- home
- Advanced Search
- Energy Research
- CN
- Energy Research
- CN
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014 DenmarkPublisher:MDPI AG Rui Chang; Rong Zhu; Merete Badger; Charlotte Hasager; Rongwei Zhou; Dong Ye; Xiaowei Zhang;doi: 10.3390/en7053339
In view of the high cost and sparse spatial resolution of offshore meteorological observations, ocean winds retrieved from satellites are valuable in offshore wind resource assessment as a supplement to in situ measurements. This study examines satellite synthetic aperture radar (SAR) images from ENVISAT advanced SAR (ASAR) for mapping wind resources with high spatial resolution. Around 181 collected pairs of wind data from SAR wind maps and from 13 meteorological stations in Hangzhou Bay are compared. The statistical results comparing in situ wind speed and SAR-based wind speed show a standard deviation (SD) of 1.99 m/s and correlation coefficient of R = 0.67. The model wind directions, which are used as input for the SAR wind speed retrieval, show a high correlation coefficient (R = 0.89) but a large standard deviation (SD = 42.3°) compared to in situ observations. The Weibull probability density functions are compared at one meteorological station. The SAR-based results appear not to estimate the mean wind speed, Weibull scale and shape parameters and wind power density from the full in situ data set so well due to the lower number of satellite samples. Distributions calculated from the concurrent 81 SAR and in situ samples agree well.
Energies arrow_drop_down EnergiesOther literature type . 2014License: CC BYFull-Text: http://www.mdpi.com/1996-1073/7/5/3339/pdfData sources: Multidisciplinary Digital Publishing InstituteOnline Research Database In TechnologyArticle . 2014Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en7053339&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2014License: CC BYFull-Text: http://www.mdpi.com/1996-1073/7/5/3339/pdfData sources: Multidisciplinary Digital Publishing InstituteOnline Research Database In TechnologyArticle . 2014Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en7053339&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 DenmarkPublisher:MDPI AG Charlotte Hasager; Poul Astrup; Rong Zhu; Rui Chang; Merete Badger; Andrea Hahmann;doi: 10.3390/rs8090769
We study the wind climate and its long-term variability in the North Sea and South China Sea, areas relevant for offshore wind energy development, using satellite-based wind data, because very few reliable long-term in-situ sea surface wind observations are available. The Special Sensor Microwave Imager (SSM/I) ocean winds extrapolated from 10 m to 100 m using the Charnock relationship and the logarithmic profile method are compared to Weather Research and Forecasting (WRF) model results in both seas and to in-situ observations in the North Sea. The mean wind speed from SSM/I and WRF differ only by 0.1 m/s at Fino1 in the North Sea, while west of Hainan in the South China Sea the difference is 1.0 m/s. Linear regression between SSM/I and WRF winds at 100 m show correlation coefficients squared of 0.75 and 0.67, standard deviation of 1.67 m/s and 1.41 m/s, and mean difference of −0.12 m/s and 0.83 m/s for Fino1 and Hainan, respectively. The WRF-derived winds overestimate the values in the South China Sea. The inter-annual wind speed variability is estimated as 4.6% and 4.4% based on SSM/I at Fino1 and Hainan, respectively. We find significant changes in the seasonal wind pattern at Fino1 with springtime winds arriving one month earlier from 1988 to 2013 and higher winds in June; no yearly trend in wind speed is observed in the two seas.
Remote Sensing arrow_drop_down Remote SensingOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/2072-4292/8/9/769/pdfData sources: Multidisciplinary Digital Publishing InstituteOnline Research Database In TechnologyArticle . 2016Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs8090769&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Remote Sensing arrow_drop_down Remote SensingOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/2072-4292/8/9/769/pdfData sources: Multidisciplinary Digital Publishing InstituteOnline Research Database In TechnologyArticle . 2016Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs8090769&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014 DenmarkPublisher:MDPI AG Rui Chang; Rong Zhu; Merete Badger; Charlotte Hasager; Rongwei Zhou; Dong Ye; Xiaowei Zhang;doi: 10.3390/en7053339
In view of the high cost and sparse spatial resolution of offshore meteorological observations, ocean winds retrieved from satellites are valuable in offshore wind resource assessment as a supplement to in situ measurements. This study examines satellite synthetic aperture radar (SAR) images from ENVISAT advanced SAR (ASAR) for mapping wind resources with high spatial resolution. Around 181 collected pairs of wind data from SAR wind maps and from 13 meteorological stations in Hangzhou Bay are compared. The statistical results comparing in situ wind speed and SAR-based wind speed show a standard deviation (SD) of 1.99 m/s and correlation coefficient of R = 0.67. The model wind directions, which are used as input for the SAR wind speed retrieval, show a high correlation coefficient (R = 0.89) but a large standard deviation (SD = 42.3°) compared to in situ observations. The Weibull probability density functions are compared at one meteorological station. The SAR-based results appear not to estimate the mean wind speed, Weibull scale and shape parameters and wind power density from the full in situ data set so well due to the lower number of satellite samples. Distributions calculated from the concurrent 81 SAR and in situ samples agree well.
Energies arrow_drop_down EnergiesOther literature type . 2014License: CC BYFull-Text: http://www.mdpi.com/1996-1073/7/5/3339/pdfData sources: Multidisciplinary Digital Publishing InstituteOnline Research Database In TechnologyArticle . 2014Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en7053339&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2014License: CC BYFull-Text: http://www.mdpi.com/1996-1073/7/5/3339/pdfData sources: Multidisciplinary Digital Publishing InstituteOnline Research Database In TechnologyArticle . 2014Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en7053339&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 DenmarkPublisher:MDPI AG Charlotte Hasager; Poul Astrup; Rong Zhu; Rui Chang; Merete Badger; Andrea Hahmann;doi: 10.3390/rs8090769
We study the wind climate and its long-term variability in the North Sea and South China Sea, areas relevant for offshore wind energy development, using satellite-based wind data, because very few reliable long-term in-situ sea surface wind observations are available. The Special Sensor Microwave Imager (SSM/I) ocean winds extrapolated from 10 m to 100 m using the Charnock relationship and the logarithmic profile method are compared to Weather Research and Forecasting (WRF) model results in both seas and to in-situ observations in the North Sea. The mean wind speed from SSM/I and WRF differ only by 0.1 m/s at Fino1 in the North Sea, while west of Hainan in the South China Sea the difference is 1.0 m/s. Linear regression between SSM/I and WRF winds at 100 m show correlation coefficients squared of 0.75 and 0.67, standard deviation of 1.67 m/s and 1.41 m/s, and mean difference of −0.12 m/s and 0.83 m/s for Fino1 and Hainan, respectively. The WRF-derived winds overestimate the values in the South China Sea. The inter-annual wind speed variability is estimated as 4.6% and 4.4% based on SSM/I at Fino1 and Hainan, respectively. We find significant changes in the seasonal wind pattern at Fino1 with springtime winds arriving one month earlier from 1988 to 2013 and higher winds in June; no yearly trend in wind speed is observed in the two seas.
Remote Sensing arrow_drop_down Remote SensingOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/2072-4292/8/9/769/pdfData sources: Multidisciplinary Digital Publishing InstituteOnline Research Database In TechnologyArticle . 2016Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs8090769&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Remote Sensing arrow_drop_down Remote SensingOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/2072-4292/8/9/769/pdfData sources: Multidisciplinary Digital Publishing InstituteOnline Research Database In TechnologyArticle . 2016Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs8090769&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu