- home
- Advanced Search
- Energy Research
- CN
- Energy Research
- CN
description Publicationkeyboard_double_arrow_right Article , Other literature type 2008Publisher:Copernicus GmbH Philippe Ciais; Shilong Piao; Patricia Cadule; Pierre Friedlingstein; A. Chédin;Abstract. We modeled the African carbon balance over the past century using the process based ORCHIDEE model, forced by changing climate and human induced changes in land use. The model includes a simple parameterization of natural fires, but the natural vegetation dynamics was ignored. The period analyzed is 1901–2002. Overall, we found that the African net carbon balance (Net Biome Productivity, NBP) increased from a net carbon source of −0.14 Pg C yr−1 in the 1980s to a net carbon sink of 0.15 Pg C yr−1 in the 1990s. Deforestation is estimated to be a source of 0.13 Pg C yr−1, implying a compensating effect of climate trends (mainly increasing precipitation) plus CO2 fertilization, causing a sink of 0.28 Pg C yr−1. We found that the interannual variability of NBP is mostly driven by photosynthesis changes. Over savannas, photosynthesis changes from one year to the next are strongly correlated with rainfall changes (R2=0.77 in northern Africa, and R2=0.42 in southern African savannas). Over forests, such a control by rainfall is not found. The main spatial pattern of interannual variability in NBP and in gross carbon fluxes is related with ENSO, with dryer conditions prevailing over savannas during El Niño and wetter conditions over forests. Climate induced variations in fire emissions respond to this ENSO forcing, but they do not determine strongly the NBP variations. Finally, we model that ecosystem respiration variations (mostly due to autotrophic respiration) are tailing with those of photosynthesis, on interannual as well as on decadal time scales, but this result is uncertain given the potential for acclimation for autotrophic respiration processes.
https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/bgd-5-...Article . 2008 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bgd-5-3497-2008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 13 citations 13 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/bgd-5-...Article . 2008 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bgd-5-3497-2008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2008Publisher:Copernicus GmbH Philippe Ciais; Shilong Piao; Patricia Cadule; Pierre Friedlingstein; A. Chédin;Abstract. We modeled the African carbon balance over the past century using the process based ORCHIDEE model, forced by changing climate and human induced changes in land use. The model includes a simple parameterization of natural fires, but the natural vegetation dynamics was ignored. The period analyzed is 1901–2002. Overall, we found that the African net carbon balance (Net Biome Productivity, NBP) increased from a net carbon source of −0.14 Pg C yr−1 in the 1980s to a net carbon sink of 0.15 Pg C yr−1 in the 1990s. Deforestation is estimated to be a source of 0.13 Pg C yr−1, implying a compensating effect of climate trends (mainly increasing precipitation) plus CO2 fertilization, causing a sink of 0.28 Pg C yr−1. We found that the interannual variability of NBP is mostly driven by photosynthesis changes. Over savannas, photosynthesis changes from one year to the next are strongly correlated with rainfall changes (R2=0.77 in northern Africa, and R2=0.42 in southern African savannas). Over forests, such a control by rainfall is not found. The main spatial pattern of interannual variability in NBP and in gross carbon fluxes is related with ENSO, with dryer conditions prevailing over savannas during El Niño and wetter conditions over forests. Climate induced variations in fire emissions respond to this ENSO forcing, but they do not determine strongly the NBP variations. Finally, we model that ecosystem respiration variations (mostly due to autotrophic respiration) are tailing with those of photosynthesis, on interannual as well as on decadal time scales, but this result is uncertain given the potential for acclimation for autotrophic respiration processes.
https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/bgd-5-...Article . 2008 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bgd-5-3497-2008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 13 citations 13 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/bgd-5-...Article . 2008 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bgd-5-3497-2008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu