------------------------------------------------------

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Smithsonian figsharearrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Smithsonian figshare
    Dataset . 2021
    License: CC BY SA
    https://dx.doi.org/10.11583/dt...
    Dataset . 2021
    License: CC BY SA
    Data sources: Datacite
    https://dx.doi.org/10.11583/dt...
    Dataset . 2021
    License: CC BY SA
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Smithsonian figsharearrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Smithsonian figshare
      Dataset . 2021
      License: CC BY SA
      https://dx.doi.org/10.11583/dt...
      Dataset . 2021
      License: CC BY SA
      Data sources: Datacite
      https://dx.doi.org/10.11583/dt...
      Dataset . 2021
      License: CC BY SA
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: John, Jasmin G; Blanton, Chris; McHugh, Colleen; Radhakrishnan, Aparna; +17 Authors

    Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.NOAA-GFDL.GFDL-ESM4.ssp245' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The GFDL-ESM4 climate model, released in 2018, includes the following components: aerosol: interactive, atmos: GFDL-AM4.1 (Cubed-sphere (c96) - 1 degree nominal horizontal resolution; 360 x 180 longitude/latitude; 49 levels; top level 1 Pa), atmosChem: GFDL-ATMCHEM4.1 (full atmospheric chemistry), land: GFDL-LM4.1, landIce: GFDL-LM4.1, ocean: GFDL-OM4p5 (GFDL-MOM6, tripolar - nominal 0.5 deg; 720 x 576 longitude/latitude; 75 levels; top grid cell 0-2 m), ocnBgchem: GFDL-COBALTv2, seaIce: GFDL-SIM4p5 (GFDL-SIS2.0, tripolar - nominal 0.5 deg; 720 x 576 longitude/latitude; 5 layers; 5 thickness categories). The model was run by the National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory, Princeton, NJ 08540, USA (NOAA-GFDL) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, atmosChem: 100 km, land: 100 km, landIce: 100 km, ocean: 50 km, ocnBgchem: 50 km, seaIce: 50 km.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ World Data Center fo...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    World Data Center for Climate
    Dataset . 2023
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ World Data Center fo...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      World Data Center for Climate
      Dataset . 2023
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

    The purpose of this study is to evaluate the safety and tolerability of the JAK2 inhibitor XL019 administered orally in adults with Polycythemia Vera.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ClinicalTrials.govarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ClinicalTrials.gov
    Clinical Trial . 2008
    Data sources: ClinicalTrials.gov
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ClinicalTrials.govarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ClinicalTrials.gov
      Clinical Trial . 2008
      Data sources: ClinicalTrials.gov
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Leland R Spangler;

    This digital GIS dataset and accompanying nonspatial files synthesize model outputs from a regional-scale volumetric 3-D geologic model that portrays the generalized subsurface geology of the Powder River Basin and Williston Basin regions from a wide variety of input data sources. The study area includes the Hartville Uplift, Laramie Range, Bighorn Mountains, Powder River Basin, and Williston Basin. The model data released here consist of the stratigraphic contact elevation of major Phanerozoic sedimentary units that broadly define the geometry of the subsurface, the elevation of Tertiary intrusive and Precambrian basement rocks, and point data that illustrate an estimation of the three-dimensional geometry of fault surfaces. The presence of folds and unconformities are implied by the 3D geometry of the stratigraphic units, but these are not included as discrete features in this data release. The 3D geologic model was constructed from a wide variety of publicly available surface and subsurface geologic data; none of these input data are part of this Data Release, but data sources are thoroughly documented such that a user could obtain these data from other sources if desired. The PowderRiverWilliston3D geodatabase contains 40 subsurface horizons in raster format that represent the tops of modeled subsurface units, and a feature dataset “GeologicModel”. The GeologicModel feature dataset contains a feature class of 30 estimated faults served in elevation grid format (FaultPoints), a feature class illustrating the spatial extent of 22 fault blocks (FaultBlockFootprints), and a feature class containing a polygon delineating the study areas (ModelBoundary). Nonspatial tables define the data sources used (DataSources), define terms used in the dataset (Glossary), and provide a description of the modeled surfaces (DescriptionOfModelUnits). Separate file folders contain the vector data in shapefile format, the raster data in ASCII format, and the tables as comma-separated values. In addition, a tabular data dictionary describes the entity and attribute information for all attributes of the geospatial data and the accompanying nonspatial tables (EntityAndAttributes). An included READ_ME file documents the process of manipulating and interpreting publicly available surface and subsurface geologic data to create the model. It additionally contains critical information about model units, and uncertainty regarding their ability to predict true ground conditions. Accompanying this data release is the “PowderRiverWillistonInputSummaryTable.csv”, which tabulates the global settings for each fault block, the stratigraphic horizons modeled in each fault block, the types and quantity of data inputs for each stratigraphic horizon, and then the settings associated with each data input.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Schumacher, Emily; Brown, Alissa; Williams, Martin; Romero-Severson, Jeanne; +2 Authors

    For this manuscript, there were three types of methods performed to make our main conclusions: genetic diversity and structure analyses, downloading and mapping butternut fossil pollen during the last 20,000 years, and modeling and hindcasting butternut's (Juglans cinerea) distribution 20,000 years ago to present. Genetic analyses and species distribution modeling were performed in Emily Schumacher’s Github repository (https://github.com/ekschumacher/butternut) and pollen analyses and mapping were performed in Alissa Brown’s repository (https://github.com/alissab/juglans). Here is information detailing the Genetic data Data collection description: To perform genetic diversity and structure analyses on butternut, we used genetic data from the publication Hoban et al. (2010) and genetic data from newer sampling efforts on butternut from 2011 - 2015. Individuals were collected by Jeanne Romero-Severson, Sean Hoban, and Martin Williams over the course of ~ten years with a major sampling effort closer to 2009 followed up by another round of sampling 2012 - 2015. The initial 1,004 butternut individuals that were collected were genotyped by Sean Hoban and then the subsequent 757 individuals were genotyped in the Romero-Severson lab at Notre Dame non-consecutively. Genotyping was performed according to Hoban et al. (2008); DNA was extracted from fresh cut twigs using DNeasy Plant Mini kits (QIAGEN). PCR was performed by using 1.5 mM MgCl2, 1x PCR buffer [50 mm KCl, 10 mm Tris-HCl (pH 9.0), 0.1% Triton-X-100 (Fisher BioTech)], 0.2 mm dNTPs, 4 pm each forward and reverse primer, 4% Bovine Serum Albumin, 0.25 U TaKaRa Ex Taq Polymerase (Panvera), and 20 ng DNA template (10 μL total volume). The PCR temperature profile was as follows: 2 min at 94 °C; 30 cycles of 94 °C for 30 s, Ta for 30 s, and 72 °C for 30 s; 45 min at 60 °C; and 10 min at 72 °C on a PTC-225 Peltier Thermal Cycler (MJ Research). The process of assessing loci and rebinning for differences in years is detailed in the Schumacher et al. (2022) manuscript. Data files butternut_44pop.gen: Genepop file of original 1,761 butternut individuals, sampling described above, separated into original 44 sampling populations. butternut_24pop_nomd.gen: Genepop file of 1,635 butternut individuals, following rebinning based on researcher binning, reduced based on geographic isolation and missing data, organized into 24 populations. Used to generate all genetic diversity results. butternut_24pop_relate_red.gen: Genepop file of 993 butternut individuals, reduced for 25% relatedness, used to generate all clustering analyses. butternut_26pop_nomd.gen: Genepop file of 1,662 butternut individuals, reduced based on geographic isolation and missing data, including Quebec individuals, organized into 26 populations. Used to generate genetic diversity results with Quebec individuals. butternut_26pop_relate_red.gen: Genepop file of 1,015 butternut individuals, including Quebec individuals, reduced for 25% relatedness, used to generate clustering analyses with Quebec individuals. Fossil Pollen Data collection description: Pollen records for butternut were downloaded from Neotoma Paleoecology Database in 500-year time increments and visualized in 1,000 year-time increments 20,000 years ago to present. Data files butternut_pollen_data.csv: CSV of pollen records used for analyses and mapping. Includes original coordinates for each record (“og_long”, “og_lat”), the count of Juglans cinerea pollen at each site (“Juglans_cinerea_count”), and the age of the record (“Age”). To create the final maps, the coordinates were projected into Albers for each record (“Proj_Long,” “Proj_Lat”). Species Distribution Modeling and Hindcast Modeling Data collection description: We wanted to identify butternut's ecological preferences using boosted regression trees (BRT) and then hindcast distribution models into the past to identify migration pathways and locations of glacial refugia. Species distribution modeling was performed using boosted regression trees according to Elith et al. (2008). To run BRT, we needed to: 1. Reduce occurrence records to account for spatial autocorrelation, 2. Generate pseudo-absence points to identify the habitat where butternut is not found, 3. Obtain and extract the 19 bioclimatic variables at all points, 4. Select ecological variables least correlated with each other and most correlated with butternut presence. The BRT model that predicted butternut's ecological niche was then used to hypothesize butternut's suitable habitat and range shifts in the past. We downloaded occurrence records according to Beckman et al. (2019) as described here: https://github.com/MortonArb-ForestEcology/IMLS_CollectionsValue. The habitat suitability map generated from the BRT were projected into the past 20,000 years using Paleoclim variables (Brown et al., 2018). Data files butternut_BRT_var.csv: A CSV of the butternut presence and pseudoabsence points and extracted Bioclim variables (Fick & Hijman, 2017) used to run BRT in the final manuscript. Longitude and latitude coordinates are projected into Albers Equal Area Conic project, same with all of the ecological variables. Presence points are indicated with a 1 in the “PA” column and pseudo-absence points are indicated with a “0.” The variables most correlated with presence and least correlated with each other in this analysis were precipitation of the wettest month (“PwetM”), mean diurnal range (“MDR”), mean temperature of the driest quarter (“MTDQ”), mean temperature of the wettest quarter (“MTwetQ”), and seasonal precipitation (“precip_season”). References Brown, J. L., Hill, D. J., Dolan, A. M., Carnaval, A. C., & Haywood, A. M. (2018). PaleoClim, high spatial resolution paleoclimate surfaces for global land areas. Scientific Data, 5, 1-9 Elith, J., Leathwick, J. R., & Hastie, T. (2008). A working guide to boosted regression trees. Journal of Animal Ecology, 77, 802-813. Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 4302-4315. Hoban, S., Anderson, R., McCleary, T., Schlarbaum, S., and Romero-Severson, J. (2008). Thirteen nuclear microsatellite loci for butternut (Juglans cinerea L.). Molecular Ecology Resources, 8, 643-646. Hoban, S. M., Borkowski, D. S., Brosi, S. L., McCleary, T. S., Thompson, L. M., McLachlan, J. S., ... Romero-Severson, J. (2010). Range‐wide distribution of genetic diversity in the North American tree Juglans cinerea: A product of range shifts, not ecological marginality or recent population decline. Molecular Ecology, 19, 4876-4891. Aim: Range shifts are a key process that determine species distributions and genetic patterns. A previous investigation reported that Juglans cinerea (butternut) has lower genetic diversity at higher latitudes, hypothesized to be the result of range shifts following the last glacial period. However, genetic patterns can also be impacted by modern ecogeographic conditions. Therefore, we re-investigate genetic patterns of butternut with additional northern population sampling, hindcasted species distribution models, and fossil pollen records to clarify the impact of glaciation on butternut. Location: Eastern North America Taxon: Juglans cinerea (L., Juglandaceae) (butternut) Methods: Using 11 microsatellites, we examined range-wide spatial patterns of genetic diversity metrics (allelic richness, heterozygosity, FST) for previously studied butternut individuals and an additional 757 samples. We constructed hindcast species distribution models and mapped fossil pollen records to evaluate habitat suitability and evidence of species’ presence throughout space and time. Results: Contrary to previous work on butternut, we found that genetic diversity increased with distance to range edge, and previous latitudinal clines in diversity were likely due to a few outlier populations. Populations in New Brunswick, Canada were genetically distinct from other populations. At the Last Glacial Maximum, pollen records demonstrate butternut likely persisted near the glacial margin, and hindcast species distribution models identified suitable habitat in the southern United States and near Nova Scotia. Main conclusions: Genetic patterns in butternut may be shaped by both glaciation and modern environmental conditions. Pollen records and hindcast species distribution models combined with genetic distinctiveness in New Brunswick suggest that butternut may have persisted in cryptic northern refugia. We suggest that thorough sampling across a species range and evaluating multiple lines of evidence are essential to understanding past species movements. Data was cleaned and processed in R - genetic data cleaning and analyses and species distribution modeling methods were performed in Emily Schumacher's butternut repository and fossil pollen data cleaning and modeling was performed in Alissa Brown's juglans repository. Steps for performing data cleanining, analyses, and generating figures for the manuscript are described within each repo.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2022
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2022
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility64
    visibilityviews64
    downloaddownloads36
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2022
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2022
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Kravchinsky, Vadim A.; Zhang, Rui; Borowiecki, Ryan; Tarasov, Pavel E.; +4 Authors

    A lack of adequate high resolution climate proxy records for the Last Glacial Maximum (LGM) has prevented the extrapolation of climate–solar linkages on centennial time scales prior of the Holocene. Therefore, it is still unknown whether centennial climate variations of the last ten thousand years convey a universal climate change or merely represent a characteristic of the Holocene. Recently published high resolution climate proxy records for the LGM allowed us to extrapolate climate–solar linkages on centennial time scales ahead of the Holocene. Here we present the analysis of a high resolution pollen concentration record from Lake Kotokel in southern Siberia, Russia, during the LGM. The record reflects the dynamics of vegetation zones and temperature change with a resolution of ~ 40 years in the continental climate of north-eastern Asia. We demonstrate that our pollen concentration record, the oxygen isotope δ18O record from the Greenland ice core project NGRIP (NorthGRIP), the dust-fall contributions in Lake Qinghai, China, grain size in the Gulang and Jingyuan loess deposits, China, and the composite oxygen isotope δ18O record from the Alpine cave system 7H reveal cooler to warmer climate fluctuations between ~ 20.6 and 26 ka. Such fluctuations correspond to the ~ 1000-yr, 500-600-yr and 210-250-yr cycles possibly linked to the solar activity variations and recognized in high resolution Holocene proxies all over the world. We further show that climate fluctuations in the LGM and Holocene are spectrally similar suggesting that linkages between climate proxies and solar activity at the centennial time scale in the Holocene can be extended to the LGM. {"references": ["Vadim A. Kravchinsky, Rui Zhang, Ryan Borowiecki, Pavel E. Tarasov, Mirko van der Baan, Taslima Anwar, Avto Goguitchaichvili, Stefanie M\u00fcller, 2021. Centennial scale climate oscillations from southern Siberia in the Last Glacial Maximum. Quaternary Science Reviews, in press."]}

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2021
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2021
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2021
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2021
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2021
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2021
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Resplandy, Laure; Hogikyan, Allison;

    Physical and biogeochemical variables from the NOAA-GFDL Earth System Model 2M experiments, and previously published observation-based datasets, used for the study 'Hydrological cycle amplification reshapes warming-driven oxygen loss in Atlantic Ocean'.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ DataSpacearrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    DataSpace
    Dataset . 2023
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    DataSpace
    Dataset . 2023
    License: CC BY
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ DataSpacearrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      DataSpace
      Dataset . 2023
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      DataSpace
      Dataset . 2023
      License: CC BY
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

    Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.CAMS.CAMS-CSM1-0.ssp119' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The CAMS-CSM 1.0 climate model, released in 2016, includes the following components: atmos: ECHAM5_CAMS (T106; 320 x 160 longitude/latitude; 31 levels; top level 10 mb), land: CoLM 1.0, ocean: MOM4 (tripolar; 360 x 200 longitude/latitude, primarily 1deg latitude/longitude, down to 1/3deg within 30deg of the equatorial tropics; 50 levels; top grid cell 0-10 m), seaIce: SIS 1.0. The model was run by the Chinese Academy of Meteorological Sciences, Beijing 100081, China (CAMS) in native nominal resolutions: atmos: 100 km, land: 100 km, ocean: 100 km, seaIce: 100 km.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ World Data Center fo...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    World Data Center for Climate
    Dataset . 2023
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ World Data Center fo...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      World Data Center for Climate
      Dataset . 2023
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Yuan, Wei; Wang, Jie;

    Figure 1-4 data for "Anaconda-shaped Spiral Multi-layered Triboelectric Nanogenerators with Ultra-High Space Efficiency for Wave Energy Harvesting" Figure 1-4 data for "Anaconda-shaped Spiral Multi-layered Triboelectric Nanogenerators with Ultra-High Space Efficiency for Wave Energy Harvesting"

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Chan, Gabriel; Heeter, Jenny; Xu, Kaifeng;

    This data set is no longer current – The most current data and all historical data sets can be found at https://data.nrel.gov/submissions/244 This database represents a list of community solar projects identified through various sources as of Dec 2021. The list has been reviewed but errors may exist and the list may not be comprehensive. Errors in the sources e.g. press releases may be duplicated in the list. Blank spaces represent missing information. NREL invites input to improve the database including to - correct erroneous information - add missing projects - fill in missing information - remove inactive projects. Updated information can be submitted to the contact(s) located on the current data set page linked at the top.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
667,739 Research products
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

    Author: Daniel Vázquez Pombo (dvapo@elektro.dtu.dk) ------------------------------------------------------------------------------- This dataset corresponds to the results of the paper titled: "Multi-Horizon Data-Driven Wind Power Forecast: From Nowcast to 2 Days-Ahead" 4th International Conference on Smart Energy Systems and Technologies (SEST) - 2021 -> https://sites.univaasa.fi/sest2021/ Submmited: Dec 2020 Accepted: Feb 2021 Published: Sep 2021 ------------------------------------------------------------------------------- The folder contains all the results presented in the paper, for clarity. Additional resources might be supplied under request. -------------------------------------------------------------------------------

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Smithsonian figsharearrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Smithsonian figshare
    Dataset . 2021
    License: CC BY SA
    https://dx.doi.org/10.11583/dt...
    Dataset . 2021
    License: CC BY SA
    Data sources: Datacite
    https://dx.doi.org/10.11583/dt...
    Dataset . 2021
    License: CC BY SA
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Smithsonian figsharearrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Smithsonian figshare
      Dataset . 2021
      License: CC BY SA
      https://dx.doi.org/10.11583/dt...
      Dataset . 2021
      License: CC BY SA
      Data sources: Datacite
      https://dx.doi.org/10.11583/dt...
      Dataset . 2021
      License: CC BY SA
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: John, Jasmin G; Blanton, Chris; McHugh, Colleen; Radhakrishnan, Aparna; +17 Authors

    Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.NOAA-GFDL.GFDL-ESM4.ssp245' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The GFDL-ESM4 climate model, released in 2018, includes the following components: aerosol: interactive, atmos: GFDL-AM4.1 (Cubed-sphere (c96) - 1 degree nominal horizontal resolution; 360 x 180 longitude/latitude; 49 levels; top level 1 Pa), atmosChem: GFDL-ATMCHEM4.1 (full atmospheric chemistry), land: GFDL-LM4.1, landIce: GFDL-LM4.1, ocean: GFDL-OM4p5 (GFDL-MOM6, tripolar - nominal 0.5 deg; 720 x 576 longitude/latitude; 75 levels; top grid cell 0-2 m), ocnBgchem: GFDL-COBALTv2, seaIce: GFDL-SIM4p5 (GFDL-SIS2.0, tripolar - nominal 0.5 deg; 720 x 576 longitude/latitude; 5 layers; 5 thickness categories). The model was run by the National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory, Princeton, NJ 08540, USA (NOAA-GFDL) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, atmosChem: 100 km, land: 100 km, landIce: 100 km, ocean: 50 km, ocnBgchem: 50 km, seaIce: 50 km.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ World Data Center fo...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    World Data Center for Climate
    Dataset . 2023
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ World Data Center fo...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      World Data Center for Climate
      Dataset . 2023
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

    The purpose of this study is to evaluate the safety and tolerability of the JAK2 inhibitor XL019 administered orally in adults with Polycythemia Vera.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ClinicalTrials.govarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ClinicalTrials.gov
    Clinical Trial . 2008
    Data sources: ClinicalTrials.gov
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ClinicalTrials.govarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ClinicalTrials.gov
      Clinical Trial . 2008
      Data sources: ClinicalTrials.gov
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Leland R Spangler;

    This digital GIS dataset and accompanying nonspatial files synthesize model outputs from a regional-scale volumetric 3-D geologic model that portrays the generalized subsurface geology of the Powder River Basin and Williston Basin regions from a wide variety of input data sources. The study area includes the Hartville Uplift, Laramie Range, Bighorn Mountains, Powder River Basin, and Williston Basin. The model data released here consist of the stratigraphic contact elevation of major Phanerozoic sedimentary units that broadly define the geometry of the subsurface, the elevation of Tertiary intrusive and Precambrian basement rocks, and point data that illustrate an estimation of the three-dimensional geometry of fault surfaces. The presence of folds and unconformities are implied by the 3D geometry of the stratigraphic units, but these are not included as discrete features in this data release. The 3D geologic model was constructed from a wide variety of publicly available surface and subsurface geologic data; none of these input data are part of this Data Release, but data sources are thoroughly documented such that a user could obtain these data from other sources if desired. The PowderRiverWilliston3D geodatabase contains 40 subsurface horizons in raster format that represent the tops of modeled subsurface units, and a feature dataset “GeologicModel”. The GeologicModel feature dataset contains a feature class of 30 estimated faults served in elevation grid format (FaultPoints), a feature class illustrating the spatial extent of 22 fault blocks (FaultBlockFootprints), and a feature class containing a polygon delineating the study areas (ModelBoundary). Nonspatial tables define the data sources used (DataSources), define terms used in the dataset (Glossary), and provide a description of the modeled surfaces (DescriptionOfModelUnits). Separate file folders contain the vector data in shapefile format, the raster data in ASCII format, and the tables as comma-separated values. In addition, a tabular data dictionary describes the entity and attribute information for all attributes of the geospatial data and the accompanying nonspatial tables (EntityAndAttributes). An included READ_ME file documents the process of manipulating and interpreting publicly available surface and subsurface geologic data to create the model. It additionally contains critical information about model units, and uncertainty regarding their ability to predict true ground conditions. Accompanying this data release is the “PowderRiverWillistonInputSummaryTable.csv”, which tabulates the global settings for each fault block, the stratigraphic horizons modeled in each fault block, the types and quantity of data inputs for each stratigraphic horizon, and then the settings associated with each data input.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Schumacher, Emily; Brown, Alissa; Williams, Martin; Romero-Severson, Jeanne; +2 Authors

    For this manuscript, there were three types of methods performed to make our main conclusions: genetic diversity and structure analyses, downloading and mapping butternut fossil pollen during the last 20,000 years, and modeling and hindcasting butternut's (Juglans cinerea) distribution 20,000 years ago to present. Genetic analyses and species distribution modeling were performed in Emily Schumacher’s Github repository (https://github.com/ekschumacher/butternut) and pollen analyses and mapping were performed in Alissa Brown’s repository (https://github.com/alissab/juglans). Here is information detailing the Genetic data Data collection description: To perform genetic diversity and structure analyses on butternut, we used genetic data from the publication Hoban et al. (2010) and genetic data from newer sampling efforts on butternut from 2011 - 2015. Individuals were collected by Jeanne Romero-Severson, Sean Hoban, and Martin Williams over the course of ~ten years with a major sampling effort closer to 2009 followed up by another round of sampling 2012 - 2015. The initial 1,004 butternut individuals that were collected were genotyped by Sean Hoban and then the subsequent 757 individuals were genotyped in the Romero-Severson lab at Notre Dame non-consecutively. Genotyping was performed according to Hoban et al. (2008); DNA was extracted from fresh cut twigs using DNeasy Plant Mini kits (QIAGEN). PCR was performed by using 1.5 mM MgCl2, 1x PCR buffer [50 mm KCl, 10 mm Tris-HCl (pH 9.0), 0.1% Triton-X-100 (Fisher BioTech)], 0.2 mm dNTPs, 4 pm each forward and reverse primer, 4% Bovine Serum Albumin, 0.25 U TaKaRa Ex Taq Polymerase (Panvera), and 20 ng DNA template (10 μL total volume). The PCR temperature profile was as follows: 2 min at 94 °C; 30 cycles of 94 °C for 30 s, Ta for 30 s, and 72 °C for 30 s; 45 min at 60 °C; and 10 min at 72 °C on a PTC-225 Peltier Thermal Cycler (MJ Research). The process of assessing loci and rebinning for differences in years is detailed in the Schumacher et al. (2022) manuscript. Data files butternut_44pop.gen: Genepop file of original 1,761 butternut individuals, sampling described above, separated into original 44 sampling populations. butternut_24pop_nomd.gen: Genepop file of 1,635 butternut individuals, following rebinning based on researcher binning, reduced based on geographic isolation and missing data, organized into 24 populations. Used to generate all genetic diversity results. butternut_24pop_relate_red.gen: Genepop file of 993 butternut individuals, reduced for 25% relatedness, used to generate all clustering analyses. butternut_26pop_nomd.gen: Genepop file of 1,662 butternut individuals, reduced based on geographic isolation and missing data, including Quebec individuals, organized into 26 populations. Used to generate genetic diversity results with Quebec individuals. butternut_26pop_relate_red.gen: Genepop file of 1,015 butternut individuals, including Quebec individuals, reduced for 25% relatedness, used to generate clustering analyses with Quebec individuals. Fossil Pollen Data collection description: Pollen records for butternut were downloaded from Neotoma Paleoecology Database in 500-year time increments and visualized in 1,000 year-time increments 20,000 years ago to present. Data files butternut_pollen_data.csv: CSV of pollen records used for analyses and mapping. Includes original coordinates for each record (“og_long”, “og_lat”), the count of Juglans cinerea pollen at each site (“Juglans_cinerea_count”), and the age of the record (“Age”). To create the final maps, the coordinates were projected into Albers for each record (“Proj_Long,” “Proj_Lat”). Species Distribution Modeling and Hindcast Modeling Data collection description: We wanted to identify butternut's ecological preferences using boosted regression trees (BRT) and then hindcast distribution models into the past to identify migration pathways and locations of glacial refugia. Species distribution modeling was performed using boosted regression trees according to Elith et al. (2008). To run BRT, we needed to: 1. Reduce occurrence records to account for spatial autocorrelation, 2. Generate pseudo-absence points to identify the habitat where butternut is not found, 3. Obtain and extract the 19 bioclimatic variables at all points, 4. Select ecological variables least correlated with each other and most correlated with butternut presence. The BRT model that predicted butternut's ecological niche was then used to hypothesize butternut's suitable habitat and range shifts in the past. We downloaded occurrence records according to Beckman et al. (2019) as described here: https://github.com/MortonArb-ForestEcology/IMLS_CollectionsValue. The habitat suitability map generated from the BRT were projected into the past 20,000 years using Paleoclim variables (Brown et al., 2018). Data files butternut_BRT_var.csv: A CSV of the butternut presence and pseudoabsence points and extracted Bioclim variables (Fick & Hijman, 2017) used to run BRT in the final manuscript. Longitude and latitude coordinates are projected into Albers Equal Area Conic project, same with all of the ecological variables. Presence points are indicated with a 1 in the “PA” column and pseudo-absence points are indicated with a “0.” The variables most correlated with presence and least correlated with each other in this analysis were precipitation of the wettest month (“PwetM”), mean diurnal range (“MDR”), mean temperature of the driest quarter (“MTDQ”), mean temperature of the wettest quarter (“MTwetQ”), and seasonal precipitation (“precip_season”). References Brown, J. L., Hill, D. J., Dolan, A. M., Carnaval, A. C., & Haywood, A. M. (2018). PaleoClim, high spatial resolution paleoclimate surfaces for global land areas. Scientific Data, 5, 1-9 Elith, J., Leathwick, J. R., & Hastie, T. (2008). A working guide to boosted regression trees. Journal of Animal Ecology, 77, 802-813. Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 4302-4315. Hoban, S., Anderson, R., McCleary, T., Schlarbaum, S., and Romero-Severson, J. (2008). Thirteen nuclear microsatellite loci for butternut (Juglans cinerea L.). Molecular Ecology Resources, 8, 643-646. Hoban, S. M., Borkowski, D. S., Brosi, S. L., McCleary, T. S., Thompson, L. M., McLachlan, J. S., ... Romero-Severson, J. (2010). Range‐wide distribution of genetic diversity in the North American tree Juglans cinerea: A product of range shifts, not ecological marginality or recent population decline. Molecular Ecology, 19, 4876-4891. Aim: Range shifts are a key process that determine species distributions and genetic patterns. A previous investigation reported that Juglans cinerea (butternut) has lower genetic diversity at higher latitudes, hypothesized to be the result of range shifts following the last glacial period. However, genetic patterns can also be impacted by modern ecogeographic conditions. Therefore, we re-investigate genetic patterns of butternut with additional northern population sampling, hindcasted species distribution models, and fossil pollen records to clarify the impact of glaciation on butternut. Location: Eastern North America Taxon: Juglans cinerea (L., Juglandaceae) (butternut) Methods: Using 11 microsatellites, we examined range-wide spatial patterns of genetic diversity metrics (allelic richness, heterozygosity, FST) for previously studied butternut individuals and an additional 757 samples. We constructed hindcast species distribution models and mapped fossil pollen records to evaluate habitat suitability and evidence of species’ presence throughout space and time. Results: Contrary to previous work on butternut, we found that genetic diversity increased with distance to range edge, and previous latitudinal clines in diversity were likely due to a few outlier populations. Populations in New Brunswick, Canada were genetically distinct from other populations. At the Last Glacial Maximum, pollen records demonstrate butternut likely persisted near the glacial margin, and hindcast species distribution models identified suitable habitat in the southern United States and near Nova Scotia. Main conclusions: Genetic patterns in butternut may be shaped by both glaciation and modern environmental conditions. Pollen records and hindcast species distribution models combined with genetic distinctiveness in New Brunswick suggest that butternut may have persisted in cryptic northern refugia. We suggest that thorough sampling across a species range and evaluating multiple lines of evidence are essential to understanding past species movements. Data was cleaned and processed in R - genetic data cleaning and analyses and species distribution modeling methods were performed in Emily Schumacher's butternut repository and fossil pollen data cleaning and modeling was performed in Alissa Brown's juglans repository. Steps for performing data cleanining, analyses, and generating figures for the manuscript are described within each repo.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2022
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2022
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility64
    visibilityviews64
    downloaddownloads36
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2022
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2022
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Kravchinsky, Vadim A.; Zhang, Rui; Borowiecki, Ryan; Tarasov, Pavel E.; +4 Authors

    A lack of adequate high resolution climate proxy records for the Last Glacial Maximum (LGM) has prevented the extrapolation of climate–solar linkages on centennial time scales prior of the Holocene. Therefore, it is still unknown whether centennial climate variations of the last ten thousand years convey a universal climate change or merely represent a characteristic of the Holocene. Recently published high resolution climate proxy records for the LGM allowed us to extrapolate climate–solar linkages on centennial time scales ahead of the Holocene. Here we present the analysis of a high resolution pollen concentration record from Lake Kotokel in southern Siberia, Russia, during the LGM. The record reflects the dynamics of vegetation zones and temperature change with a resolution of ~ 40 years in the continental climate of north-eastern Asia. We demonstrate that our pollen concentration record, the oxygen isotope δ18O record from the Greenland ice core project NGRIP (NorthGRIP), the dust-fall contributions in Lake Qinghai, China, grain size in the Gulang and Jingyuan loess deposits, China, and the composite oxygen isotope δ18O record from the Alpine cave system 7H reveal cooler to warmer climate fluctuations between ~ 20.6 and 26 ka. Such fluctuations correspond to the ~ 1000-yr, 500-600-yr and 210-250-yr cycles possibly linked to the solar activity variations and recognized in high resolution Holocene proxies all over the world. We further show that climate fluctuations in the LGM and Holocene are spectrally similar suggesting that linkages between climate proxies and solar activity at the centennial time scale in the Holocene can be extended to the LGM. {"references": ["Vadim A. Kravchinsky, Rui Zhang, Ryan Borowiecki, Pavel E. Tarasov, Mirko van der Baan, Taslima Anwar, Avto Goguitchaichvili, Stefanie M\u00fcller, 2021. Centennial scale climate oscillations from southern Siberia in the Last Glacial Maximum. Quaternary Science Reviews, in press."]}

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2021
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2021
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2021
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2021
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2021
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2021
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Resplandy, Laure; Hogikyan, Allison;

    Physical and biogeochemical variables from the NOAA-GFDL Earth System Model 2M experiments, and previously published observation-based datasets, used for the study 'Hydrological cycle amplification reshapes warming-driven oxygen loss in Atlantic Ocean'.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ DataSpacearrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    DataSpace
    Dataset . 2023
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    DataSpace
    Dataset . 2023
    License: CC BY
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ DataSpacearrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      DataSpace
      Dataset . 2023
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      DataSpace
      Dataset . 2023
      License: CC BY
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

    Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.CAMS.CAMS-CSM1-0.ssp119' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The CAMS-CSM 1.0 climate model, released in 2016, includes the following components: atmos: ECHAM5_CAMS (T106; 320 x 160 longitude/latitude; 31 levels; top level 10 mb), land: CoLM 1.0, ocean: MOM4 (tripolar; 360 x 200 longitude/latitude, primarily 1deg latitude/longitude, down to 1/3deg within 30deg of the equatorial tropics; 50 levels; top grid cell 0-10 m), seaIce: SIS 1.0. The model was run by the Chinese Academy of Meteorological Sciences, Beijing 100081, China (CAMS) in native nominal resolutions: atmos: 100 km, land: 100 km, ocean: 100 km, seaIce: 100 km.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ World Data Center fo...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    World Data Center for Climate
    Dataset . 2023
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ World Data Center fo...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      World Data Center for Climate
      Dataset . 2023
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Yuan, Wei; Wang, Jie;

    Figure 1-4 data for "Anaconda-shaped Spiral Multi-layered Triboelectric Nanogenerators with Ultra-High Space Efficiency for Wave Energy Harvesting" Figure 1-4 data for "Anaconda-shaped Spiral Multi-layered Triboelectric Nanogenerators with Ultra-High Space Efficiency for Wave Energy Harvesting"

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Chan, Gabriel; Heeter, Jenny; Xu, Kaifeng;

    This data set is no longer current – The most current data and all historical data sets can be found at https://data.nrel.gov/submissions/244 This database represents a list of community solar projects identified through various sources as of Dec 2021. The list has been reviewed but errors may exist and the list may not be comprehensive. Errors in the sources e.g. press releases may be duplicated in the list. Blank spaces represent missing information. NREL invites input to improve the database including to - correct erroneous information - add missing projects - fill in missing information - remove inactive projects. Updated information can be submitted to the contact(s) located on the current data set page linked at the top.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.