Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
  • Access
  • Type
  • Year range
  • Field of Science
    Clear
  • Funder
  • SDG [Beta]
    Clear
  • Country
    Clear
  • Language
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
60,327 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • other engineering and technologies
  • 13. Climate action
  • 8. Economic growth
  • CN
  • US

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Sarah Armitage; Joseph E. Aldy;

    While a firm knows the carbon price with certainty under a tax, it must form an expectation about future allowance prices to identify its cost-effective abatement investment under a capand-trade program. We illustrate graphically how errors in forming this expectation increase the costs of irreversible pollution abatement investment under cap-and-trade relative to a tax. We describe empirical “cost-effectiveness anomalies” in allowance markets that may be attributed to cap-and-trade's inherent uncertainty. We model investment under simulated US carbon tax and cap-and-trade policies and find that allowance price uncertainty can increase resource costs 20 percent for a given quantity of emission abatement.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ AEA Papers and Proce...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    AEA Papers and Proceedings
    Article . 2020 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    7
    citations7
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ AEA Papers and Proce...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      AEA Papers and Proceedings
      Article . 2020 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Pan Donghui; Guanyi Chen; Beibei Yan; Yanbin Li; +1 Authors

    Environment-friendly treatment of sewage sludge has become tremendously important. Conversion of sewage sludge into energy products by environment-friendly conversion process, with its energy recovery and environmental benefits, is being paid significant attention. Direct liquefaction of sewage sludge into bio-oils with supercritical water (SCW) was therefore put forward in this study, as de-water usually requiring intensive energy input is not necessary in this direct liquefaction. Supercritical water may act as a strong solvent and also a reactant, as well as catalyst promoting reaction process. Experiments were carried out in a self designed high-pressure reaction system with varying operating conditions. Through orthogonal experiments, it was found that temperature and residence time dominated on bio-oil yield compared with other operating parameters. Temperature from 350 to 500°C and reaction residence time of 0, 30, 60min were accordingly investigated in details, respectively. Under supercritical conversion, the maximum bio-oil yield could achieve 39.73%, which was performed at 375°C and 0min reaction residence time. Meanwhile, function of supercritical water was concluded. Fuel property analysis showed the potential of bio-oil application as crude fuel.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    70
    citations70
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Yasir Habib; Shujahat Haider Hashmi; Adeel Riaz; Hongzhong Fan;

    Abstract This study investigates the non-linear relationship between urbanization paths and CO2 emissions in selected South, South-East, and East Asian countries over the period 1971–2014. Based on the STIRPAT (Stochastic Impacts by Regression on Population, Affluence, and Technology) framework, we applied the advanced and robust methods of dynamic seemingly unrelated regression (DSUR), dynamic OLS (DOLS), and fully modified OLS (FMOLS) to estimate the long-term effects. The empirical findings revealed the inverted U-shaped effects of urbanization and urban agglomeration and the U-shaped impact of the largest city ratio on CO2 emissions. Urbanization and urban agglomerations improve environmental quality in the long-run and support ecological modernization theory. However, excessive concentration in the largest cities have severely affected the environmental quality and violates the notion of compact-city efficiencies. Moreover, energy intensity and economic growth positively affect CO2 emissions, while trade openness negatively influences CO2 emissions. Our robustness analysis at the country-level applies the augmented mean group (AMG) panel ARDL technique, which further supports the non-linear effect of urbanization paths on CO2 emissions except for a few countries. The results of the panel Granger non-causality approach unveil bidirectional causality of energy efficiency, economic growth, urbanization, and largest city ratio with CO2 emissions. In contrast, unidirectional causality runs from urban agglomeration to CO2 emissions. Our findings have important policy implications as we suggest green urban infrastructures, eco-friendly dwellings, smart cities, country-specific trade policies, and renewable energy options to improve the environmental quality.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Urban Climatearrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Urban Climate
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    87
    citations87
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Urban Climatearrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Urban Climate
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Yang L. Wang; Charles K. Westbrook; Dong Joon Lee; Fokion N. Egolfopoulos; +1 Authors

    Abstract The oxidation characteristics of several small methyl and ethyl esters with carbon number less than six were investigated in laminar flames. The kinetics of such fuels are subsets of those of larger alkyl esters that are constituents of practical biodiesel fuels. A total of seven fuels, namely methyl formate, methyl acetate, methyl propionate, methyl butanoate, ethyl formate, ethyl acetate, and ethyl propionate were considered. Experiments were conducted at atmospheric pressure, elevated reactant temperatures, and over a wide range of equivalence ratios. Laminar flame speeds were determined in the counterflow configuration in which flow velocities were measured using particle image velocimetry. Several detailed kinetic models were tested against the experimental data, and insight was provided into the high-temperature combustion kinetics of the aforementioned fuels. Based on comparisons between experimental and computed results it became apparent that the chemistry of alkyl-ester combustion chemistry is evolving and much needs to be done in order to derive improved rate constants for a wide range of elementary steps.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    61
    citations61
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Alexander S. Vertis; Larry Eisenberg;

    Abstract Pollution control strategies currently in use by electric power systems are reviewed and a new minimum emission dispatch (MED) method is developed. This new method minimizes overall emission levels at an increased cost in large-scale power systems while simultaneously accommodating local pollution level requirements, as well as economic constraints.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of the Frank...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of the Franklin Institute
    Article . 1973 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    9
    citations9
    popularityAverage
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of the Frank...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of the Franklin Institute
      Article . 1973 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Serikbayeva Akmaral; Boranbayeva Assiya; Abdibattayeva Maral; Nurbayeva Farida; +2 Authors

    Abstract In this paper, the prevention of negative technogenic impact on the environment of oil sludge by using it as a secondary resource is considered. Oil sludge from various objects of oil fields in Kazakhstan (Mangystau region) has been studied. The possibilities of using oil (after its separation from oil sludge by bioremidiation) as a partial substitute for bitumen base in the production of modified bitumen are considered. The main physical and mechanical characteristics of modified bitumen are determined. The results confirm that the modified bitumen prepared with oil sludge and oil separated by bioremiation method meets the requirements for polymer-bitumen binder to Kazakhstan standards and is suitable for the production of modified bitumen in its physico-chemical characteristics.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Environmental and Cl...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Environmental and Climate Technologies
    Article . 2022 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Environmental and Cl...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Environmental and Climate Technologies
      Article . 2022 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Zhanping Hu;

    Abstract As a burgeoning theoretical framework, energy justice has been mostly focused on the energy transition in Western countries, where socio-political settings are largely featured by liberalism and democracy, leaving an obvious gap in its application in other socio-political contexts. As a major energy consumer and a leader of the global low-carbon transition, China is characterized by a distinctive socio-political regime. An array of grand strategies to transform its coal-dominant energy structure have been initiated to ameliorate deteriorating environmental crises in particular and materialize a low-carbon transition in general. Based on extensive evidence, this article incorporates the energy justice framework into the analysis of an ongoing energy transition project in rural Northern China. It contributes to the related research in three dimensions. First, empirically, it demonstrates that the coal-to-gas heating transition project has been swamped with social injustices; the absence of measures to address these would lead this mega-project to profound failure. Second, theoretically, it illustrates that the concerns of justice are even more paramount in an authoritarian context where policy processes are characterized by strong political-administrative intervention and the pursuit of efficiency at all cost. In light of this, it stresses the indispensable role of restorative justice as a core tenet in achieving energy justice in authoritarian socio-political contexts, such as China. Third, this study advocates expanding the evaluation parameters of authoritarian environmentalism to include social consequences.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Research & So...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Research & Social Science
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    44
    citations44
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Research & So...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Research & Social Science
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Huimin Hou;

    Short term load forecasting plays an increasingly important role in Smart Grid. Short term load forecasting is also an important part of enterprise power system management. Providing accurate load time series data for a certain period of time in the future can enable enterprises to ensure the smooth operation of production while making a reasonable power plan, reducing power consumption and basic electricity charges, thus reducing the production cost of enterprises. In addition, lower electricity consumption means lower carbon dioxide emissions, which has far-reaching implications for sustainable development strategies. This paper presents a short-term load forecasting method based on time series. The model divides the time series data into four parts: trend item, period item, holiday item and error item. In the experiment part, this paper provides a set of preprocessing method flow. Aiming at the problem that the sampling rate of the current smart grid data is not constant, a data smoothing algorithm is proposed.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1109/icwcsg...
    Conference object . 2020 . Peer-reviewed
    License: IEEE Copyright
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    4
    citations4
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://doi.org/10.1109/icwcsg...
      Conference object . 2020 . Peer-reviewed
      License: IEEE Copyright
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Zia Ud Din; Zia Ud Din; Zainal Alimuddin Zainal;

    Abstract The combination of biomass gasification with fuel cells, especially high temperature Solid Oxide Fuel Cells (SOFCs) promises sustainable and highly efficient (decentralized and modular) energy conversion systems. This review encompasses the components of biomass integrated gasification–SOFC technology including biomass characteristics, the thermochemical conversion in gasifiers and the factors affecting the gasification process, the cleaning technologies for raw producer gas and its conditioning and finally the integration of gasifier with SOFCs. The influence of impurities present in biomass producer gas such as particulates, tar, H 2 S, HCl and alkali compounds based on recent experimental studies and their tolerance limits towards SOFCs are presented. Even though analysis based on the probable tolerance limits of impurities towards SOFCs and a comprehensive overview of the cleaning technologies for producer gas impurities indicate that producer gas cleaning at various temperatures using current technologies to meet SOFC requirements is possible, more experimental studies are still needed to acquire the detailed information on the tolerance limits of impurities for SOFCs. The recent theoretical modeling and experimental studies of biomass integrated gasification–SOFC systems are also presented.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    187
    citations187
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Hui Hong; Hongguang Jin; Shuo Peng;

    Abstract In the current study, a new solar-driven triple cycle is proposed to allow power generation during low insolation periods. This triple cycle integrates the solar gas-turbine top cycle, the steam Rankine cycle, and the Kalina bottom cycle. During the top cycle of the proposed system, compressed air was heated to 1000 °C or higher in the solar tower receiver. The heated compressed air was then used to drive the gas turbine to generate electricity. A Rankine cycle with a back-pressure steam turbine was utilized to recover waste heat from the gas turbine, thereby generating electricity through the steam turbine. The bottom cycle is the Kalina cycle, which comprises another back-pressure turbine and utilizes ammonia–water mixture as working fluid. After driving the steam Rankine cycle, the flue gas from the gas turbine sequentially heats the ammonia–water mixture to produce power. A new operational strategy was presented to generate electricity during low insolation period without the backup of fossil fuel. In middle insolation periods, the air is heated by the solar field and then directly drives the steam Rankine cycle, bypassing the gas turbine. In low insolation periods, the heated air directly drive the Kalina cycle, bypassing the Brayton cycle and the steam Rankine cycle. The off-design performance was investigated and the irreversibility was disclosed with the aid of the energy-utilization diagram method. Thus, the proposed system can utilize low insolation to generate electricity. This study provides a possibility to improve the solar–electric efficiency.

    Energyarrow_drop_down
    Energy
    Article . 2013 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    7
    citations7
    popularityAverage
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      Energyarrow_drop_down
      Energy
      Article . 2013 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
60,327 Research products
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Sarah Armitage; Joseph E. Aldy;

    While a firm knows the carbon price with certainty under a tax, it must form an expectation about future allowance prices to identify its cost-effective abatement investment under a capand-trade program. We illustrate graphically how errors in forming this expectation increase the costs of irreversible pollution abatement investment under cap-and-trade relative to a tax. We describe empirical “cost-effectiveness anomalies” in allowance markets that may be attributed to cap-and-trade's inherent uncertainty. We model investment under simulated US carbon tax and cap-and-trade policies and find that allowance price uncertainty can increase resource costs 20 percent for a given quantity of emission abatement.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ AEA Papers and Proce...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    AEA Papers and Proceedings
    Article . 2020 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    7
    citations7
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ AEA Papers and Proce...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      AEA Papers and Proceedings
      Article . 2020 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Pan Donghui; Guanyi Chen; Beibei Yan; Yanbin Li; +1 Authors

    Environment-friendly treatment of sewage sludge has become tremendously important. Conversion of sewage sludge into energy products by environment-friendly conversion process, with its energy recovery and environmental benefits, is being paid significant attention. Direct liquefaction of sewage sludge into bio-oils with supercritical water (SCW) was therefore put forward in this study, as de-water usually requiring intensive energy input is not necessary in this direct liquefaction. Supercritical water may act as a strong solvent and also a reactant, as well as catalyst promoting reaction process. Experiments were carried out in a self designed high-pressure reaction system with varying operating conditions. Through orthogonal experiments, it was found that temperature and residence time dominated on bio-oil yield compared with other operating parameters. Temperature from 350 to 500°C and reaction residence time of 0, 30, 60min were accordingly investigated in details, respectively. Under supercritical conversion, the maximum bio-oil yield could achieve 39.73%, which was performed at 375°C and 0min reaction residence time. Meanwhile, function of supercritical water was concluded. Fuel property analysis showed the potential of bio-oil application as crude fuel.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    70
    citations70
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Yasir Habib; Shujahat Haider Hashmi; Adeel Riaz; Hongzhong Fan;

    Abstract This study investigates the non-linear relationship between urbanization paths and CO2 emissions in selected South, South-East, and East Asian countries over the period 1971–2014. Based on the STIRPAT (Stochastic Impacts by Regression on Population, Affluence, and Technology) framework, we applied the advanced and robust methods of dynamic seemingly unrelated regression (DSUR), dynamic OLS (DOLS), and fully modified OLS (FMOLS) to estimate the long-term effects. The empirical findings revealed the inverted U-shaped effects of urbanization and urban agglomeration and the U-shaped impact of the largest city ratio on CO2 emissions. Urbanization and urban agglomerations improve environmental quality in the long-run and support ecological modernization theory. However, excessive concentration in the largest cities have severely affected the environmental quality and violates the notion of compact-city efficiencies. Moreover, energy intensity and economic growth positively affect CO2 emissions, while trade openness negatively influences CO2 emissions. Our robustness analysis at the country-level applies the augmented mean group (AMG) panel ARDL technique, which further supports the non-linear effect of urbanization paths on CO2 emissions except for a few countries. The results of the panel Granger non-causality approach unveil bidirectional causality of energy efficiency, economic growth, urbanization, and largest city ratio with CO2 emissions. In contrast, unidirectional causality runs from urban agglomeration to CO2 emissions. Our findings have important policy implications as we suggest green urban infrastructures, eco-friendly dwellings, smart cities, country-specific trade policies, and renewable energy options to improve the environmental quality.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Urban Climatearrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Urban Climate
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    87
    citations87
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Urban Climatearrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Urban Climate
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Yang L. Wang; Charles K. Westbrook; Dong Joon Lee; Fokion N. Egolfopoulos; +1 Authors

    Abstract The oxidation characteristics of several small methyl and ethyl esters with carbon number less than six were investigated in laminar flames. The kinetics of such fuels are subsets of those of larger alkyl esters that are constituents of practical biodiesel fuels. A total of seven fuels, namely methyl formate, methyl acetate, methyl propionate, methyl butanoate, ethyl formate, ethyl acetate, and ethyl propionate were considered. Experiments were conducted at atmospheric pressure, elevated reactant temperatures, and over a wide range of equivalence ratios. Laminar flame speeds were determined in the counterflow configuration in which flow velocities were measured using particle image velocimetry. Several detailed kinetic models were tested against the experimental data, and insight was provided into the high-temperature combustion kinetics of the aforementioned fuels. Based on comparisons between experimental and computed results it became apparent that the chemistry of alkyl-ester combustion chemistry is evolving and much needs to be done in order to derive improved rate constants for a wide range of elementary steps.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    61
    citations61
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Alexander S. Vertis; Larry Eisenberg;

    Abstract Pollution control strategies currently in use by electric power systems are reviewed and a new minimum emission dispatch (MED) method is developed. This new method minimizes overall emission levels at an increased cost in large-scale power systems while simultaneously accommodating local pollution level requirements, as well as economic constraints.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of the Frank...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of the Franklin Institute
    Article . 1973 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    9
    citations9
    popularityAverage
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of the Frank...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of the Franklin Institute
      Article . 1973 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Serikbayeva Akmaral; Boranbayeva Assiya; Abdibattayeva Maral; Nurbayeva Farida; +2 Authors

    Abstract In this paper, the prevention of negative technogenic impact on the environment of oil sludge by using it as a secondary resource is considered. Oil sludge from various objects of oil fields in Kazakhstan (Mangystau region) has been studied. The possibilities of using oil (after its separation from oil sludge by bioremidiation) as a partial substitute for bitumen base in the production of modified bitumen are considered. The main physical and mechanical characteristics of modified bitumen are determined. The results confirm that the modified bitumen prepared with oil sludge and oil separated by bioremiation method meets the requirements for polymer-bitumen binder to Kazakhstan standards and is suitable for the production of modified bitumen in its physico-chemical characteristics.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Environmental and Cl...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Environmental and Climate Technologies
    Article . 2022 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Environmental and Cl...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Environmental and Climate Technologies
      Article . 2022 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Zhanping Hu;

    Abstract As a burgeoning theoretical framework, energy justice has been mostly focused on the energy transition in Western countries, where socio-political settings are largely featured by liberalism and democracy, leaving an obvious gap in its application in other socio-political contexts. As a major energy consumer and a leader of the global low-carbon transition, China is characterized by a distinctive socio-political regime. An array of grand strategies to transform its coal-dominant energy structure have been initiated to ameliorate deteriorating environmental crises in particular and materialize a low-carbon transition in general. Based on extensive evidence, this article incorporates the energy justice framework into the analysis of an ongoing energy transition project in rural Northern China. It contributes to the related research in three dimensions. First, empirically, it demonstrates that the coal-to-gas heating transition project has been swamped with social injustices; the absence of measures to address these would lead this mega-project to profound failure. Second, theoretically, it illustrates that the concerns of justice are even more paramount in an authoritarian context where policy processes are characterized by strong political-administrative intervention and the pursuit of efficiency at all cost. In light of this, it stresses the indispensable role of restorative justice as a core tenet in achieving energy justice in authoritarian socio-political contexts, such as China. Third, this study advocates expanding the evaluation parameters of authoritarian environmentalism to include social consequences.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Research & So...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Research & Social Science
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    44
    citations44
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Research & So...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Research & Social Science
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Huimin Hou;

    Short term load forecasting plays an increasingly important role in Smart Grid. Short term load forecasting is also an important part of enterprise power system management. Providing accurate load time series data for a certain period of time in the future can enable enterprises to ensure the smooth operation of production while making a reasonable power plan, reducing power consumption and basic electricity charges, thus reducing the production cost of enterprises. In addition, lower electricity consumption means lower carbon dioxide emissions, which has far-reaching implications for sustainable development strategies. This paper presents a short-term load forecasting method based on time series. The model divides the time series data into four parts: trend item, period item, holiday item and error item. In the experiment part, this paper provides a set of preprocessing method flow. Aiming at the problem that the sampling rate of the current smart grid data is not constant, a data smoothing algorithm is proposed.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1109/icwcsg...
    Conference object . 2020 . Peer-reviewed
    License: IEEE Copyright
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    4
    citations4
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://doi.org/10.1109/icwcsg...
      Conference object . 2020 . Peer-reviewed
      License: IEEE Copyright
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Zia Ud Din; Zia Ud Din; Zainal Alimuddin Zainal;

    Abstract The combination of biomass gasification with fuel cells, especially high temperature Solid Oxide Fuel Cells (SOFCs) promises sustainable and highly efficient (decentralized and modular) energy conversion systems. This review encompasses the components of biomass integrated gasification–SOFC technology including biomass characteristics, the thermochemical conversion in gasifiers and the factors affecting the gasification process, the cleaning technologies for raw producer gas and its conditioning and finally the integration of gasifier with SOFCs. The influence of impurities present in biomass producer gas such as particulates, tar, H 2 S, HCl and alkali compounds based on recent experimental studies and their tolerance limits towards SOFCs are presented. Even though analysis based on the probable tolerance limits of impurities towards SOFCs and a comprehensive overview of the cleaning technologies for producer gas impurities indicate that producer gas cleaning at various temperatures using current technologies to meet SOFC requirements is possible, more experimental studies are still needed to acquire the detailed information on the tolerance limits of impurities for SOFCs. The recent theoretical modeling and experimental studies of biomass integrated gasification–SOFC systems are also presented.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    187
    citations187
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Hui Hong; Hongguang Jin; Shuo Peng;

    Abstract In the current study, a new solar-driven triple cycle is proposed to allow power generation during low insolation periods. This triple cycle integrates the solar gas-turbine top cycle, the steam Rankine cycle, and the Kalina bottom cycle. During the top cycle of the proposed system, compressed air was heated to 1000 °C or higher in the solar tower receiver. The heated compressed air was then used to drive the gas turbine to generate electricity. A Rankine cycle with a back-pressure steam turbine was utilized to recover waste heat from the gas turbine, thereby generating electricity through the steam turbine. The bottom cycle is the Kalina cycle, which comprises another back-pressure turbine and utilizes ammonia–water mixture as working fluid. After driving the steam Rankine cycle, the flue gas from the gas turbine sequentially heats the ammonia–water mixture to produce power. A new operational strategy was presented to generate electricity during low insolation period without the backup of fossil fuel. In middle insolation periods, the air is heated by the solar field and then directly drives the steam Rankine cycle, bypassing the gas turbine. In low insolation periods, the heated air directly drive the Kalina cycle, bypassing the Brayton cycle and the steam Rankine cycle. The off-design performance was investigated and the irreversibility was disclosed with the aid of the energy-utilization diagram method. Thus, the proposed system can utilize low insolation to generate electricity. This study provides a possibility to improve the solar–electric efficiency.

    Energyarrow_drop_down
    Energy
    Article . 2013 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    7
    citations7
    popularityAverage
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      Energyarrow_drop_down
      Energy
      Article . 2013 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph