- home
- Advanced Search
- Energy Research
- CN
- Sensors
- Energy Research
- CN
- Sensors
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2011Publisher:MDPI AG Authors: Lenan Wu; Yudong Zhang;This paper proposes a hybrid crop classifier for polarimetric synthetic aperture radar (SAR) images. The feature sets consisted of span image, the H/A/α decomposition, and the gray-level co-occurrence matrix (GLCM) based texture features. Then, the features were reduced by principle component analysis (PCA). Finally, a two-hidden-layer forward neural network (NN) was constructed and trained by adaptive chaotic particle swarm optimization (ACPSO). K-fold cross validation was employed to enhance generation. The experimental results on Flevoland sites demonstrate the superiority of ACPSO to back-propagation (BP), adaptive BP (ABP), momentum BP (MBP), Particle Swarm Optimization (PSO), and Resilient back-propagation (RPROP) methods. Moreover, the computation time for each pixel is only 1.08 × 10−7 s.
Sensors arrow_drop_down SensorsOther literature type . 2011License: CC BYFull-Text: http://www.mdpi.com/1424-8220/11/5/4721/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s110504721&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 100 citations 100 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2011License: CC BYFull-Text: http://www.mdpi.com/1424-8220/11/5/4721/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s110504721&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2011Publisher:MDPI AG Authors: Lenan Wu; Yudong Zhang;This paper proposes a hybrid crop classifier for polarimetric synthetic aperture radar (SAR) images. The feature sets consisted of span image, the H/A/α decomposition, and the gray-level co-occurrence matrix (GLCM) based texture features. Then, the features were reduced by principle component analysis (PCA). Finally, a two-hidden-layer forward neural network (NN) was constructed and trained by adaptive chaotic particle swarm optimization (ACPSO). K-fold cross validation was employed to enhance generation. The experimental results on Flevoland sites demonstrate the superiority of ACPSO to back-propagation (BP), adaptive BP (ABP), momentum BP (MBP), Particle Swarm Optimization (PSO), and Resilient back-propagation (RPROP) methods. Moreover, the computation time for each pixel is only 1.08 × 10−7 s.
Sensors arrow_drop_down SensorsOther literature type . 2011License: CC BYFull-Text: http://www.mdpi.com/1424-8220/11/5/4721/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s110504721&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 100 citations 100 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2011License: CC BYFull-Text: http://www.mdpi.com/1424-8220/11/5/4721/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s110504721&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:MDPI AG Danyang Wang; Dongqi Yu; Menghan Xu; Xue Chen; Jilin Gu; Lei Huang;Ethanol sensors have found extensive applications across various industries, including the chemical, environmental, transportation, and healthcare sectors. With increasing demands for enhanced performance and reduced energy consumption, there is a growing need for developing new ethanol sensors. Micro-electromechanical system (MEMS) devices offer promising prospects in gas sensor applications due to their compact size, low power requirements, and seamless integration capabilities. In this study, SnO2-TiO2 nanocomposites with varying molar ratios of SnO2 and TiO2 were synthesized via ball milling and then printed on MEMS chips for ethanol sensing using electrohydrodynamic (EHD) printing. The study indicates that the two metal oxides dispersed evenly, resulting in a well-formed gas-sensitive film. The SnO2-TiO2 composite exhibits the best performance at a molar ratio of 1:1, with a response value of 25.6 to 50 ppm ethanol at 288 °C. This value is 7.2 times and 1.8 times higher than that of single SnO2 and TiO2 gas sensors, respectively. The enhanced gas sensitivity can be attributed to the increased surface reactive oxygen species and optimized material resistance resulting from the chemical and electronic effects of the composite.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s24154866&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s24154866&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:MDPI AG Danyang Wang; Dongqi Yu; Menghan Xu; Xue Chen; Jilin Gu; Lei Huang;Ethanol sensors have found extensive applications across various industries, including the chemical, environmental, transportation, and healthcare sectors. With increasing demands for enhanced performance and reduced energy consumption, there is a growing need for developing new ethanol sensors. Micro-electromechanical system (MEMS) devices offer promising prospects in gas sensor applications due to their compact size, low power requirements, and seamless integration capabilities. In this study, SnO2-TiO2 nanocomposites with varying molar ratios of SnO2 and TiO2 were synthesized via ball milling and then printed on MEMS chips for ethanol sensing using electrohydrodynamic (EHD) printing. The study indicates that the two metal oxides dispersed evenly, resulting in a well-formed gas-sensitive film. The SnO2-TiO2 composite exhibits the best performance at a molar ratio of 1:1, with a response value of 25.6 to 50 ppm ethanol at 288 °C. This value is 7.2 times and 1.8 times higher than that of single SnO2 and TiO2 gas sensors, respectively. The enhanced gas sensitivity can be attributed to the increased surface reactive oxygen species and optimized material resistance resulting from the chemical and electronic effects of the composite.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s24154866&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s24154866&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: Lili Xu; Jizu Li; Ding Feng;Fatigue of miners is caused by intensive workloads, long working hours, and shift-work schedules. It is one of the major factors increasing the risk of safety problems and work mistakes. Examining the detection of miner fatigue is important because it can potentially prevent work accidents and improve working efficiency in underground coal mines. Many previous studies have introduced feature-based machine-learning methods to estimate miner fatigue. This work proposes a method that uses electroencephalogram (EEG) signals to generate topographic maps containing frequency and spatial information. It utilizes a convolutional neural network (CNN) to classify the normal state, critical state, and fatigue state of miners. The topographic maps are generated from the EEG signals and contrasted using power spectral density (PSD) and relative power spectral density (RPSD). These two feature extraction methods were applied to feature recognition and four representative deep-learning methods. The results showthat RPSD achieves better performance than PSD in classification accuracy with all deep-learning methods. The CNN achieved superior results to the other deep-learning methods, with an accuracy of 94.5%, precision of 97.0%, sensitivity of 94.8%, and F1 score of 96.3%. Our results also show that the RPSD–CNN method outperforms the current state of the art. Thus, this method might be a useful and effective miner fatigue detection tool for coal companies in the near future.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s23229055&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s23229055&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: Lili Xu; Jizu Li; Ding Feng;Fatigue of miners is caused by intensive workloads, long working hours, and shift-work schedules. It is one of the major factors increasing the risk of safety problems and work mistakes. Examining the detection of miner fatigue is important because it can potentially prevent work accidents and improve working efficiency in underground coal mines. Many previous studies have introduced feature-based machine-learning methods to estimate miner fatigue. This work proposes a method that uses electroencephalogram (EEG) signals to generate topographic maps containing frequency and spatial information. It utilizes a convolutional neural network (CNN) to classify the normal state, critical state, and fatigue state of miners. The topographic maps are generated from the EEG signals and contrasted using power spectral density (PSD) and relative power spectral density (RPSD). These two feature extraction methods were applied to feature recognition and four representative deep-learning methods. The results showthat RPSD achieves better performance than PSD in classification accuracy with all deep-learning methods. The CNN achieved superior results to the other deep-learning methods, with an accuracy of 94.5%, precision of 97.0%, sensitivity of 94.8%, and F1 score of 96.3%. Our results also show that the RPSD–CNN method outperforms the current state of the art. Thus, this method might be a useful and effective miner fatigue detection tool for coal companies in the near future.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s23229055&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s23229055&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Zhen Peng; Chao Bi; Lingli Fang; Longfei Xiao;For the optimization of three-phase hybrid stepper motors with complex electromagnetic structures, an optimization method is presented in this paper. The method is a combination of 3D-FEM and the Taguchi optimization method intended to reduce the dependence on FEM results during the optimization calculation. In this paper, the optimization method is used in the optimization of the tooth shape of the three-phase hybrid stepper motor, and the objective is to reduce the noise caused by harmonics in the “torque-angle characteristic” of the motor. It is clear that traditional optimization methods make it very difficult to carry out such an optimization calculation as a large number of finite element calculations have to be used in the optimization process, and the required computation time is extremely long. Using the optimization method presented in the paper, the optimization becomes feasible because the number of finite element calculations is greatly reduced and the computation time is thus greatly reduced. In order to check the effectiveness of the optimization, the waterfall diagram for noise analysis and its application to check torque ripple are also presented in the paper. Both simulation and test results show that the optimized structure can significantly reduce the motor noise caused by torque ripple. Therefore, the optimization method proposed in this paper can be an effective tool for the optimal design of high-performance motors, including stepper motors.
Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/1/356/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22010356&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/1/356/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22010356&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Zhen Peng; Chao Bi; Lingli Fang; Longfei Xiao;For the optimization of three-phase hybrid stepper motors with complex electromagnetic structures, an optimization method is presented in this paper. The method is a combination of 3D-FEM and the Taguchi optimization method intended to reduce the dependence on FEM results during the optimization calculation. In this paper, the optimization method is used in the optimization of the tooth shape of the three-phase hybrid stepper motor, and the objective is to reduce the noise caused by harmonics in the “torque-angle characteristic” of the motor. It is clear that traditional optimization methods make it very difficult to carry out such an optimization calculation as a large number of finite element calculations have to be used in the optimization process, and the required computation time is extremely long. Using the optimization method presented in the paper, the optimization becomes feasible because the number of finite element calculations is greatly reduced and the computation time is thus greatly reduced. In order to check the effectiveness of the optimization, the waterfall diagram for noise analysis and its application to check torque ripple are also presented in the paper. Both simulation and test results show that the optimized structure can significantly reduce the motor noise caused by torque ripple. Therefore, the optimization method proposed in this paper can be an effective tool for the optimal design of high-performance motors, including stepper motors.
Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/1/356/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22010356&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/1/356/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22010356&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019Publisher:MDPI AG Jie Hao; Jing Chen; Ran Wang; Yi Zhuang; Baoxian Zhang;Maximizing the utility under energy constraint is critical in an Internet of Things (IoT) sensing service, in which each sensor harvests energy from the ambient environment and uses it for sensing and transmitting the measurements to an application server. Such a sensor is required to maximize its utility under the harvested energy constraint, i.e., perform sensing and transmission at the highest rate allowed by the harvested energy constraint. Most existing works assumed a sophisticated model for harvested energy, but neglected the fact that the harvested energy is random in reality. Considering the randomness of the harvested energy, we focus on the transmission scheduling issue and present a robust transmission scheduling optimization approach that is able to provide robustness against randomness. We firstly formulate the transmission scheduling optimization problem subject to energy constraints with random harvested energy. We then introduce a flexible model to profile the harvested energy so that the constraints with random harvested energy are transformed into linear constraints. Finally, the transmission scheduling optimization problem can be solved traditionally. The experimental results demonstrate that the proposed approach is capable of providing a good trade-off between service flexibility and robustness.
Sensors arrow_drop_down SensorsOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1424-8220/19/14/3090/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s19143090&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1424-8220/19/14/3090/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s19143090&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019Publisher:MDPI AG Jie Hao; Jing Chen; Ran Wang; Yi Zhuang; Baoxian Zhang;Maximizing the utility under energy constraint is critical in an Internet of Things (IoT) sensing service, in which each sensor harvests energy from the ambient environment and uses it for sensing and transmitting the measurements to an application server. Such a sensor is required to maximize its utility under the harvested energy constraint, i.e., perform sensing and transmission at the highest rate allowed by the harvested energy constraint. Most existing works assumed a sophisticated model for harvested energy, but neglected the fact that the harvested energy is random in reality. Considering the randomness of the harvested energy, we focus on the transmission scheduling issue and present a robust transmission scheduling optimization approach that is able to provide robustness against randomness. We firstly formulate the transmission scheduling optimization problem subject to energy constraints with random harvested energy. We then introduce a flexible model to profile the harvested energy so that the constraints with random harvested energy are transformed into linear constraints. Finally, the transmission scheduling optimization problem can be solved traditionally. The experimental results demonstrate that the proposed approach is capable of providing a good trade-off between service flexibility and robustness.
Sensors arrow_drop_down SensorsOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1424-8220/19/14/3090/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s19143090&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1424-8220/19/14/3090/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s19143090&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Aiyun Zheng; Zhen Zhang; Weimin Liu; Jiaxin Liu; Yao Xiao; Chen Li;Energy conservation is one of the main problems in a wireless sensor network (WSN). Compared with a single cluster head (CH), a dual CH optimization was proposed for less energy consumption by the WSN and an acquisition delay by the mobile sink (MS). Firstly, a fuzzy c-means clustering algorithm and a multi-objective particle swarm optimization were utilized for the determinations of the first and second CHs. Following that, the ideal trajectory of MS was assessed using the improved ant colony algorithm. Finally, the lifetimes, the death rounds of the first node and the 50% node, and the number of packets received at the base station were compared among the proposed approach. Moreover, five algorithms were compared to validate the optimization, and the improved trajectory was compared with the original one as well. It was found that, for 100 nodes, the number of dead rounds from the proposal increased by 7.9%, 22.9%, 25.1%, 61%, and 74.4% for the first node, and that of the 50% nodes increased by 27.8%, 34.2%, 98.3%, 213.1%, and 211.2%, respectively. The base station packet reception increased by about 19.3%, 53.5%, 27%, 86.8%, and 181.2%, respectively. The trajectory of MS could also decrease by about 10%.
Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/23/1/231/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s23010231&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/23/1/231/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s23010231&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Aiyun Zheng; Zhen Zhang; Weimin Liu; Jiaxin Liu; Yao Xiao; Chen Li;Energy conservation is one of the main problems in a wireless sensor network (WSN). Compared with a single cluster head (CH), a dual CH optimization was proposed for less energy consumption by the WSN and an acquisition delay by the mobile sink (MS). Firstly, a fuzzy c-means clustering algorithm and a multi-objective particle swarm optimization were utilized for the determinations of the first and second CHs. Following that, the ideal trajectory of MS was assessed using the improved ant colony algorithm. Finally, the lifetimes, the death rounds of the first node and the 50% node, and the number of packets received at the base station were compared among the proposed approach. Moreover, five algorithms were compared to validate the optimization, and the improved trajectory was compared with the original one as well. It was found that, for 100 nodes, the number of dead rounds from the proposal increased by 7.9%, 22.9%, 25.1%, 61%, and 74.4% for the first node, and that of the 50% nodes increased by 27.8%, 34.2%, 98.3%, 213.1%, and 211.2%, respectively. The base station packet reception increased by about 19.3%, 53.5%, 27%, 86.8%, and 181.2%, respectively. The trajectory of MS could also decrease by about 10%.
Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/23/1/231/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s23010231&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/23/1/231/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s23010231&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:MDPI AG Wei Guo; Li Xu; Tian Wang; Danyang Zhao; Xujing Tang;Conventional point prediction methods encounter challenges in accurately capturing the inherent uncertainty associated with photovoltaic power due to its stochastic and volatile nature. To address this challenge, we developed a robust prediction model called QRKDDN (quantile regression and kernel density estimation deep learning network) by leveraging historical meteorological data in conjunction with photovoltaic power data. Our aim is to enhance the accuracy of deterministic predictions, interval predictions, and probabilistic predictions by incorporating quantile regression (QR) and kernel density estimation (KDE) techniques. The proposed method utilizes the Pearson correlation coefficient for selecting relevant meteorological factors, employs a Gaussian Mixture Model (GMM) for clustering similar days, and constructs a deep learning prediction model based on a convolutional neural network (CNN) combined with a bidirectional gated recurrent unit (BiGRU) and attention mechanism. The experimental results obtained using the dataset from the Australian DKASC Research Centre unequivocally demonstrate the exceptional performance of QRKDDN in deterministic, interval, and probabilistic predictions for photovoltaic (PV) power generation. The effectiveness of QRKDDN was further validated through ablation experiments and comparisons with classical machine learning models.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s24051593&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s24051593&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:MDPI AG Wei Guo; Li Xu; Tian Wang; Danyang Zhao; Xujing Tang;Conventional point prediction methods encounter challenges in accurately capturing the inherent uncertainty associated with photovoltaic power due to its stochastic and volatile nature. To address this challenge, we developed a robust prediction model called QRKDDN (quantile regression and kernel density estimation deep learning network) by leveraging historical meteorological data in conjunction with photovoltaic power data. Our aim is to enhance the accuracy of deterministic predictions, interval predictions, and probabilistic predictions by incorporating quantile regression (QR) and kernel density estimation (KDE) techniques. The proposed method utilizes the Pearson correlation coefficient for selecting relevant meteorological factors, employs a Gaussian Mixture Model (GMM) for clustering similar days, and constructs a deep learning prediction model based on a convolutional neural network (CNN) combined with a bidirectional gated recurrent unit (BiGRU) and attention mechanism. The experimental results obtained using the dataset from the Australian DKASC Research Centre unequivocally demonstrate the exceptional performance of QRKDDN in deterministic, interval, and probabilistic predictions for photovoltaic (PV) power generation. The effectiveness of QRKDDN was further validated through ablation experiments and comparisons with classical machine learning models.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s24051593&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s24051593&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:MDPI AG Authors: Yanli Kang; Lu Zhang; Wenhao Wang; Feng Yu;It is of great significance to develop ethanol sensors with high sensitivity and low detection temperature. Hence, we prepared Au-supported material on mesoporous ZnO composites derived from a metal-organic framework ZIF-8 for the detection of ethanol gas. The obtained Au/ZnO materials were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (SEM), field emission transmission electron microscopy (TEM) and nitrogen adsorption and desorption isotherms. The results showed that the Au/ZnO-1.0 sample maintains a three-dimensional (3D) dodecahedron structure with a larger specific surface area (22.79 m2 g−1) and has more oxygen vacancies. Because of the unique ZIF structure, abundant surface defects and the formation of Au-ZnO Schottky junctions, an Au/ZnO-1.0 sensor has a response factor of 37.74 for 100 ppm ethanol at 250 °C, which is about 6 times that of pure ZnO material. In addition, the Au/ZnO-1.0 sensor has good selectivity for ethanol. According to density functional theory (DFT) calculations, the adsorption energy of Au/ZnO for ethanol (−1.813 eV) is significantly greater than that of pure ZnO (−0.217 eV). Furthermore, the adsorption energy for ethanol is greater than that of other gases.
Sensors arrow_drop_down SensorsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1424-8220/21/13/4352/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s21134352&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1424-8220/21/13/4352/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s21134352&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:MDPI AG Authors: Yanli Kang; Lu Zhang; Wenhao Wang; Feng Yu;It is of great significance to develop ethanol sensors with high sensitivity and low detection temperature. Hence, we prepared Au-supported material on mesoporous ZnO composites derived from a metal-organic framework ZIF-8 for the detection of ethanol gas. The obtained Au/ZnO materials were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (SEM), field emission transmission electron microscopy (TEM) and nitrogen adsorption and desorption isotherms. The results showed that the Au/ZnO-1.0 sample maintains a three-dimensional (3D) dodecahedron structure with a larger specific surface area (22.79 m2 g−1) and has more oxygen vacancies. Because of the unique ZIF structure, abundant surface defects and the formation of Au-ZnO Schottky junctions, an Au/ZnO-1.0 sensor has a response factor of 37.74 for 100 ppm ethanol at 250 °C, which is about 6 times that of pure ZnO material. In addition, the Au/ZnO-1.0 sensor has good selectivity for ethanol. According to density functional theory (DFT) calculations, the adsorption energy of Au/ZnO for ethanol (−1.813 eV) is significantly greater than that of pure ZnO (−0.217 eV). Furthermore, the adsorption energy for ethanol is greater than that of other gases.
Sensors arrow_drop_down SensorsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1424-8220/21/13/4352/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s21134352&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1424-8220/21/13/4352/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s21134352&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Heng Xiao; Nanjian Qi; Yajiang Yin; Shijie Yu; Xiangzheng Sun; Guozhe Xuan; Jie Liu; Shanpeng Xiao; Yuan Li; Yizheng Li;Sensor nodes are critical components of the Internet of Things (IoT). Traditional IoT sensor nodes are typically powered by disposable batteries, making it difficult to meet the requirements for long lifetime, miniaturization, and zero maintenance. Hybrid energy systems that integrate energy harvesting, storage, and management are expected to provide a new power source for IoT sensor nodes. This research describes an integrated cube-shaped photovoltaic (PV) and thermal hybrid energy-harvesting system that can be utilized to power IoT sensor nodes with active RFID tags. The indoor light energy was harvested using 5-sided PV cells, which could generate 3 times more energy than most current studies using single-sided PV cells. In addition, two vertically stacked thermoelectrical generators (TEG) with a heat sink were utilized to harvest thermal energy. Compared to one TEG, the harvested power was improved by more than 219.48%. In addition, an energy management module with a semi-active configuration was designed to manage the energy stored by the Li-ion battery and supercapacitor (SC). Finally, the system was integrated into a 44 mm × 44 mm × 40 mm cube. The experimental results showed that the system was able to generate a power output of 192.48 µW using indoor ambient light and the heat from a computer adapter. Furthermore, the system was capable of providing stable and continuous power for an IoT sensor node used for monitoring indoor temperature over a prolonged period.
Sensors arrow_drop_down SensorsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1424-8220/23/8/3796/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s23083796&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1424-8220/23/8/3796/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s23083796&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Heng Xiao; Nanjian Qi; Yajiang Yin; Shijie Yu; Xiangzheng Sun; Guozhe Xuan; Jie Liu; Shanpeng Xiao; Yuan Li; Yizheng Li;Sensor nodes are critical components of the Internet of Things (IoT). Traditional IoT sensor nodes are typically powered by disposable batteries, making it difficult to meet the requirements for long lifetime, miniaturization, and zero maintenance. Hybrid energy systems that integrate energy harvesting, storage, and management are expected to provide a new power source for IoT sensor nodes. This research describes an integrated cube-shaped photovoltaic (PV) and thermal hybrid energy-harvesting system that can be utilized to power IoT sensor nodes with active RFID tags. The indoor light energy was harvested using 5-sided PV cells, which could generate 3 times more energy than most current studies using single-sided PV cells. In addition, two vertically stacked thermoelectrical generators (TEG) with a heat sink were utilized to harvest thermal energy. Compared to one TEG, the harvested power was improved by more than 219.48%. In addition, an energy management module with a semi-active configuration was designed to manage the energy stored by the Li-ion battery and supercapacitor (SC). Finally, the system was integrated into a 44 mm × 44 mm × 40 mm cube. The experimental results showed that the system was able to generate a power output of 192.48 µW using indoor ambient light and the heat from a computer adapter. Furthermore, the system was capable of providing stable and continuous power for an IoT sensor node used for monitoring indoor temperature over a prolonged period.
Sensors arrow_drop_down SensorsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1424-8220/23/8/3796/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s23083796&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1424-8220/23/8/3796/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s23083796&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Jinhua Zuo; Jing Fan; Yong Ouyang; Hua Liu; Chao Yang; Changjin Hao;Sag is an important indicator of the operational health of a transmission line, and its timely measurement is of great significance to maintain the stability and reliability of power systems. However, traditional contact measurements may be affected by the electromagnetic interference of conductors. In contrast, measurement methods without direct electrical contact with the subject provide greater portability and flexibility. This paper presents a study of a transmission line sag measurement and simulation based on non-contact electric field sensing. The finite element method was used to analyze the conductor distribution, establish the coupling relationships among the electric field, transmission line, and measurement point, propose a sag inverse calculation model, and assess the impact of the transmission line parameter on the curved drooping measurement. Simultaneously, sag measurement schemes for single-round and dual-circuit lines were designed for multi-conductive lines, and measurement array studies were conducted. The vertical component of the electric field in space measured by the array was obtained, which could be used to perform conductor sag measurement simply and efficiently. The proposed method will facilitate the monitoring of the overhead transmission line status, which is conducive to the effective operation of the entire system.
Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/21/8379/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22218379&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/21/8379/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22218379&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Jinhua Zuo; Jing Fan; Yong Ouyang; Hua Liu; Chao Yang; Changjin Hao;Sag is an important indicator of the operational health of a transmission line, and its timely measurement is of great significance to maintain the stability and reliability of power systems. However, traditional contact measurements may be affected by the electromagnetic interference of conductors. In contrast, measurement methods without direct electrical contact with the subject provide greater portability and flexibility. This paper presents a study of a transmission line sag measurement and simulation based on non-contact electric field sensing. The finite element method was used to analyze the conductor distribution, establish the coupling relationships among the electric field, transmission line, and measurement point, propose a sag inverse calculation model, and assess the impact of the transmission line parameter on the curved drooping measurement. Simultaneously, sag measurement schemes for single-round and dual-circuit lines were designed for multi-conductive lines, and measurement array studies were conducted. The vertical component of the electric field in space measured by the array was obtained, which could be used to perform conductor sag measurement simply and efficiently. The proposed method will facilitate the monitoring of the overhead transmission line status, which is conducive to the effective operation of the entire system.
Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/21/8379/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22218379&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/21/8379/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22218379&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2011Publisher:MDPI AG Authors: Lenan Wu; Yudong Zhang;This paper proposes a hybrid crop classifier for polarimetric synthetic aperture radar (SAR) images. The feature sets consisted of span image, the H/A/α decomposition, and the gray-level co-occurrence matrix (GLCM) based texture features. Then, the features were reduced by principle component analysis (PCA). Finally, a two-hidden-layer forward neural network (NN) was constructed and trained by adaptive chaotic particle swarm optimization (ACPSO). K-fold cross validation was employed to enhance generation. The experimental results on Flevoland sites demonstrate the superiority of ACPSO to back-propagation (BP), adaptive BP (ABP), momentum BP (MBP), Particle Swarm Optimization (PSO), and Resilient back-propagation (RPROP) methods. Moreover, the computation time for each pixel is only 1.08 × 10−7 s.
Sensors arrow_drop_down SensorsOther literature type . 2011License: CC BYFull-Text: http://www.mdpi.com/1424-8220/11/5/4721/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s110504721&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 100 citations 100 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2011License: CC BYFull-Text: http://www.mdpi.com/1424-8220/11/5/4721/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s110504721&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2011Publisher:MDPI AG Authors: Lenan Wu; Yudong Zhang;This paper proposes a hybrid crop classifier for polarimetric synthetic aperture radar (SAR) images. The feature sets consisted of span image, the H/A/α decomposition, and the gray-level co-occurrence matrix (GLCM) based texture features. Then, the features were reduced by principle component analysis (PCA). Finally, a two-hidden-layer forward neural network (NN) was constructed and trained by adaptive chaotic particle swarm optimization (ACPSO). K-fold cross validation was employed to enhance generation. The experimental results on Flevoland sites demonstrate the superiority of ACPSO to back-propagation (BP), adaptive BP (ABP), momentum BP (MBP), Particle Swarm Optimization (PSO), and Resilient back-propagation (RPROP) methods. Moreover, the computation time for each pixel is only 1.08 × 10−7 s.
Sensors arrow_drop_down SensorsOther literature type . 2011License: CC BYFull-Text: http://www.mdpi.com/1424-8220/11/5/4721/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s110504721&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 100 citations 100 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2011License: CC BYFull-Text: http://www.mdpi.com/1424-8220/11/5/4721/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s110504721&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:MDPI AG Danyang Wang; Dongqi Yu; Menghan Xu; Xue Chen; Jilin Gu; Lei Huang;Ethanol sensors have found extensive applications across various industries, including the chemical, environmental, transportation, and healthcare sectors. With increasing demands for enhanced performance and reduced energy consumption, there is a growing need for developing new ethanol sensors. Micro-electromechanical system (MEMS) devices offer promising prospects in gas sensor applications due to their compact size, low power requirements, and seamless integration capabilities. In this study, SnO2-TiO2 nanocomposites with varying molar ratios of SnO2 and TiO2 were synthesized via ball milling and then printed on MEMS chips for ethanol sensing using electrohydrodynamic (EHD) printing. The study indicates that the two metal oxides dispersed evenly, resulting in a well-formed gas-sensitive film. The SnO2-TiO2 composite exhibits the best performance at a molar ratio of 1:1, with a response value of 25.6 to 50 ppm ethanol at 288 °C. This value is 7.2 times and 1.8 times higher than that of single SnO2 and TiO2 gas sensors, respectively. The enhanced gas sensitivity can be attributed to the increased surface reactive oxygen species and optimized material resistance resulting from the chemical and electronic effects of the composite.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s24154866&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s24154866&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:MDPI AG Danyang Wang; Dongqi Yu; Menghan Xu; Xue Chen; Jilin Gu; Lei Huang;Ethanol sensors have found extensive applications across various industries, including the chemical, environmental, transportation, and healthcare sectors. With increasing demands for enhanced performance and reduced energy consumption, there is a growing need for developing new ethanol sensors. Micro-electromechanical system (MEMS) devices offer promising prospects in gas sensor applications due to their compact size, low power requirements, and seamless integration capabilities. In this study, SnO2-TiO2 nanocomposites with varying molar ratios of SnO2 and TiO2 were synthesized via ball milling and then printed on MEMS chips for ethanol sensing using electrohydrodynamic (EHD) printing. The study indicates that the two metal oxides dispersed evenly, resulting in a well-formed gas-sensitive film. The SnO2-TiO2 composite exhibits the best performance at a molar ratio of 1:1, with a response value of 25.6 to 50 ppm ethanol at 288 °C. This value is 7.2 times and 1.8 times higher than that of single SnO2 and TiO2 gas sensors, respectively. The enhanced gas sensitivity can be attributed to the increased surface reactive oxygen species and optimized material resistance resulting from the chemical and electronic effects of the composite.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s24154866&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s24154866&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: Lili Xu; Jizu Li; Ding Feng;Fatigue of miners is caused by intensive workloads, long working hours, and shift-work schedules. It is one of the major factors increasing the risk of safety problems and work mistakes. Examining the detection of miner fatigue is important because it can potentially prevent work accidents and improve working efficiency in underground coal mines. Many previous studies have introduced feature-based machine-learning methods to estimate miner fatigue. This work proposes a method that uses electroencephalogram (EEG) signals to generate topographic maps containing frequency and spatial information. It utilizes a convolutional neural network (CNN) to classify the normal state, critical state, and fatigue state of miners. The topographic maps are generated from the EEG signals and contrasted using power spectral density (PSD) and relative power spectral density (RPSD). These two feature extraction methods were applied to feature recognition and four representative deep-learning methods. The results showthat RPSD achieves better performance than PSD in classification accuracy with all deep-learning methods. The CNN achieved superior results to the other deep-learning methods, with an accuracy of 94.5%, precision of 97.0%, sensitivity of 94.8%, and F1 score of 96.3%. Our results also show that the RPSD–CNN method outperforms the current state of the art. Thus, this method might be a useful and effective miner fatigue detection tool for coal companies in the near future.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s23229055&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s23229055&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: Lili Xu; Jizu Li; Ding Feng;Fatigue of miners is caused by intensive workloads, long working hours, and shift-work schedules. It is one of the major factors increasing the risk of safety problems and work mistakes. Examining the detection of miner fatigue is important because it can potentially prevent work accidents and improve working efficiency in underground coal mines. Many previous studies have introduced feature-based machine-learning methods to estimate miner fatigue. This work proposes a method that uses electroencephalogram (EEG) signals to generate topographic maps containing frequency and spatial information. It utilizes a convolutional neural network (CNN) to classify the normal state, critical state, and fatigue state of miners. The topographic maps are generated from the EEG signals and contrasted using power spectral density (PSD) and relative power spectral density (RPSD). These two feature extraction methods were applied to feature recognition and four representative deep-learning methods. The results showthat RPSD achieves better performance than PSD in classification accuracy with all deep-learning methods. The CNN achieved superior results to the other deep-learning methods, with an accuracy of 94.5%, precision of 97.0%, sensitivity of 94.8%, and F1 score of 96.3%. Our results also show that the RPSD–CNN method outperforms the current state of the art. Thus, this method might be a useful and effective miner fatigue detection tool for coal companies in the near future.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s23229055&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s23229055&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Zhen Peng; Chao Bi; Lingli Fang; Longfei Xiao;For the optimization of three-phase hybrid stepper motors with complex electromagnetic structures, an optimization method is presented in this paper. The method is a combination of 3D-FEM and the Taguchi optimization method intended to reduce the dependence on FEM results during the optimization calculation. In this paper, the optimization method is used in the optimization of the tooth shape of the three-phase hybrid stepper motor, and the objective is to reduce the noise caused by harmonics in the “torque-angle characteristic” of the motor. It is clear that traditional optimization methods make it very difficult to carry out such an optimization calculation as a large number of finite element calculations have to be used in the optimization process, and the required computation time is extremely long. Using the optimization method presented in the paper, the optimization becomes feasible because the number of finite element calculations is greatly reduced and the computation time is thus greatly reduced. In order to check the effectiveness of the optimization, the waterfall diagram for noise analysis and its application to check torque ripple are also presented in the paper. Both simulation and test results show that the optimized structure can significantly reduce the motor noise caused by torque ripple. Therefore, the optimization method proposed in this paper can be an effective tool for the optimal design of high-performance motors, including stepper motors.
Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/1/356/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22010356&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/1/356/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22010356&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Zhen Peng; Chao Bi; Lingli Fang; Longfei Xiao;For the optimization of three-phase hybrid stepper motors with complex electromagnetic structures, an optimization method is presented in this paper. The method is a combination of 3D-FEM and the Taguchi optimization method intended to reduce the dependence on FEM results during the optimization calculation. In this paper, the optimization method is used in the optimization of the tooth shape of the three-phase hybrid stepper motor, and the objective is to reduce the noise caused by harmonics in the “torque-angle characteristic” of the motor. It is clear that traditional optimization methods make it very difficult to carry out such an optimization calculation as a large number of finite element calculations have to be used in the optimization process, and the required computation time is extremely long. Using the optimization method presented in the paper, the optimization becomes feasible because the number of finite element calculations is greatly reduced and the computation time is thus greatly reduced. In order to check the effectiveness of the optimization, the waterfall diagram for noise analysis and its application to check torque ripple are also presented in the paper. Both simulation and test results show that the optimized structure can significantly reduce the motor noise caused by torque ripple. Therefore, the optimization method proposed in this paper can be an effective tool for the optimal design of high-performance motors, including stepper motors.
Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/1/356/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22010356&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/1/356/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22010356&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019Publisher:MDPI AG Jie Hao; Jing Chen; Ran Wang; Yi Zhuang; Baoxian Zhang;Maximizing the utility under energy constraint is critical in an Internet of Things (IoT) sensing service, in which each sensor harvests energy from the ambient environment and uses it for sensing and transmitting the measurements to an application server. Such a sensor is required to maximize its utility under the harvested energy constraint, i.e., perform sensing and transmission at the highest rate allowed by the harvested energy constraint. Most existing works assumed a sophisticated model for harvested energy, but neglected the fact that the harvested energy is random in reality. Considering the randomness of the harvested energy, we focus on the transmission scheduling issue and present a robust transmission scheduling optimization approach that is able to provide robustness against randomness. We firstly formulate the transmission scheduling optimization problem subject to energy constraints with random harvested energy. We then introduce a flexible model to profile the harvested energy so that the constraints with random harvested energy are transformed into linear constraints. Finally, the transmission scheduling optimization problem can be solved traditionally. The experimental results demonstrate that the proposed approach is capable of providing a good trade-off between service flexibility and robustness.
Sensors arrow_drop_down SensorsOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1424-8220/19/14/3090/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s19143090&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1424-8220/19/14/3090/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s19143090&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019Publisher:MDPI AG Jie Hao; Jing Chen; Ran Wang; Yi Zhuang; Baoxian Zhang;Maximizing the utility under energy constraint is critical in an Internet of Things (IoT) sensing service, in which each sensor harvests energy from the ambient environment and uses it for sensing and transmitting the measurements to an application server. Such a sensor is required to maximize its utility under the harvested energy constraint, i.e., perform sensing and transmission at the highest rate allowed by the harvested energy constraint. Most existing works assumed a sophisticated model for harvested energy, but neglected the fact that the harvested energy is random in reality. Considering the randomness of the harvested energy, we focus on the transmission scheduling issue and present a robust transmission scheduling optimization approach that is able to provide robustness against randomness. We firstly formulate the transmission scheduling optimization problem subject to energy constraints with random harvested energy. We then introduce a flexible model to profile the harvested energy so that the constraints with random harvested energy are transformed into linear constraints. Finally, the transmission scheduling optimization problem can be solved traditionally. The experimental results demonstrate that the proposed approach is capable of providing a good trade-off between service flexibility and robustness.
Sensors arrow_drop_down SensorsOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1424-8220/19/14/3090/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s19143090&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1424-8220/19/14/3090/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s19143090&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Aiyun Zheng; Zhen Zhang; Weimin Liu; Jiaxin Liu; Yao Xiao; Chen Li;Energy conservation is one of the main problems in a wireless sensor network (WSN). Compared with a single cluster head (CH), a dual CH optimization was proposed for less energy consumption by the WSN and an acquisition delay by the mobile sink (MS). Firstly, a fuzzy c-means clustering algorithm and a multi-objective particle swarm optimization were utilized for the determinations of the first and second CHs. Following that, the ideal trajectory of MS was assessed using the improved ant colony algorithm. Finally, the lifetimes, the death rounds of the first node and the 50% node, and the number of packets received at the base station were compared among the proposed approach. Moreover, five algorithms were compared to validate the optimization, and the improved trajectory was compared with the original one as well. It was found that, for 100 nodes, the number of dead rounds from the proposal increased by 7.9%, 22.9%, 25.1%, 61%, and 74.4% for the first node, and that of the 50% nodes increased by 27.8%, 34.2%, 98.3%, 213.1%, and 211.2%, respectively. The base station packet reception increased by about 19.3%, 53.5%, 27%, 86.8%, and 181.2%, respectively. The trajectory of MS could also decrease by about 10%.
Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/23/1/231/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s23010231&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/23/1/231/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s23010231&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Aiyun Zheng; Zhen Zhang; Weimin Liu; Jiaxin Liu; Yao Xiao; Chen Li;Energy conservation is one of the main problems in a wireless sensor network (WSN). Compared with a single cluster head (CH), a dual CH optimization was proposed for less energy consumption by the WSN and an acquisition delay by the mobile sink (MS). Firstly, a fuzzy c-means clustering algorithm and a multi-objective particle swarm optimization were utilized for the determinations of the first and second CHs. Following that, the ideal trajectory of MS was assessed using the improved ant colony algorithm. Finally, the lifetimes, the death rounds of the first node and the 50% node, and the number of packets received at the base station were compared among the proposed approach. Moreover, five algorithms were compared to validate the optimization, and the improved trajectory was compared with the original one as well. It was found that, for 100 nodes, the number of dead rounds from the proposal increased by 7.9%, 22.9%, 25.1%, 61%, and 74.4% for the first node, and that of the 50% nodes increased by 27.8%, 34.2%, 98.3%, 213.1%, and 211.2%, respectively. The base station packet reception increased by about 19.3%, 53.5%, 27%, 86.8%, and 181.2%, respectively. The trajectory of MS could also decrease by about 10%.
Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/23/1/231/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s23010231&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/23/1/231/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s23010231&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:MDPI AG Wei Guo; Li Xu; Tian Wang; Danyang Zhao; Xujing Tang;Conventional point prediction methods encounter challenges in accurately capturing the inherent uncertainty associated with photovoltaic power due to its stochastic and volatile nature. To address this challenge, we developed a robust prediction model called QRKDDN (quantile regression and kernel density estimation deep learning network) by leveraging historical meteorological data in conjunction with photovoltaic power data. Our aim is to enhance the accuracy of deterministic predictions, interval predictions, and probabilistic predictions by incorporating quantile regression (QR) and kernel density estimation (KDE) techniques. The proposed method utilizes the Pearson correlation coefficient for selecting relevant meteorological factors, employs a Gaussian Mixture Model (GMM) for clustering similar days, and constructs a deep learning prediction model based on a convolutional neural network (CNN) combined with a bidirectional gated recurrent unit (BiGRU) and attention mechanism. The experimental results obtained using the dataset from the Australian DKASC Research Centre unequivocally demonstrate the exceptional performance of QRKDDN in deterministic, interval, and probabilistic predictions for photovoltaic (PV) power generation. The effectiveness of QRKDDN was further validated through ablation experiments and comparisons with classical machine learning models.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s24051593&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s24051593&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:MDPI AG Wei Guo; Li Xu; Tian Wang; Danyang Zhao; Xujing Tang;Conventional point prediction methods encounter challenges in accurately capturing the inherent uncertainty associated with photovoltaic power due to its stochastic and volatile nature. To address this challenge, we developed a robust prediction model called QRKDDN (quantile regression and kernel density estimation deep learning network) by leveraging historical meteorological data in conjunction with photovoltaic power data. Our aim is to enhance the accuracy of deterministic predictions, interval predictions, and probabilistic predictions by incorporating quantile regression (QR) and kernel density estimation (KDE) techniques. The proposed method utilizes the Pearson correlation coefficient for selecting relevant meteorological factors, employs a Gaussian Mixture Model (GMM) for clustering similar days, and constructs a deep learning prediction model based on a convolutional neural network (CNN) combined with a bidirectional gated recurrent unit (BiGRU) and attention mechanism. The experimental results obtained using the dataset from the Australian DKASC Research Centre unequivocally demonstrate the exceptional performance of QRKDDN in deterministic, interval, and probabilistic predictions for photovoltaic (PV) power generation. The effectiveness of QRKDDN was further validated through ablation experiments and comparisons with classical machine learning models.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s24051593&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s24051593&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:MDPI AG Authors: Yanli Kang; Lu Zhang; Wenhao Wang; Feng Yu;It is of great significance to develop ethanol sensors with high sensitivity and low detection temperature. Hence, we prepared Au-supported material on mesoporous ZnO composites derived from a metal-organic framework ZIF-8 for the detection of ethanol gas. The obtained Au/ZnO materials were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (SEM), field emission transmission electron microscopy (TEM) and nitrogen adsorption and desorption isotherms. The results showed that the Au/ZnO-1.0 sample maintains a three-dimensional (3D) dodecahedron structure with a larger specific surface area (22.79 m2 g−1) and has more oxygen vacancies. Because of the unique ZIF structure, abundant surface defects and the formation of Au-ZnO Schottky junctions, an Au/ZnO-1.0 sensor has a response factor of 37.74 for 100 ppm ethanol at 250 °C, which is about 6 times that of pure ZnO material. In addition, the Au/ZnO-1.0 sensor has good selectivity for ethanol. According to density functional theory (DFT) calculations, the adsorption energy of Au/ZnO for ethanol (−1.813 eV) is significantly greater than that of pure ZnO (−0.217 eV). Furthermore, the adsorption energy for ethanol is greater than that of other gases.
Sensors arrow_drop_down SensorsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1424-8220/21/13/4352/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s21134352&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1424-8220/21/13/4352/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s21134352&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:MDPI AG Authors: Yanli Kang; Lu Zhang; Wenhao Wang; Feng Yu;It is of great significance to develop ethanol sensors with high sensitivity and low detection temperature. Hence, we prepared Au-supported material on mesoporous ZnO composites derived from a metal-organic framework ZIF-8 for the detection of ethanol gas. The obtained Au/ZnO materials were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (SEM), field emission transmission electron microscopy (TEM) and nitrogen adsorption and desorption isotherms. The results showed that the Au/ZnO-1.0 sample maintains a three-dimensional (3D) dodecahedron structure with a larger specific surface area (22.79 m2 g−1) and has more oxygen vacancies. Because of the unique ZIF structure, abundant surface defects and the formation of Au-ZnO Schottky junctions, an Au/ZnO-1.0 sensor has a response factor of 37.74 for 100 ppm ethanol at 250 °C, which is about 6 times that of pure ZnO material. In addition, the Au/ZnO-1.0 sensor has good selectivity for ethanol. According to density functional theory (DFT) calculations, the adsorption energy of Au/ZnO for ethanol (−1.813 eV) is significantly greater than that of pure ZnO (−0.217 eV). Furthermore, the adsorption energy for ethanol is greater than that of other gases.
Sensors arrow_drop_down SensorsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1424-8220/21/13/4352/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s21134352&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1424-8220/21/13/4352/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s21134352&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Heng Xiao; Nanjian Qi; Yajiang Yin; Shijie Yu; Xiangzheng Sun; Guozhe Xuan; Jie Liu; Shanpeng Xiao; Yuan Li; Yizheng Li;Sensor nodes are critical components of the Internet of Things (IoT). Traditional IoT sensor nodes are typically powered by disposable batteries, making it difficult to meet the requirements for long lifetime, miniaturization, and zero maintenance. Hybrid energy systems that integrate energy harvesting, storage, and management are expected to provide a new power source for IoT sensor nodes. This research describes an integrated cube-shaped photovoltaic (PV) and thermal hybrid energy-harvesting system that can be utilized to power IoT sensor nodes with active RFID tags. The indoor light energy was harvested using 5-sided PV cells, which could generate 3 times more energy than most current studies using single-sided PV cells. In addition, two vertically stacked thermoelectrical generators (TEG) with a heat sink were utilized to harvest thermal energy. Compared to one TEG, the harvested power was improved by more than 219.48%. In addition, an energy management module with a semi-active configuration was designed to manage the energy stored by the Li-ion battery and supercapacitor (SC). Finally, the system was integrated into a 44 mm × 44 mm × 40 mm cube. The experimental results showed that the system was able to generate a power output of 192.48 µW using indoor ambient light and the heat from a computer adapter. Furthermore, the system was capable of providing stable and continuous power for an IoT sensor node used for monitoring indoor temperature over a prolonged period.
Sensors arrow_drop_down SensorsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1424-8220/23/8/3796/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s23083796&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1424-8220/23/8/3796/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s23083796&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Heng Xiao; Nanjian Qi; Yajiang Yin; Shijie Yu; Xiangzheng Sun; Guozhe Xuan; Jie Liu; Shanpeng Xiao; Yuan Li; Yizheng Li;Sensor nodes are critical components of the Internet of Things (IoT). Traditional IoT sensor nodes are typically powered by disposable batteries, making it difficult to meet the requirements for long lifetime, miniaturization, and zero maintenance. Hybrid energy systems that integrate energy harvesting, storage, and management are expected to provide a new power source for IoT sensor nodes. This research describes an integrated cube-shaped photovoltaic (PV) and thermal hybrid energy-harvesting system that can be utilized to power IoT sensor nodes with active RFID tags. The indoor light energy was harvested using 5-sided PV cells, which could generate 3 times more energy than most current studies using single-sided PV cells. In addition, two vertically stacked thermoelectrical generators (TEG) with a heat sink were utilized to harvest thermal energy. Compared to one TEG, the harvested power was improved by more than 219.48%. In addition, an energy management module with a semi-active configuration was designed to manage the energy stored by the Li-ion battery and supercapacitor (SC). Finally, the system was integrated into a 44 mm × 44 mm × 40 mm cube. The experimental results showed that the system was able to generate a power output of 192.48 µW using indoor ambient light and the heat from a computer adapter. Furthermore, the system was capable of providing stable and continuous power for an IoT sensor node used for monitoring indoor temperature over a prolonged period.
Sensors arrow_drop_down SensorsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1424-8220/23/8/3796/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s23083796&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1424-8220/23/8/3796/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s23083796&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Jinhua Zuo; Jing Fan; Yong Ouyang; Hua Liu; Chao Yang; Changjin Hao;Sag is an important indicator of the operational health of a transmission line, and its timely measurement is of great significance to maintain the stability and reliability of power systems. However, traditional contact measurements may be affected by the electromagnetic interference of conductors. In contrast, measurement methods without direct electrical contact with the subject provide greater portability and flexibility. This paper presents a study of a transmission line sag measurement and simulation based on non-contact electric field sensing. The finite element method was used to analyze the conductor distribution, establish the coupling relationships among the electric field, transmission line, and measurement point, propose a sag inverse calculation model, and assess the impact of the transmission line parameter on the curved drooping measurement. Simultaneously, sag measurement schemes for single-round and dual-circuit lines were designed for multi-conductive lines, and measurement array studies were conducted. The vertical component of the electric field in space measured by the array was obtained, which could be used to perform conductor sag measurement simply and efficiently. The proposed method will facilitate the monitoring of the overhead transmission line status, which is conducive to the effective operation of the entire system.
Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/21/8379/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22218379&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/21/8379/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22218379&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Jinhua Zuo; Jing Fan; Yong Ouyang; Hua Liu; Chao Yang; Changjin Hao;Sag is an important indicator of the operational health of a transmission line, and its timely measurement is of great significance to maintain the stability and reliability of power systems. However, traditional contact measurements may be affected by the electromagnetic interference of conductors. In contrast, measurement methods without direct electrical contact with the subject provide greater portability and flexibility. This paper presents a study of a transmission line sag measurement and simulation based on non-contact electric field sensing. The finite element method was used to analyze the conductor distribution, establish the coupling relationships among the electric field, transmission line, and measurement point, propose a sag inverse calculation model, and assess the impact of the transmission line parameter on the curved drooping measurement. Simultaneously, sag measurement schemes for single-round and dual-circuit lines were designed for multi-conductive lines, and measurement array studies were conducted. The vertical component of the electric field in space measured by the array was obtained, which could be used to perform conductor sag measurement simply and efficiently. The proposed method will facilitate the monitoring of the overhead transmission line status, which is conducive to the effective operation of the entire system.
Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/21/8379/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22218379&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/21/8379/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22218379&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu