Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
  • Access
    Clear
  • Type
  • Year range
  • Field of Science
  • SDG [Beta]
    Clear
  • Country
    Clear
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
8 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Embargo
  • 2. Zero hunger
  • 8. Economic growth
  • US
  • CN

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid bw M. Von Cossel;
    M. Von Cossel
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    M. Von Cossel in OpenAIRE
    orcid F. Lebendig;
    F. Lebendig
    ORCID
    Harvested from ORCID Public Data File

    F. Lebendig in OpenAIRE
    orcid bw M. Müller;
    M. Müller
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    M. Müller in OpenAIRE
    C. Hieber; +3 Authors

    Miscanthus (ANDERSSON) is considered a promising perennial industrial crop for providing biomass in a growing bioeconomy. One approach to increasing the biodiversity-enhancing ecosystem services of Miscanthus is the co-cultivation of flower-rich native wild plant species (WPS), for example, the perennial WPS common tansy (Tanacetum vulgare L.) and mugwort (Artemisia vulgaris L.), as well as the biennial WPS wild teasel (Dipsacus fullonum L.) and yellow melilot (Melilotus officinalis L.). This study tested whether these selected WPS would be as suitable for combustion as Miscanthus, in this case the sterile hybrid Miscanthus x giganteus Greef et Deuter, allowing for a mixing of the biomasses. By doing so, no additional value chain (e.g. biogas production) would be necessary to economically exploit the diversification of the agricultural system for bioenergy production. Feedstock samples of Miscanthus and the four above-mentioned WPS from a field trial in southwest Germany were used to investigate the combustion characteristics as well as the higher heating value (HHV). It was found that all WPS exhibited better combustion properties than Miscanthus with respect to ash melting behavior at similar HHVs of 16.3–17.5 MJ kg−1. From an admixture of >30% WPS to the Miscanthus biomass, a significant increase in the ash melting temperature by 20% from 1000 to 1200 °C was shown. Thus, the mixture of WPS and Miscanthus could potentially improve the combustion quality, leading to reduced costs in the incineration plant operation process. However, the reduced costs of incineration should be greater than the loss in productivity due to the lower biomass yields from the WPS. This is highly dependent on the particular site conditions and the establishment success of the WPS and needs to be investigated in long-term studies.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Juelich Shared Elect...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    8
    citations8
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Juelich Shared Elect...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Sun, Hao; Zheng, Congcong; Chen, Taiping; Postma, Johannes Auke; +1 Authors

    While clonal integration can improve the performance of rhizomatous plants, it remains unclear whether their clonal integration strategy changes under contrasting clipping and saline-alkali homogeneous and heterogeneous environments. Leymus chinensis is a clonal grass native to the Songnen grassland where heavy grazing and patchy saline-alkali stress are serious environmental and ecological problems. We hypothesized that L. chinensis overcomes these stresses through clonal integration, in particular the transfer of nitrogen and carbohydrates.A pot experiment was carried out with 15N isotope soil labeling method to study clonal integration strategy in the connected mother and daughter ramets of L. chinensis. The connected ramet pairs were grown in homogeneous (both connected ramets were treated) and heterogeneous (only daughter ramets were treated) environments with four treatments: control, clipping (60% aboveground biomass removal), saline-alkali (3.45 g of NaCl, NaHCO3, and Na2CO3 per pot), and clipping × saline-alkali.A significant amount (22.5%) of 15N was transferred from mother to daughter ramets under non-stressed conditions. When homogeneously stressing both mother and daughter ramets, N transfer was significantly reduced to 8.5--14.6%, independent of the nature of the stress. When only daughters were stressed (heterogeneous stress), saline-alkali stress led to a division of labor where daughters had enhanced photosynthesis, and mother ramets had increased 15N uptake and growth. Clipping only daughters reduced biomass and 15N uptake of both daughter and mother ramets.Our results demonstrated that clonal integration also occurs in homogeneous favorable environments but is reduced under homogeneous stress. In heterogeneous environments, clonal integration is used to translocate resource after clipping and a division of labor is established to overcome saline-alkali stress. Clonal integration continued even when daughters were severely stressed by the combined treatments. Our findings suggest that these mechanisms are key to the success of L. chinensis in the Songnen grassland.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Juelich Shared Elect...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    The Science of The Total Environment
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    9
    citations9
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Juelich Shared Elect...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      The Science of The Total Environment
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Yu Zhuang; Shuili Yang; orcid Supat Chupradit;
    Supat Chupradit
    ORCID
    Harvested from ORCID Public Data File

    Supat Chupradit in OpenAIRE
    orcid Muhammad Atif Nawaz;
    Muhammad Atif Nawaz
    ORCID
    Harvested from ORCID Public Data File

    Muhammad Atif Nawaz in OpenAIRE
    +2 Authors

    PurposeFirst, the current study contributes to the available debate by reinvestigating the impact of economic growth (EG), foreign direct investment (FDI), technological innovation (TI) and inflation (INF) on trade openness (TO). Second, the study tests the moderating role of institutional quality (INS) on the relationship among EG, FDI, TI and TO. Third, the study tests how TO contributes to EG efficiency.Design/methodology/approachThe study collects the data from the group of twenty (G20) economies for the period of 1998–2020. The study applied the Kao (1999), Pedroni (2001), and Palamuleni (2017) cointegration tests to test the long-run association between variables. The study applied fully modified least square (FMOLS) and dynamic least square (DOLS) models to test the hypotheses.FindingsFindings of the study showed the positive impact of EG, FDI and TI on TO, which becomes more positive in the presence of institutional quality. Results indicate that INS plays an enhancing role in the relationship between FDI and TO, EG and TO and TI and TO. The study showed a negative relationship between INF and TO, and institutional quality plays a buffering role in the relationship between INF and TO.Originality/valueFirst, the study reinvestigates the empirical association among EG, FDI, TI, INF and TO. Second, the study tests the moderating role of INS on the relationship between the proposed variables by developing an index of all the indicators of INS. Third, the study tests the contributions of TO in economic efficiency (ECE). The contributions of the present study will increase the available literature of TO and help the policy makers of G20 nations to suggest important policies to promote TO and ECE.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Istanbul Ticaret Uni...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Business Process Management Journal
    Article . 2021 . Peer-reviewed
    License: Emerald Insight Site Policies
    Data sources: Crossref
    addClaim
    42
    citations42
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Istanbul Ticaret Uni...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Business Process Management Journal
      Article . 2021 . Peer-reviewed
      License: Emerald Insight Site Policies
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Ali, Shahid;
    Ali, Shahid
    ORCID
    Harvested from ORCID Public Data File

    Ali, Shahid in OpenAIRE
    Jiang, Junfeng; Ahmad, Mahmood; orcid Usman, Ojonugwa;
    Usman, Ojonugwa
    ORCID
    Harvested from ORCID Public Data File

    Usman, Ojonugwa in OpenAIRE
    +1 Authors

    Continuing economic progress with less environmental damage and achieving a sustainable environment require switching from fossil fuels to green energy. However, alleviating environmental damage of growth has become a major challenge for BRICS where economic progress amidst rising urbanization pollutes the environment. In this context, the fight against climate change and actions towards environmental sustainability are greatly affected by rising economic policy uncertainty. Hence, this study assesses the role of green energy, urbanization, and economic growth in CO2 emissions in the presence of economic policy uncertainty in BRICS (excluding South Africa) from 1997 to 2020. The study used the cross-sectionally augmented auto-regressive distributive lag technique for revealing the short- and long-run effects of the analyzed variables on environmental quality. The empirical evidence suggested that the environmental Kuznets curve exists according to the recent framework of Narayan and Narayan Energy Policy 38:661-666, (2010) because even though economic growth increases CO2 emissions, its long-run effect is less than the short-run effect. Economic policy uncertainty boosts CO2 not only in the short-run but also in the long-run, evidencing that a sustainable environment requires decreasing the levels of policy uncertainty. For BRICS, switching towards green energy is a vital option to decrease environmental deterioration owing to the negative connection between green energy and CO2. The findings indicated that rapid urbanization is among the causes of high CO2. Furthermore, economic policy uncertainty influences both green energy and economic growth levels. Finally, policies are recommended to mitigate environmental deterioration.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Istanbul Ticaret Uni...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Science and Pollution Research
    Article . 2022 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim
    27
    citations27
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Istanbul Ticaret Uni...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Science and Pollution Research
      Article . 2022 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: van Dam, J.; Faaij, A.P.C.; Hilbert, J.; Petruzzi, H.; +1 Authors

    This study focuses on the economic feasibility for large-scale biomass production from soybeans or switchgrass from a region in Argentina. This is determined, firstly, by estimating whether the potential supply of biomass, when food and feed demand are met, is sufficient under different scenarios to 2030. On a national level, switchgrass has a biomass potential of 99 × 106 (1.9 EJ) to 243 × 106 tdm (4.5 EJ)/year depending on the scenario. Soybean (crude vegetable oil content) production for bioenergy has a potential of 7.1 × 106 (0.25 EJ) to 13.8 × 106 tdm (0.5 EJ)/year depending on the scenario. The most suitable region (La Pampa province) to cultivate energy crop production is selected based on a defined set of criteria (available land for biomass production, available potential for both crops, proximity of logistics and limited risk of land use competition). The available potential for bioenergy in La Pampa ranges from 1.2 × 105 to 1.8 × 105 tdm/year for soybean production (based on vegetable oil content) and from 6.3 × 106 to 18.2 × 106 tdm/year for switchgrass production, depending on the scenario. Bioenergy chains for large-scale biomass production for export or for local use are further defined to analyse the economic performance. In this study, switchgrass is converted to pellets for power generation in the Netherlands or for local heating in Argentina. Soybeans are used for biodiesel production for export or for local use. Switchgrass cultivation costs range from 33–91 US$/tdm (1€ = 1.47 US$ based on 19 February 2008). Pellet production costs are 58–143 US$/tdm for local use and 150–296 US$/tdm until delivery at the harbour of Rotterdam. Total conversion costs for electricity in the Netherlands from switchgrass pellets range from 0.06–0.08 US$/kWh. Heating costs in Argentina from switchgrass pellets range from 0.02–0.04 US$/kWh. Soybean cultivation costs range from 182–501 US$/tdm depending on the scenario. Biodiesel production costs are 0.3–1.2 US$/l for local use and 0.5–1.7 US$/l after export to the Netherlands. Key parameters for the economic performance of the bioenergy chains in La Pampa province are transport costs, cultivation costs, pre-processing and conversion costs and costs for fossil fuels and agricultural commodities.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Utrecht University R...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2009 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2009 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    112
    citations112
    popularityTop 10%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Utrecht University R...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2009 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2009 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid bw Buffa, DC;
    Buffa, DC
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Buffa, DC in OpenAIRE
    orcid bw Thompson, KET;
    Thompson, KET
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Thompson, KET in OpenAIRE
    orcid Reijerkerk, D;
    Reijerkerk, D
    ORCID
    Harvested from ORCID Public Data File

    Reijerkerk, D in OpenAIRE
    orcid Brittain, S;
    Brittain, S
    ORCID
    Harvested from ORCID Public Data File

    Brittain, S in OpenAIRE
    +10 Authors

    Worldwide, marginalized and low-income communities will disproportionately suffer climate change impacts while also retaining the least political power to mitigate their consequences. To adapt to environmental shocks, communities must balance intensifying natural resource consumption with the need to ensure the sustainability of ecosystem provisioning services. Thus, scientists have long been providing policy recommendations that seek to balance humanitarian needs with the best outcomes for the conservation of ecosystems and wildlife. However, many conservation and development practitioners from biological backgrounds receive minimal training in either social research methods or participatory project design. Without a clear understanding of the sociocultural factors shaping decision-making, their initiatives may fail to meet their goals, even when communities support proposed initiatives. This paper explores the underlying assumptions of a community's agency, or its ability to develop and enact preferred resilience-enhancing adaptations. We present a context-adaptable toolkit to assess community agency, identify barriers to adaptation, and survey perceptions of behaviour change around natural resource conservation and alternative food acquisition strategies. This tool draws on public health and ecology methods to facilitate conversations between community members, practitioners and scientists. We then provide insights from the toolkit's collaborative development and pilot testing with Vezo fishing communities in southwestern Madagascar.This article is part of the theme issue ‘Climate change adaptation needs a science of culture’.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Oxford University Re...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Philosophical Transactions of the Royal Society B Biological Sciences
    Article . 2023 . Peer-reviewed
    License: Royal Society Data Sharing and Accessibility
    Data sources: Crossref
    addClaim
    7
    citations7
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Oxford University Re...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Philosophical Transactions of the Royal Society B Biological Sciences
      Article . 2023 . Peer-reviewed
      License: Royal Society Data Sharing and Accessibility
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Hettinga, W.; orcid Junginger, H.M.;
    Junginger, H.M.
    ORCID
    Harvested from ORCID Public Data File

    Junginger, H.M. in OpenAIRE
    orcid Dekker, S.C.;
    Dekker, S.C.
    ORCID
    Harvested from ORCID Public Data File

    Dekker, S.C. in OpenAIRE
    Hoogwijk, M.; +2 Authors

    The US is currently the world's largest ethanol producer. An increasing percentage is used as transportation fuel, but debates continue on its costs competitiveness and energy balance. In this study, technological development of ethanol production and resulting cost reductions are investigated by using the experience curve approach, scrutinizing costs of dry grind ethanol production over the timeframe 1980–2005. Cost reductions are differentiated between feedstock (corn) production and industrial (ethanol) processing. Corn production costs in the US have declined by 62% over 30 years, down to 100$2005/tonne in 2005, while corn production volumes almost doubled since 1975. A progress ratio (PR) of 0.55 is calculated indicating a 45% cost decline over each doubling in cumulative production. Higher corn yields and increasing farm sizes are the most important drivers behind this cost decline. Industrial processing costs of ethanol have declined by 45% since 1983, to below 130$2005/m3 in 2005 (excluding costs for corn and capital), equivalent to a PR of 0.87. Total ethanol production costs (including capital and net corn costs) have declined approximately 60% from 800$2005/m3 in the early 1980s, to 300$2005/m3 in 2005. Higher ethanol yields, lower energy use and the replacement of beverage alcohol-based production technologies have mostly contributed to this substantial cost decline. In addition, the average size of dry grind ethanol plants increased by 235% since 1990. For the future it is estimated that solely due to technological learning, production costs of ethanol may decline 28–44%, though this excludes effects of the current rising corn and fossil fuel costs. It is also concluded that experience curves are a valuable tool to describe both past and potential future cost reductions in US corn-based ethanol production.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Utrecht University R...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Policy
    Article . 2009 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Policy
    Article . 2009
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Policy
    Article . 2008
    addClaim
    145
    citations145
    popularityTop 10%
    influenceTop 1%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Utrecht University R...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Policy
      Article . 2009 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Policy
      Article . 2009
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Policy
      Article . 2008
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Krey, V.;
    Krey, V.
    ORCID
    Harvested from ORCID Public Data File

    Krey, V. in OpenAIRE
    orcid O'Neill, B.C.;
    O'Neill, B.C.
    ORCID
    Harvested from ORCID Public Data File

    O'Neill, B.C. in OpenAIRE
    orcid van Ruijven, B.;
    van Ruijven, B.
    ORCID
    Harvested from ORCID Public Data File

    van Ruijven, B. in OpenAIRE
    Chaturvedi, V.; +6 Authors

    The process of urbanization has been shown to be important for economic development, environmental impacts and human wellbeing, particularly in developing countries. In this paper we compare structure, data sources and scenario results of four integrated assessment models that are capable of analyzing different aspects of urbanization. The comparison focuses on residential sector energy use and related CO2 emissions based on a set of urbanization scenarios for China and India. Important insights from this model comparison include that (i) total fossil fuel and industrial CO2 emissions at the regional level are not very sensitive to alternative rates of urbanization and are largely dependent on the linkage between urbanization and economic growth via differentiated labor productivity in urban and rural areas, (ii) alternative urbanization pathways may yield different results for the share of solid fuels in residential energy use, thereby affecting the number of people relying on these fuels and the associated adverse health impacts, and (iii) alternative economic growth scenarios can only be assessed for their welfare implications if urban and rural household are distinguished, even though that distinction does not always strongly affect aggregate outcomes which is often due to two effects that compensate each other in total. It can be concluded that urbanization and heterogeneity of households and consumers are clearly relevant for distributional effects and associated health and social impacts. (C) 2012 Elsevier B.V. All rights reserved.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Utrecht University R...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Economics
    Article . 2012 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    111
    citations111
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Utrecht University R...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Economics
      Article . 2012 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
Powered by OpenAIRE graph