Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
1 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • CN

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Yong Li; Yong Li; Louise Barton; Deli Chen;

    AbstractBACKGROUND: Besides land management and soil properties, nitrous oxide (N2O) emissions from the soil may be responsive to climatic variation. In this study the Water and Nitrogen Management Model (WNMM) was calibrated and validated to simulate N2O emissions from a rain‐fed and wheat‐cropped system on a sandy duplex soil at Cunderdin, Western Australia, from May 2005 to May 2007, then it was deployed to simulate N2O emissions for seven scenarios of fertiliser N application under various climatic conditions (1970–2006).RESULTS: The WNMM satisfactorily simulated crop growth, soil water content and mineral N contents of the surface soil (0–10 cm), soil temperatures at depths and N2O emissions from the soil compared with field observations in two fertiliser treatments during calibration and validation. About 70% of total N2O emissions were estimated as nitrification‐induced. The scenario analysis indicated that the WNMM‐simulated annual N2O emissions for this rain‐fed and wheat‐cropped system were significantly correlated with annual average minimum air temperature (r = 0.21), annual pan evaporation (r = 0.20) and fertiliser N application rate (r = 0.80). Both annual rainfall and wheat yield had weak and negative correlations with annual N2O emissions. Multiple linear regression models for estimating annual N2O emissions were developed to account for the impacts of climatic variation (including temperature and rainfall), fertiliser N application and crop yield for this rain‐fed and wheat‐cropped system in Western Australia, which explained 64–74% of yearly variations of the WNMM‐estimated annual N2O emissions.CONCLUSION: The WNMM was tested and capable of simulating N2O emissions from the rain‐fed and wheat‐cropped system. The inclusion of climatic variables as predictors in multiple linear regression models improved their accuracy in predicting inter‐annual N2O emissions. Copyright © 2011 Society of Chemical Industry

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of the Scien...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of the Science of Food and Agriculture
    Article . 2011 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    24
    citations24
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of the Scien...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of the Science of Food and Agriculture
      Article . 2011 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
1 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Yong Li; Yong Li; Louise Barton; Deli Chen;

    AbstractBACKGROUND: Besides land management and soil properties, nitrous oxide (N2O) emissions from the soil may be responsive to climatic variation. In this study the Water and Nitrogen Management Model (WNMM) was calibrated and validated to simulate N2O emissions from a rain‐fed and wheat‐cropped system on a sandy duplex soil at Cunderdin, Western Australia, from May 2005 to May 2007, then it was deployed to simulate N2O emissions for seven scenarios of fertiliser N application under various climatic conditions (1970–2006).RESULTS: The WNMM satisfactorily simulated crop growth, soil water content and mineral N contents of the surface soil (0–10 cm), soil temperatures at depths and N2O emissions from the soil compared with field observations in two fertiliser treatments during calibration and validation. About 70% of total N2O emissions were estimated as nitrification‐induced. The scenario analysis indicated that the WNMM‐simulated annual N2O emissions for this rain‐fed and wheat‐cropped system were significantly correlated with annual average minimum air temperature (r = 0.21), annual pan evaporation (r = 0.20) and fertiliser N application rate (r = 0.80). Both annual rainfall and wheat yield had weak and negative correlations with annual N2O emissions. Multiple linear regression models for estimating annual N2O emissions were developed to account for the impacts of climatic variation (including temperature and rainfall), fertiliser N application and crop yield for this rain‐fed and wheat‐cropped system in Western Australia, which explained 64–74% of yearly variations of the WNMM‐estimated annual N2O emissions.CONCLUSION: The WNMM was tested and capable of simulating N2O emissions from the rain‐fed and wheat‐cropped system. The inclusion of climatic variables as predictors in multiple linear regression models improved their accuracy in predicting inter‐annual N2O emissions. Copyright © 2011 Society of Chemical Industry

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of the Scien...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of the Science of Food and Agriculture
    Article . 2011 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    24
    citations24
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of the Scien...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of the Science of Food and Agriculture
      Article . 2011 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph