Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
  • Access
    Clear
  • Type
  • Year range
    Clear
  • Field of Science
  • Funder
  • SDG [Beta]
  • Country
    Clear
  • Language
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
543 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • 2021-2025
  • Restricted
  • CN
  • US

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Artale Giovanni; Caravello Giuseppe; Cataliotti Antonio; Cosentino Valentina; +5 Authors

    (Abstract) This paper proposes a new power line communication (PLC) architecture for monitoring and remote control of Distributed Generators (DG) and Energy Storage Systems (ESS) connected to low voltage distribution networks. The final aim is to improve the performance of the PLC link in terms of robustness and efficiency in devices addressing. The proposed solution is based on a concentrator, to be installed in secondary substation, and a new PLC bridge, to be linked both to inverters and interface protection systems of DGs or ESSs. In this way, a communication link is obtained between distribution system operator (DSO) and DG or ESS owners. The proposed system is able to provide advanced functions for the remote control of DGs and ESSs inverters, not only in terms of remote disconnection but also in terms of adjusting the inverter operating modes.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS Cnrarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Conference object . 2021
    Data sources: CNR ExploRA
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1109/rtsi50...
    Conference object . 2021 . Peer-reviewed
    License: IEEE Copyright
    Data sources: Crossref
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS Cnrarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Conference object . 2021
      Data sources: CNR ExploRA
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://doi.org/10.1109/rtsi50...
      Conference object . 2021 . Peer-reviewed
      License: IEEE Copyright
      Data sources: Crossref
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Nazari-Heris, Morteza; Loni, Abdolah; Asadi, Somayeh; Mohammadi-ivatloo, Behnam;

    Electric vehicles (EVs) are considered a substitute for fossil-fueled vehicles due to rising fossil fuel prices and accompanying environmental concerns, and their use is predicted to increase dramatically shortly. However, the widespread use of EVs and their large-scale integration into the energy system will present several operational and technological hurdles. In the energy industry, an innovative solution known as the EVs smart parking lot (SPL) is introduced to handle EV charging and discharging electricity and energy supply challenges. This paper investigates social equity access and mobile charging stations (MCSs) for EVs, where the owner of MCSs is the EV parking lot. Accordingly, a new self-scheduling model for SPLs is presented in this paper that incorporates scheduling of the MCSs as temporary charging infrastructures while considering social equity access and optimizes SPL energy generation and storage schedule. The main objectives of this research are to (i) develop MCSs accessibility measures and quantify the equity impacts of MCSs locations by modeling prioritized demand based on several indices; (ii) determine the optimal set-points of SPL components (i.e., combined heat and power (CHP), photovoltaic system, electrical and heat-energy storage, and MCSs) to manage electrical peak demand and to maximize the economic benefits of SPLs. Results indicate that the proposed demand prioritization function model can meet the required EV charging demands for prioritized events, and the self-scheduling model for SPLs satisfies the charging demand of the EVs in the SPL location. Also, the social equity access to the EV charging stations is satisfied by analyzing the operation of MCSs around the prioritized demand of the prioritized events and social equity access indices.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Aalborg University R...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    VBN
    Article . 2022
    Data sources: VBN
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Energy
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    57
    citations57
    popularityTop 10%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Aalborg University R...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      VBN
      Article . 2022
      Data sources: VBN
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Energy
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Xiao Xu; Weihao Hu; Wen Liu; Yuefang Du; +2 Authors

    The potential of renewable energy should be fully exploited in the transportation sector to achieve a cleaner production. Therefore, this paper proposes an on-grid hybrid hydrogen refueling and battery swapping station powered by wind energy. This novel concept can promote the development of low-carbon emission vehicles including hydrogen-based vehicle and battery electric vehicle. During the daily operation of the station, the multiple uncertainties may lead to a higher operational cost. To address this problem, a hybrid stochastic/distributionally robust optimization method is proposed to handle different uncertainties for the energy management problem. The first type of uncertainties can be depicted by a certain distribution, i.e. electricity price and wind power, which is processed by a stochastic optimization method. The second type of uncertainties is associated with human behaviors and is difficult to find its probability distribution, i.e. the hydrogen demand of hydrogen-based vehicles, so the second type is processed by a distributionally robust optimization method. The overall objective is to minimize the total operational cost of the station, which also considers the battery swapping station overstock punishment. Because a reasonable battery swapping scheduling can reduce the waiting time of users and operational cost of the station. The results indicate that the proposed method can effectively address the conservatism of solutions as its total operational cost is 4.4% lower than that of the hybrid stochastic/robust optimization method under a high confidence level.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Aalborg University R...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    VBN
    Article . 2022
    Data sources: VBN
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Cleaner Production
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    34
    citations34
    popularityTop 10%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Aalborg University R...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      VBN
      Article . 2022
      Data sources: VBN
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Cleaner Production
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Salvatore Calabrese; Bastien Wild; Matteo B. Bertagni; Ian C. Bourg; +5 Authors

    Enhanced weathering (EW) is one of the most promising negative emissions technologies urgently needed to limit global warming to at least below 2 °C, a goal recently reaffirmed at the UN Global Climate Change conference (i.e., COP26). EW relies on the accelerated dissolution of crushed silicate rocks applied to soils and is considered a sustainable solution requiring limited technology. While EW has a high theoretical potential of sequestering CO2, research is still needed to provide accurate estimates of carbon (C) sequestration when applying different silicate materials across distinct climates and major soil types in combination with a variety of plants. Here we elaborate on fundamental advances that must be addressed before EW can be extensively adopted. These include identifying the most suitable environmental conditions, improving estimates of field dissolution rates and efficacy of CO2 removal, and identifying alternative sources of silicate materials to meet future EW demands. We conclude with considerations on the necessity of integrated modeling-experimental approaches to better coordinate future field experiments and measurements of CO2 removal, as well as on the importance of seamlessly coordinating EW with cropland and forest management.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Publications Open Re...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Science & Technology
    Article . 2022 . Peer-reviewed
    License: STM Policy #29
    Data sources: Crossref
    39
    citations39
    popularityTop 10%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Mohammad Mohsen Hayati; Ashkan Safari; Morteza Nazari-Heris; Arman Oshnoei;

    The adoption of solar systems has witnessed a remarkable growth rate in recent years, driven by increasing awareness of renewable energy and declining costs of solar technology. Solar systems offer several advantages, including abundant energy source, reduced carbon emissions, and potential cost savings. However, they also face challenges such as intermittency, limited energy storage capacity, and grid integration issues. By incorporating hydrogen in smart grids, these drawbacks can be addressed as hydrogen can serve as a means of energy storage, allowing excess solar energy to be stored as hydrogen and utilized during periods of low solar generation. Hydrogen-incorporated smart grids thus provide a complementary solution to enhance the reliability, stability, and scalability of solar systems, facilitating their integration into the broader energy landscape. Consequently, this chapter aims to provide a comprehensive review of green hydrogen-integrated sector-coupled smart grids and presents prospects for future advancements. The background and significance of hydrogen integration within smart grid systems are established. The fundamentals of hydrogen integration, including its role as an energy carrier and its integration within smart grid systems, are explored. The concept of sector coupling in smart grids is examined, emphasizing the interconnection of different energy sectors and the importance of achieving energy system integration. Existing green hydrogen-incorporated smart grid projects are reviewed, and experiences gathered from successful implementations are analyzed. Technological advancements, such as emerging green hydrogen production and storage technologies, are discussed along with smart grid control and management systems for efficient green hydrogen utilization. Economic and environmental considerations are evaluated, encompassing cost analysis, evaluation of environmental impacts, and identification of economic incentives. Future prospects and research directions are explored, aiming to identify key challenges, address gaps, and highlight areas for further investigation. Overall, through this comprehensive review and exploration of future prospects, a deeper understanding of hydrogen-integrated sector-coupled smart grids and their potential for advancing sustainable energy systems can be achieved.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao VBNarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    VBN
    Part of book or chapter of book . 2024
    Data sources: VBN
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1007/978-3-...
    Part of book or chapter of book . 2024 . Peer-reviewed
    License: Springer Nature TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Aalborg University Research Portal
    Part of book or chapter of book . 2024
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    VBN
    Part of book or chapter of book . 2024
    Data sources: VBN
    10
    citations10
    popularityAverage
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao VBNarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      VBN
      Part of book or chapter of book . 2024
      Data sources: VBN
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://doi.org/10.1007/978-3-...
      Part of book or chapter of book . 2024 . Peer-reviewed
      License: Springer Nature TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Aalborg University Research Portal
      Part of book or chapter of book . 2024
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      VBN
      Part of book or chapter of book . 2024
      Data sources: VBN
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Zhou Y.; Xie Y. -Z.; Zhang D. -Z.; Dong N.; +2 Authors

    Nanosecond-level transient electromagnetic disturbance (TED), including very fast transient overvoltage caused by operation of disconnectors, high-altitude electromagnetic pulse, and many other fast transients may interfere or even damage the electrical equipment. As one of the main overvoltage protective equipment, the protective performance of metal-oxide surge arresters (MOAs) under nanosecond-level TED should be investigated and then compared with that under microsecond-level TED, especially the lightning impulse. Based on a testing platform containing a 400-kV pulse generator with adjustable rise time from 5 to 100 ns, the behaviors of nonlinearity, fast impulse response, and converting impedances of three types of 10-kV MOAs under TED with different rise time were explored experimentally in this article. The peak residual voltages of 10-kV MOAs under TED with the rise time of 5 ns at 5 kA are 50.2–60.7% higher than those under the lightning impulse. The rise time of TED has significant influence on the peak voltage and impedance converting behaviors of MOAs. A circuit model of 10-kV MOAs under nanosecond-level TED is built and validated by experimental results, which can be applied in insulation coordination and design of protective devices against TED.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Publications Open Re...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    IEEE Transactions on Electromagnetic Compatibility
    Article . 2021 . Peer-reviewed
    License: IEEE Copyright
    Data sources: Crossref
    17
    citations17
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Shuping Qin; Yaxing Pang; Huixian Hu; Ting Liu; +8 Authors

    AbstractNitrous oxide (N2O) is a potent greenhouse gas and causes stratospheric ozone depletion. While the emissions of N2O from soil are widely recognized, recent research has shown that terrestrial plants may also emit N2O from their leaves under controlled laboratory conditions. However, it is unclear whether foliar N2O emissions are universal across varying plant taxa, what the global significance of foliar N2O emissions is, and how the foliage produces N2O in situ. Here we investigated the abilities of 25 common plant taxa, including trees, shrubs and herbs, to emit N2O under in situ conditions. Using 15N isotopic labeling, we demonstrated that the foliage‐emitted N2O was predominantly derived from nitrate. Moreover, by selectively injecting biocide in conjunction with the isolating and back‐inoculating of endophytes, we demonstrated that the foliar N2O emissions were driven by endophytic bacteria. The seasonal N2O emission rates ranged from 3.2 to 9.2 ng N2O–N g−1 dried foliage h−1. Extrapolating these emission rates to global foliar biomass and plant N uptake, we estimated global foliar N2O emission to be 1.21 and 1.01 Tg N2O–N year−1, respectively. These estimates account for 6%–7% of the current global annual N2O emission of 17 Tg N2O–N year−1, indicating that in situ foliar N2O emission is a universal process for terrestrial plants and contributes significantly to the global N2O inventory. This finding highlights the importance of measuring foliar N2O emissions in future studies to enable the accurate assigning of mechanisms and the development of effective mitigation.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Research@WURarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Research@WUR
    Article . 2024
    Data sources: Research@WUR
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Global Change Biology
    Article . 2024 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    4
    citations4
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Research@WURarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Research@WUR
      Article . 2024
      Data sources: Research@WUR
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Global Change Biology
      Article . 2024 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Danni Yang; Sien Li; Mousong Wu; Hanbo Yang; +6 Authors

    To mitigate the climate change-induced water shortage and realize the sustainable development of agriculture, drip irrigation, a more efficient water-saving irrigation method, has been intensively implemented in most arid agricultural regions in the world. However, compared to traditional border irrigation, how drip irrigation affects the biophysical conditions in the cropland and how crops physiologically respond to changes in biophysical conditions in terms of water, heat and carbon exchange remain largely unknown. In view of the above situation, to reveal the mechanism of drip irrigation in improving spring wheat water productivity, paired field experiments based on drip irrigation and border irrigation were conducted to extensively monitor water and heat fluxes at a typical spring wheat field (Triticum aestivum L.) in Northwest China during 2017–2020. The results showed that drip irrigation improved yield by 10.3 % and crop water productivity (i.e., yield-to-evapotranspiration-ratio) by 15.6 %, but reduced LAI by 16.9 % in contrast with border irrigation. Under drip irrigation, the lateral development of spring wheat roots was promoted by higher soil temperature combined with frequent dry-wet alternation in the shallow soil layer (0–20 cm), which was the basis for efficient absorption of water and fertilizer, as well as efficient formation of photosynthate. Meanwhile, drip irrigation increased net radiation and decreased latent heat flux by inhibiting leaf growth, thereby increased sensible heat, causing a higher soil temperature (+1.10 ℃) and canopy temperature (+1.11 ℃). Further analysis proved that soil temperature was the key factor affecting yield formation. Based on the above conditions, the decrease in leaf distribution coefficient (−0.030) led to the decrease in evapotranspiration (−5.7 %) and the increase in ear distribution coefficient (+0.029). Therefore, drip irrigation emphasized the role of soil moisture in the soil-plant-atmosphere continuum, enhanced crop activity by increasing field temperature, especially soil temperature, and finally improved yield and water productivity via carbon reallocation. The study revealed the mechanism of drip irrigation for improving spring wheat yield, and would contribute to improving Earth system models in representing agricultural cropland ecosystems with drip irrigation and predicting the subsequent biophysical and biogeochemical feedbacks to climate change.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PURE Aarhus Universi...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    European Journal of Agronomy
    Article . 2023 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    19
    citations19
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PURE Aarhus Universi...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      European Journal of Agronomy
      Article . 2023 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Zefeng Chen; Weiguang Wang; Alessandro Cescatti; Giovanni Forzieri;

    AbstractClimate change alters surface water availability (WA; precipitation minus evapotranspiration, P − ET) and consequently impacts agricultural production and societal water needs, leading to increasing concerns on the sustainability of water use. Although the direct effects of climate change on WA have long been recognized and assessed, indirect climate effects occurring through adjustments in terrestrial vegetation are more subtle and not yet fully quantified. To address this knowledge gap, here we investigate the interplay between climate‐induced changes in leaf area index (LAI) and ET and quantify its ultimate effect on WA during the period 1982–2016 at the global scale, using an ensemble of data‐driven products and land surface models. We show that ~44% of the global vegetated land has experienced a significant increase in growing season‐averaged LAI and climate change explains 33.5% of this greening signal. Such climate‐induced greening has enhanced ET of 0.051 ± 0.067 mm year−2 (mean ± SD), further amplifying the ongoing increase in ET directly driven by variations in climatic factors over 36.8% of the globe, and thus exacerbating the decline in WA prominently in drylands. These findings highlight the indirect impact of positive feedbacks in the land–climate system on the decline of WA, and call for an in‐depth evaluation of these phenomena in the design of local mitigation and adaptation plans.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Flore (Florence Rese...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Global Change Biology
    Article . 2022 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    50
    citations50
    popularityTop 10%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Flore (Florence Rese...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Global Change Biology
      Article . 2022 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Pengmusen Lin; Xinyu Yu; Han Wang; Hui Ming; +5 Authors

    The technological development of preparing bio-oil from low-temperature hydrothermal conversion of agricultural and forestry waste has positive significance for alleviating the shortage of oil energy supply and reducing environmental pollution. This paper selects typical oxides (Al2O3, CeO2, MgO, SiO2, TiO2, and ZnO) as catalysts to set up a low-temperature (220 °C) hydrothermal conversion process of cotton stalk containing pretreatment processes including chopping. For moderate amplification estimation, lab-scale experimental data is used as a benchmark for calculation, and the functional unit for this study is set to be a 1 kg bio-oil product. The results suggest that the cerium dioxide-involved process with the highest bio-oil yield and highest synthetic consumption, and the silica-involved process with the lowest bio-oil yield, caused the highest environmental impact, resulting in greenhouse gas (GHG) emissions of 67.729 kg CO2e/kg and 60.001 kg CO2e/kg, respectively. It indicates that catalysts need to consider the balance between synthetic consumption and catalytic performance. Magnifying lab-scale data to an industrial scale using scale-up frameworks introduces a low model uncertainty, as the practical value had little effect on the overall evaluation results. However, existing equipment data should be used to reduce the uncertainty of the model itself. The environmental sustainability of bio-oil production by low-temperature hydrothermal liquefaction still needs to be improved, especially by catalyst recovery and bio-oil yield improvement.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PURE Aarhus Universi...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy
    Article . 2023 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    6
    citations6
    popularityAverage
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PURE Aarhus Universi...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy
      Article . 2023 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
543 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Artale Giovanni; Caravello Giuseppe; Cataliotti Antonio; Cosentino Valentina; +5 Authors

    (Abstract) This paper proposes a new power line communication (PLC) architecture for monitoring and remote control of Distributed Generators (DG) and Energy Storage Systems (ESS) connected to low voltage distribution networks. The final aim is to improve the performance of the PLC link in terms of robustness and efficiency in devices addressing. The proposed solution is based on a concentrator, to be installed in secondary substation, and a new PLC bridge, to be linked both to inverters and interface protection systems of DGs or ESSs. In this way, a communication link is obtained between distribution system operator (DSO) and DG or ESS owners. The proposed system is able to provide advanced functions for the remote control of DGs and ESSs inverters, not only in terms of remote disconnection but also in terms of adjusting the inverter operating modes.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS Cnrarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Conference object . 2021
    Data sources: CNR ExploRA
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1109/rtsi50...
    Conference object . 2021 . Peer-reviewed
    License: IEEE Copyright
    Data sources: Crossref
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS Cnrarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Conference object . 2021
      Data sources: CNR ExploRA
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://doi.org/10.1109/rtsi50...
      Conference object . 2021 . Peer-reviewed
      License: IEEE Copyright
      Data sources: Crossref
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Nazari-Heris, Morteza; Loni, Abdolah; Asadi, Somayeh; Mohammadi-ivatloo, Behnam;

    Electric vehicles (EVs) are considered a substitute for fossil-fueled vehicles due to rising fossil fuel prices and accompanying environmental concerns, and their use is predicted to increase dramatically shortly. However, the widespread use of EVs and their large-scale integration into the energy system will present several operational and technological hurdles. In the energy industry, an innovative solution known as the EVs smart parking lot (SPL) is introduced to handle EV charging and discharging electricity and energy supply challenges. This paper investigates social equity access and mobile charging stations (MCSs) for EVs, where the owner of MCSs is the EV parking lot. Accordingly, a new self-scheduling model for SPLs is presented in this paper that incorporates scheduling of the MCSs as temporary charging infrastructures while considering social equity access and optimizes SPL energy generation and storage schedule. The main objectives of this research are to (i) develop MCSs accessibility measures and quantify the equity impacts of MCSs locations by modeling prioritized demand based on several indices; (ii) determine the optimal set-points of SPL components (i.e., combined heat and power (CHP), photovoltaic system, electrical and heat-energy storage, and MCSs) to manage electrical peak demand and to maximize the economic benefits of SPLs. Results indicate that the proposed demand prioritization function model can meet the required EV charging demands for prioritized events, and the self-scheduling model for SPLs satisfies the charging demand of the EVs in the SPL location. Also, the social equity access to the EV charging stations is satisfied by analyzing the operation of MCSs around the prioritized demand of the prioritized events and social equity access indices.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Aalborg University R...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    VBN
    Article . 2022
    Data sources: VBN
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Energy
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    57
    citations57
    popularityTop 10%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Aalborg University R...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      VBN
      Article . 2022
      Data sources: VBN
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Energy
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Xiao Xu; Weihao Hu; Wen Liu; Yuefang Du; +2 Authors

    The potential of renewable energy should be fully exploited in the transportation sector to achieve a cleaner production. Therefore, this paper proposes an on-grid hybrid hydrogen refueling and battery swapping station powered by wind energy. This novel concept can promote the development of low-carbon emission vehicles including hydrogen-based vehicle and battery electric vehicle. During the daily operation of the station, the multiple uncertainties may lead to a higher operational cost. To address this problem, a hybrid stochastic/distributionally robust optimization method is proposed to handle different uncertainties for the energy management problem. The first type of uncertainties can be depicted by a certain distribution, i.e. electricity price and wind power, which is processed by a stochastic optimization method. The second type of uncertainties is associated with human behaviors and is difficult to find its probability distribution, i.e. the hydrogen demand of hydrogen-based vehicles, so the second type is processed by a distributionally robust optimization method. The overall objective is to minimize the total operational cost of the station, which also considers the battery swapping station overstock punishment. Because a reasonable battery swapping scheduling can reduce the waiting time of users and operational cost of the station. The results indicate that the proposed method can effectively address the conservatism of solutions as its total operational cost is 4.4% lower than that of the hybrid stochastic/robust optimization method under a high confidence level.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Aalborg University R...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    VBN
    Article . 2022
    Data sources: VBN
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Cleaner Production
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    34
    citations34
    popularityTop 10%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Aalborg University R...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      VBN
      Article . 2022
      Data sources: VBN
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Cleaner Production
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Salvatore Calabrese; Bastien Wild; Matteo B. Bertagni; Ian C. Bourg; +5 Authors

    Enhanced weathering (EW) is one of the most promising negative emissions technologies urgently needed to limit global warming to at least below 2 °C, a goal recently reaffirmed at the UN Global Climate Change conference (i.e., COP26). EW relies on the accelerated dissolution of crushed silicate rocks applied to soils and is considered a sustainable solution requiring limited technology. While EW has a high theoretical potential of sequestering CO2, research is still needed to provide accurate estimates of carbon (C) sequestration when applying different silicate materials across distinct climates and major soil types in combination with a variety of plants. Here we elaborate on fundamental advances that must be addressed before EW can be extensively adopted. These include identifying the most suitable environmental conditions, improving estimates of field dissolution rates and efficacy of CO2 removal, and identifying alternative sources of silicate materials to meet future EW demands. We conclude with considerations on the necessity of integrated modeling-experimental approaches to better coordinate future field experiments and measurements of CO2 removal, as well as on the importance of seamlessly coordinating EW with cropland and forest management.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Publications Open Re...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Science & Technology
    Article . 2022 . Peer-reviewed
    License: STM Policy #29
    Data sources: Crossref
    39
    citations39
    popularityTop 10%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Mohammad Mohsen Hayati; Ashkan Safari; Morteza Nazari-Heris; Arman Oshnoei;

    The adoption of solar systems has witnessed a remarkable growth rate in recent years, driven by increasing awareness of renewable energy and declining costs of solar technology. Solar systems offer several advantages, including abundant energy source, reduced carbon emissions, and potential cost savings. However, they also face challenges such as intermittency, limited energy storage capacity, and grid integration issues. By incorporating hydrogen in smart grids, these drawbacks can be addressed as hydrogen can serve as a means of energy storage, allowing excess solar energy to be stored as hydrogen and utilized during periods of low solar generation. Hydrogen-incorporated smart grids thus provide a complementary solution to enhance the reliability, stability, and scalability of solar systems, facilitating their integration into the broader energy landscape. Consequently, this chapter aims to provide a comprehensive review of green hydrogen-integrated sector-coupled smart grids and presents prospects for future advancements. The background and significance of hydrogen integration within smart grid systems are established. The fundamentals of hydrogen integration, including its role as an energy carrier and its integration within smart grid systems, are explored. The concept of sector coupling in smart grids is examined, emphasizing the interconnection of different energy sectors and the importance of achieving energy system integration. Existing green hydrogen-incorporated smart grid projects are reviewed, and experiences gathered from successful implementations are analyzed. Technological advancements, such as emerging green hydrogen production and storage technologies, are discussed along with smart grid control and management systems for efficient green hydrogen utilization. Economic and environmental considerations are evaluated, encompassing cost analysis, evaluation of environmental impacts, and identification of economic incentives. Future prospects and research directions are explored, aiming to identify key challenges, address gaps, and highlight areas for further investigation. Overall, through this comprehensive review and exploration of future prospects, a deeper understanding of hydrogen-integrated sector-coupled smart grids and their potential for advancing sustainable energy systems can be achieved.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao VBNarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    VBN
    Part of book or chapter of book . 2024
    Data sources: VBN
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1007/978-3-...
    Part of book or chapter of book . 2024 . Peer-reviewed
    License: Springer Nature TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Aalborg University Research Portal
    Part of book or chapter of book . 2024
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    VBN
    Part of book or chapter of book . 2024
    Data sources: VBN
    10
    citations10
    popularityAverage
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao VBNarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      VBN
      Part of book or chapter of book . 2024
      Data sources: VBN
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://doi.org/10.1007/978-3-...
      Part of book or chapter of book . 2024 . Peer-reviewed
      License: Springer Nature TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Aalborg University Research Portal
      Part of book or chapter of book . 2024
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      VBN
      Part of book or chapter of book . 2024
      Data sources: VBN
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Zhou Y.; Xie Y. -Z.; Zhang D. -Z.; Dong N.; +2 Authors

    Nanosecond-level transient electromagnetic disturbance (TED), including very fast transient overvoltage caused by operation of disconnectors, high-altitude electromagnetic pulse, and many other fast transients may interfere or even damage the electrical equipment. As one of the main overvoltage protective equipment, the protective performance of metal-oxide surge arresters (MOAs) under nanosecond-level TED should be investigated and then compared with that under microsecond-level TED, especially the lightning impulse. Based on a testing platform containing a 400-kV pulse generator with adjustable rise time from 5 to 100 ns, the behaviors of nonlinearity, fast impulse response, and converting impedances of three types of 10-kV MOAs under TED with different rise time were explored experimentally in this article. The peak residual voltages of 10-kV MOAs under TED with the rise time of 5 ns at 5 kA are 50.2–60.7% higher than those under the lightning impulse. The rise time of TED has significant influence on the peak voltage and impedance converting behaviors of MOAs. A circuit model of 10-kV MOAs under nanosecond-level TED is built and validated by experimental results, which can be applied in insulation coordination and design of protective devices against TED.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Publications Open Re...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    IEEE Transactions on Electromagnetic Compatibility
    Article . 2021 . Peer-reviewed
    License: IEEE Copyright
    Data sources: Crossref
    17
    citations17
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Shuping Qin; Yaxing Pang; Huixian Hu; Ting Liu; +8 Authors

    AbstractNitrous oxide (N2O) is a potent greenhouse gas and causes stratospheric ozone depletion. While the emissions of N2O from soil are widely recognized, recent research has shown that terrestrial plants may also emit N2O from their leaves under controlled laboratory conditions. However, it is unclear whether foliar N2O emissions are universal across varying plant taxa, what the global significance of foliar N2O emissions is, and how the foliage produces N2O in situ. Here we investigated the abilities of 25 common plant taxa, including trees, shrubs and herbs, to emit N2O under in situ conditions. Using 15N isotopic labeling, we demonstrated that the foliage‐emitted N2O was predominantly derived from nitrate. Moreover, by selectively injecting biocide in conjunction with the isolating and back‐inoculating of endophytes, we demonstrated that the foliar N2O emissions were driven by endophytic bacteria. The seasonal N2O emission rates ranged from 3.2 to 9.2 ng N2O–N g−1 dried foliage h−1. Extrapolating these emission rates to global foliar biomass and plant N uptake, we estimated global foliar N2O emission to be 1.21 and 1.01 Tg N2O–N year−1, respectively. These estimates account for 6%–7% of the current global annual N2O emission of 17 Tg N2O–N year−1, indicating that in situ foliar N2O emission is a universal process for terrestrial plants and contributes significantly to the global N2O inventory. This finding highlights the importance of measuring foliar N2O emissions in future studies to enable the accurate assigning of mechanisms and the development of effective mitigation.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Research@WURarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Research@WUR
    Article . 2024
    Data sources: Research@WUR
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Global Change Biology
    Article . 2024 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    4
    citations4
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Research@WURarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Research@WUR
      Article . 2024
      Data sources: Research@WUR
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Global Change Biology
      Article . 2024 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Danni Yang; Sien Li; Mousong Wu; Hanbo Yang; +6 Authors

    To mitigate the climate change-induced water shortage and realize the sustainable development of agriculture, drip irrigation, a more efficient water-saving irrigation method, has been intensively implemented in most arid agricultural regions in the world. However, compared to traditional border irrigation, how drip irrigation affects the biophysical conditions in the cropland and how crops physiologically respond to changes in biophysical conditions in terms of water, heat and carbon exchange remain largely unknown. In view of the above situation, to reveal the mechanism of drip irrigation in improving spring wheat water productivity, paired field experiments based on drip irrigation and border irrigation were conducted to extensively monitor water and heat fluxes at a typical spring wheat field (Triticum aestivum L.) in Northwest China during 2017–2020. The results showed that drip irrigation improved yield by 10.3 % and crop water productivity (i.e., yield-to-evapotranspiration-ratio) by 15.6 %, but reduced LAI by 16.9 % in contrast with border irrigation. Under drip irrigation, the lateral development of spring wheat roots was promoted by higher soil temperature combined with frequent dry-wet alternation in the shallow soil layer (0–20 cm), which was the basis for efficient absorption of water and fertilizer, as well as efficient formation of photosynthate. Meanwhile, drip irrigation increased net radiation and decreased latent heat flux by inhibiting leaf growth, thereby increased sensible heat, causing a higher soil temperature (+1.10 ℃) and canopy temperature (+1.11 ℃). Further analysis proved that soil temperature was the key factor affecting yield formation. Based on the above conditions, the decrease in leaf distribution coefficient (−0.030) led to the decrease in evapotranspiration (−5.7 %) and the increase in ear distribution coefficient (+0.029). Therefore, drip irrigation emphasized the role of soil moisture in the soil-plant-atmosphere continuum, enhanced crop activity by increasing field temperature, especially soil temperature, and finally improved yield and water productivity via carbon reallocation. The study revealed the mechanism of drip irrigation for improving spring wheat yield, and would contribute to improving Earth system models in representing agricultural cropland ecosystems with drip irrigation and predicting the subsequent biophysical and biogeochemical feedbacks to climate change.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PURE Aarhus Universi...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    European Journal of Agronomy
    Article . 2023 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    19
    citations19
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PURE Aarhus Universi...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      European Journal of Agronomy
      Article . 2023 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Zefeng Chen; Weiguang Wang; Alessandro Cescatti; Giovanni Forzieri;

    AbstractClimate change alters surface water availability (WA; precipitation minus evapotranspiration, P − ET) and consequently impacts agricultural production and societal water needs, leading to increasing concerns on the sustainability of water use. Although the direct effects of climate change on WA have long been recognized and assessed, indirect climate effects occurring through adjustments in terrestrial vegetation are more subtle and not yet fully quantified. To address this knowledge gap, here we investigate the interplay between climate‐induced changes in leaf area index (LAI) and ET and quantify its ultimate effect on WA during the period 1982–2016 at the global scale, using an ensemble of data‐driven products and land surface models. We show that ~44% of the global vegetated land has experienced a significant increase in growing season‐averaged LAI and climate change explains 33.5% of this greening signal. Such climate‐induced greening has enhanced ET of 0.051 ± 0.067 mm year−2 (mean ± SD), further amplifying the ongoing increase in ET directly driven by variations in climatic factors over 36.8% of the globe, and thus exacerbating the decline in WA prominently in drylands. These findings highlight the indirect impact of positive feedbacks in the land–climate system on the decline of WA, and call for an in‐depth evaluation of these phenomena in the design of local mitigation and adaptation plans.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Flore (Florence Rese...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Global Change Biology
    Article . 2022 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    50
    citations50
    popularityTop 10%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Flore (Florence Rese...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Global Change Biology
      Article . 2022 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Pengmusen Lin; Xinyu Yu; Han Wang; Hui Ming; +5 Authors

    The technological development of preparing bio-oil from low-temperature hydrothermal conversion of agricultural and forestry waste has positive significance for alleviating the shortage of oil energy supply and reducing environmental pollution. This paper selects typical oxides (Al2O3, CeO2, MgO, SiO2, TiO2, and ZnO) as catalysts to set up a low-temperature (220 °C) hydrothermal conversion process of cotton stalk containing pretreatment processes including chopping. For moderate amplification estimation, lab-scale experimental data is used as a benchmark for calculation, and the functional unit for this study is set to be a 1 kg bio-oil product. The results suggest that the cerium dioxide-involved process with the highest bio-oil yield and highest synthetic consumption, and the silica-involved process with the lowest bio-oil yield, caused the highest environmental impact, resulting in greenhouse gas (GHG) emissions of 67.729 kg CO2e/kg and 60.001 kg CO2e/kg, respectively. It indicates that catalysts need to consider the balance between synthetic consumption and catalytic performance. Magnifying lab-scale data to an industrial scale using scale-up frameworks introduces a low model uncertainty, as the practical value had little effect on the overall evaluation results. However, existing equipment data should be used to reduce the uncertainty of the model itself. The environmental sustainability of bio-oil production by low-temperature hydrothermal liquefaction still needs to be improved, especially by catalyst recovery and bio-oil yield improvement.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PURE Aarhus Universi...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy
    Article . 2023 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    6
    citations6
    popularityAverage
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PURE Aarhus Universi...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy
      Article . 2023 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph