- home
- Advanced Search
- Energy Research
- CN
- Energy Research
- CN
description Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Wiley Authors: Yong Li; Yong Li; Louise Barton; Deli Chen;doi: 10.1002/jsfa.4643
pmid: 21953483
AbstractBACKGROUND: Besides land management and soil properties, nitrous oxide (N2O) emissions from the soil may be responsive to climatic variation. In this study the Water and Nitrogen Management Model (WNMM) was calibrated and validated to simulate N2O emissions from a rain‐fed and wheat‐cropped system on a sandy duplex soil at Cunderdin, Western Australia, from May 2005 to May 2007, then it was deployed to simulate N2O emissions for seven scenarios of fertiliser N application under various climatic conditions (1970–2006).RESULTS: The WNMM satisfactorily simulated crop growth, soil water content and mineral N contents of the surface soil (0–10 cm), soil temperatures at depths and N2O emissions from the soil compared with field observations in two fertiliser treatments during calibration and validation. About 70% of total N2O emissions were estimated as nitrification‐induced. The scenario analysis indicated that the WNMM‐simulated annual N2O emissions for this rain‐fed and wheat‐cropped system were significantly correlated with annual average minimum air temperature (r = 0.21), annual pan evaporation (r = 0.20) and fertiliser N application rate (r = 0.80). Both annual rainfall and wheat yield had weak and negative correlations with annual N2O emissions. Multiple linear regression models for estimating annual N2O emissions were developed to account for the impacts of climatic variation (including temperature and rainfall), fertiliser N application and crop yield for this rain‐fed and wheat‐cropped system in Western Australia, which explained 64–74% of yearly variations of the WNMM‐estimated annual N2O emissions.CONCLUSION: The WNMM was tested and capable of simulating N2O emissions from the rain‐fed and wheat‐cropped system. The inclusion of climatic variables as predictors in multiple linear regression models improved their accuracy in predicting inter‐annual N2O emissions. Copyright © 2011 Society of Chemical Industry
Journal of the Scien... arrow_drop_down Journal of the Science of Food and AgricultureArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/jsfa.4643&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of the Scien... arrow_drop_down Journal of the Science of Food and AgricultureArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/jsfa.4643&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Wiley Authors: Yong Li; Yong Li; Louise Barton; Deli Chen;doi: 10.1002/jsfa.4643
pmid: 21953483
AbstractBACKGROUND: Besides land management and soil properties, nitrous oxide (N2O) emissions from the soil may be responsive to climatic variation. In this study the Water and Nitrogen Management Model (WNMM) was calibrated and validated to simulate N2O emissions from a rain‐fed and wheat‐cropped system on a sandy duplex soil at Cunderdin, Western Australia, from May 2005 to May 2007, then it was deployed to simulate N2O emissions for seven scenarios of fertiliser N application under various climatic conditions (1970–2006).RESULTS: The WNMM satisfactorily simulated crop growth, soil water content and mineral N contents of the surface soil (0–10 cm), soil temperatures at depths and N2O emissions from the soil compared with field observations in two fertiliser treatments during calibration and validation. About 70% of total N2O emissions were estimated as nitrification‐induced. The scenario analysis indicated that the WNMM‐simulated annual N2O emissions for this rain‐fed and wheat‐cropped system were significantly correlated with annual average minimum air temperature (r = 0.21), annual pan evaporation (r = 0.20) and fertiliser N application rate (r = 0.80). Both annual rainfall and wheat yield had weak and negative correlations with annual N2O emissions. Multiple linear regression models for estimating annual N2O emissions were developed to account for the impacts of climatic variation (including temperature and rainfall), fertiliser N application and crop yield for this rain‐fed and wheat‐cropped system in Western Australia, which explained 64–74% of yearly variations of the WNMM‐estimated annual N2O emissions.CONCLUSION: The WNMM was tested and capable of simulating N2O emissions from the rain‐fed and wheat‐cropped system. The inclusion of climatic variables as predictors in multiple linear regression models improved their accuracy in predicting inter‐annual N2O emissions. Copyright © 2011 Society of Chemical Industry
Journal of the Scien... arrow_drop_down Journal of the Science of Food and AgricultureArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/jsfa.4643&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of the Scien... arrow_drop_down Journal of the Science of Food and AgricultureArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/jsfa.4643&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu