Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
  • Access
  • Type
  • Year range
  • Field of Science
  • Funder
  • SDG [Beta]
    Clear
  • Country
    Clear
  • Source
    Clear
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
795 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • 11. Sustainability
  • CN
  • Applied Energy

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Tingting Liu; Zhengang Liu; Nana Peng; Chao Gai;

    Abstract Hydrothermal treatment (HT) is one of the efficient approaches for upgrading municipal solid waste (MSW). In the present study, emission characteristics of polycyclic aromatic hydrocarbons (PAHs) from hydrothermally treated municipal solid waste (H-MSW) combustion alone and H-MSW/coal co-combustion were investigated at different temperatures. The results showed that for all fuel combustion, the majority of PAHs were 3- or 4-ring PAHs. In addition, flue gas had the highest yields of PAHs followed by fly ash and bottom ash, while the ring number of dominated PAHs in fly ash was higher than those in flue gas and bottom ash. Compared to MSW, H-MSW combustion generated less PAHs at the value of 1131.95–7649.24 μg/g. The blending of H-MSW and coal reduced total PAH emissions and positive interactions were observed between H-MSW and coal during co-combustion. The toxicity equivalent quantity (TEQ) values of the PAHs from combustion were in the order MSW > H-MSW > H-MSW/coal, which was consistent with the total PAH emissions. The present study illustrated that significant reduction of PAH emissions and toxicity from combustion could be achieved by HT and the blending of H-MSW and coal.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied Energyarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Applied Energy
    Article
    License: CC BY ND SA
    Data sources: UnpayWall
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Energy
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    36
    citations36
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied Energyarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Applied Energy
      Article
      License: CC BY ND SA
      Data sources: UnpayWall
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Energy
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Tingting Liu; Zhengang Liu; Nana Peng; Chao Gai;

    Abstract Hydrothermal treatment (HT) is one of the efficient approaches for upgrading municipal solid waste (MSW). In the present study, emission characteristics of polycyclic aromatic hydrocarbons (PAHs) from hydrothermally treated municipal solid waste (H-MSW) combustion alone and H-MSW/coal co-combustion were investigated at different temperatures. The results showed that for all fuel combustion, the majority of PAHs were 3- or 4-ring PAHs. In addition, flue gas had the highest yields of PAHs followed by fly ash and bottom ash, while the ring number of dominated PAHs in fly ash was higher than those in flue gas and bottom ash. Compared to MSW, H-MSW combustion generated less PAHs at the value of 1131.95–7649.24 μg/g. The blending of H-MSW and coal reduced total PAH emissions and positive interactions were observed between H-MSW and coal during co-combustion. The toxicity equivalent quantity (TEQ) values of the PAHs from combustion were in the order MSW > H-MSW > H-MSW/coal, which was consistent with the total PAH emissions. The present study illustrated that significant reduction of PAH emissions and toxicity from combustion could be achieved by HT and the blending of H-MSW and coal.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied Energyarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Applied Energy
    Article
    License: CC BY ND SA
    Data sources: UnpayWall
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Energy
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    36
    citations36
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied Energyarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Applied Energy
      Article
      License: CC BY ND SA
      Data sources: UnpayWall
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Energy
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Qunwei Wang;
    Qunwei Wang
    ORCID
    Harvested from ORCID Public Data File

    Qunwei Wang in OpenAIRE
    Yizhong Wang; orcid P. Zhou;
    P. Zhou
    ORCID
    Harvested from ORCID Public Data File

    P. Zhou in OpenAIRE
    Hongye Wei;

    Effectively analyzing and then treating energy-related air pollution requires examining every factor, from the pollution source to the end of treatment. This paper applies index decomposition analysis and a whole process treatment perspective to identify the factors facilitating air pollution reduction across three stages: source prevention, process control, and end-of-pipe treatment. Empirical research using data from China’s Jiangsu Province and its 13 cities reveals differences in local approaches to pollution prevention. At the provincial level, end-of-pipe treatment remains the primary approach to control air pollution emissions, indicating that the pattern of “pollute first, govern later” has not yet been fundamentally reversed. At the city level, 13 cities can be divided into four types, based on their approach to air pollution treatment: the leading type, process-dependent type, end-dependent type, and lagging type. Of these, 7 cities are using multiple control approaches, reflecting the comprehensive effect of whole process treatment. The Jiangsu Province should consider further strengthening effective whole process air pollution treatment models, by transitioning to pollution control, adjusting industrial structure, promoting technological progress, and consuming clean energy.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Energy
    Article . 2017 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    76
    citations76
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Energy
      Article . 2017 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Qunwei Wang;
    Qunwei Wang
    ORCID
    Harvested from ORCID Public Data File

    Qunwei Wang in OpenAIRE
    Yizhong Wang; orcid P. Zhou;
    P. Zhou
    ORCID
    Harvested from ORCID Public Data File

    P. Zhou in OpenAIRE
    Hongye Wei;

    Effectively analyzing and then treating energy-related air pollution requires examining every factor, from the pollution source to the end of treatment. This paper applies index decomposition analysis and a whole process treatment perspective to identify the factors facilitating air pollution reduction across three stages: source prevention, process control, and end-of-pipe treatment. Empirical research using data from China’s Jiangsu Province and its 13 cities reveals differences in local approaches to pollution prevention. At the provincial level, end-of-pipe treatment remains the primary approach to control air pollution emissions, indicating that the pattern of “pollute first, govern later” has not yet been fundamentally reversed. At the city level, 13 cities can be divided into four types, based on their approach to air pollution treatment: the leading type, process-dependent type, end-dependent type, and lagging type. Of these, 7 cities are using multiple control approaches, reflecting the comprehensive effect of whole process treatment. The Jiangsu Province should consider further strengthening effective whole process air pollution treatment models, by transitioning to pollution control, adjusting industrial structure, promoting technological progress, and consuming clean energy.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Energy
    Article . 2017 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    76
    citations76
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Energy
      Article . 2017 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: W.J. Xia; Ling Zhang; D.Q. Zhou; Pei Zhou;

    Carbon emission reduction is a long-term strategy for China to promote its economic and social development. However, emission reduction often involves a huge amount of technological investment, which could vary substantially across different provinces due to their discrepancy in economic and technological development levels. Emission trading as a useful policy instrument may help different provinces achieve their emission reduction targets cost-effectively. This paper models the economic performance of an interprovincial emission reduction quota trading scheme in China. The marginal abatement cost curve of each province in China is first estimated. A nonlinear programming model is further developed to evaluate the economic performance of interprovincial emission reduction quota trading. Five equity criteria are used to conduct the initial allocation of emission reduction targets between different provinces. Our modeling results show that China’s total emission abatement cost could decrease by over 40% through implementing such an interprovincial emission reduction quota trading scheme. Of the five alternative criteria, the CO2 emissions and population criteria look fairer and are recommended for use in the initial allocation of CO2 emission reduction targets.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Energy
    Article . 2013 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    196
    citations196
    popularityTop 1%
    influenceTop 1%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Energy
      Article . 2013 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: W.J. Xia; Ling Zhang; D.Q. Zhou; Pei Zhou;

    Carbon emission reduction is a long-term strategy for China to promote its economic and social development. However, emission reduction often involves a huge amount of technological investment, which could vary substantially across different provinces due to their discrepancy in economic and technological development levels. Emission trading as a useful policy instrument may help different provinces achieve their emission reduction targets cost-effectively. This paper models the economic performance of an interprovincial emission reduction quota trading scheme in China. The marginal abatement cost curve of each province in China is first estimated. A nonlinear programming model is further developed to evaluate the economic performance of interprovincial emission reduction quota trading. Five equity criteria are used to conduct the initial allocation of emission reduction targets between different provinces. Our modeling results show that China’s total emission abatement cost could decrease by over 40% through implementing such an interprovincial emission reduction quota trading scheme. Of the five alternative criteria, the CO2 emissions and population criteria look fairer and are recommended for use in the initial allocation of CO2 emission reduction targets.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Energy
    Article . 2013 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    196
    citations196
    popularityTop 1%
    influenceTop 1%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Energy
      Article . 2013 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Yongjun Sun; orcid Zhenjun Ma;
    Zhenjun Ma
    ORCID
    Harvested from ORCID Public Data File

    Zhenjun Ma in OpenAIRE
    orcid Haoshan Ren;
    Haoshan Ren
    ORCID
    Harvested from ORCID Public Data File

    Haoshan Ren in OpenAIRE
    Chengliang Xu;

    Abstract Accurate rooftop solar energy potential characterization is critically important for promoting the wide penetration of renewable energy in high-density cities. However, it has been a long-standing challenge due to the complex building shading effects and diversified rooftop availabilities. To overcome the challenge, this study proposed a novel 3D-geographic information system (GIS) and deep learning integrated approach, in which a 3D-GIS-based solar irradiance analyzer was developed to predict dynamic rooftop solar irradiance by taking shading effects of surrounding buildings into account. A deep learning framework was developed to identify the rooftop availabilities. Experimental validations have shown their high accuracies. As a case study, a real urban region of Hong Kong was used. The results showed that the annual solar energy potential of the entire building group was reduced by 35.7% due to the shading effect and the reduced rooftop availability. The reductions of individual buildings varied from 13.4% to 74.5%. In spite of the substantial reductions of the annual solar energy, the shading effect could only slightly reduce the peak solar power. In fact, the annual solar energy reduction could be five times higher than the peak solar power reduction. Further analysis showed that simple addition of the respective solar energy potential reductions, caused by the shading effect and the rooftop availability, tends to highly overestimate the total reduction by up to 26%. For this reason, their impacts cannot be considered separately but as joint effects. The integrated approach provides a viable means to accurately characterize rooftop solar energy potential in urban regions, which can help facilitate solar energy applications in high-density cities.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Energy
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    57
    citations57
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Energy
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Yongjun Sun; orcid Zhenjun Ma;
    Zhenjun Ma
    ORCID
    Harvested from ORCID Public Data File

    Zhenjun Ma in OpenAIRE
    orcid Haoshan Ren;
    Haoshan Ren
    ORCID
    Harvested from ORCID Public Data File

    Haoshan Ren in OpenAIRE
    Chengliang Xu;

    Abstract Accurate rooftop solar energy potential characterization is critically important for promoting the wide penetration of renewable energy in high-density cities. However, it has been a long-standing challenge due to the complex building shading effects and diversified rooftop availabilities. To overcome the challenge, this study proposed a novel 3D-geographic information system (GIS) and deep learning integrated approach, in which a 3D-GIS-based solar irradiance analyzer was developed to predict dynamic rooftop solar irradiance by taking shading effects of surrounding buildings into account. A deep learning framework was developed to identify the rooftop availabilities. Experimental validations have shown their high accuracies. As a case study, a real urban region of Hong Kong was used. The results showed that the annual solar energy potential of the entire building group was reduced by 35.7% due to the shading effect and the reduced rooftop availability. The reductions of individual buildings varied from 13.4% to 74.5%. In spite of the substantial reductions of the annual solar energy, the shading effect could only slightly reduce the peak solar power. In fact, the annual solar energy reduction could be five times higher than the peak solar power reduction. Further analysis showed that simple addition of the respective solar energy potential reductions, caused by the shading effect and the rooftop availability, tends to highly overestimate the total reduction by up to 26%. For this reason, their impacts cannot be considered separately but as joint effects. The integrated approach provides a viable means to accurately characterize rooftop solar energy potential in urban regions, which can help facilitate solar energy applications in high-density cities.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Energy
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    57
    citations57
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Energy
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Chen, X;
    Chen, X
    ORCID
    Harvested from ORCID Public Data File

    Chen, X in OpenAIRE
    Yang, H; Sun, K;

    This paper aims to develop a green building meta-model for a representative passively designed high-rise residential building in Hong Kong. Modelling experiments are conducted with EnergyPlus to explore a Monte Carlo regression approach, which intends to interpret the relationship between input parameters and output indices of a generic building model and provide reliable building performance predictions. Input parameters are selected from different passive design strategies including the building layout, envelop thermophysics, building geometry and infiltration & air-tightness, while output indices are corresponding indoor environmental indices of the daylight, natural ventilation and thermal comfort to fulfil current green building requirements. The variation of sampling size, application of response transformation and bootstrap method, as well as different statistical regression models are tested and validated through separate modelling datasets. A sampling size of 100 per regression coefficient is determined from the variation of sensitivity coefficients, coefficients of determination and prediction uncertainties. The rank transformation of responses can calibrate sensitivity coefficients of a non-linear model, by considering their variation obtained from sufficient bootstrapping replications. Furthermore, the acquired meta-model with MARS (Multivariate Adaptive Regression Splines) is proved to have better model fitting and predicting performances. This research can accurately identify important architectural design factors and make robust building performance predictions associated with the green building assessment. Sensitivity analysis results and obtained meta-models can improve the efficiency of future optimization studies by pruning the problem space and shorten the computation time.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hong Kong Polytechni...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Energy
    Article . 2017 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    80
    citations80
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hong Kong Polytechni...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Energy
      Article . 2017 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Chen, X;
    Chen, X
    ORCID
    Harvested from ORCID Public Data File

    Chen, X in OpenAIRE
    Yang, H; Sun, K;

    This paper aims to develop a green building meta-model for a representative passively designed high-rise residential building in Hong Kong. Modelling experiments are conducted with EnergyPlus to explore a Monte Carlo regression approach, which intends to interpret the relationship between input parameters and output indices of a generic building model and provide reliable building performance predictions. Input parameters are selected from different passive design strategies including the building layout, envelop thermophysics, building geometry and infiltration & air-tightness, while output indices are corresponding indoor environmental indices of the daylight, natural ventilation and thermal comfort to fulfil current green building requirements. The variation of sampling size, application of response transformation and bootstrap method, as well as different statistical regression models are tested and validated through separate modelling datasets. A sampling size of 100 per regression coefficient is determined from the variation of sensitivity coefficients, coefficients of determination and prediction uncertainties. The rank transformation of responses can calibrate sensitivity coefficients of a non-linear model, by considering their variation obtained from sufficient bootstrapping replications. Furthermore, the acquired meta-model with MARS (Multivariate Adaptive Regression Splines) is proved to have better model fitting and predicting performances. This research can accurately identify important architectural design factors and make robust building performance predictions associated with the green building assessment. Sensitivity analysis results and obtained meta-models can improve the efficiency of future optimization studies by pruning the problem space and shorten the computation time.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hong Kong Polytechni...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Energy
    Article . 2017 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    80
    citations80
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hong Kong Polytechni...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Energy
      Article . 2017 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Yan Ding; orcid Qiaochu Wang;
    Qiaochu Wang
    ORCID
    Harvested from ORCID Public Data File

    Qiaochu Wang in OpenAIRE
    orcid bw Xiangfei Kong;
    Xiangfei Kong
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Xiangfei Kong in OpenAIRE
    orcid Kun Yang;
    Kun Yang
    ORCID
    Harvested from ORCID Public Data File

    Kun Yang in OpenAIRE

    Abstract The time-varying nature of the heating loads of public buildings creates scope for exploring strategies to improve the energy system efficiency and to reduce the energy consumption and system operating costs. A well-researched and refined energy system operation strategy based on time-varying heating load demands is proposed in this paper. The proposed strategy is more effective and efficient than the existing experience-based operation strategies used to run energy systems. With full consideration of the factors affecting building heating loads under various scenarios, a multi-objective particle swarm optimisation algorithm combined with a scenario analysis is presented in this paper. The system efficiency and operation cost are set as two basic objectives to generate a Pareto frontier, and the occupant thermal comfort level is the dominant consideration while selecting an optimal state point for the final operation strategy. Using this simplified decision-making process, this approach can simultaneously calculate both the starting sequence and parameter settings for an optimised operation of the heat supply units. An energy plant on a university campus in Tianjin was selected to implement and evaluate this optimisation strategy. The case study results show that, without compromising the requirements of the thermal comfort of the building occupants, the energy system operating cost can be reduced by 38.9%, with an increase by a factor of 2.24 in the system coefficient of performance when compared with the current experience-based operation strategies.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Energy
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    29
    citations29
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Energy
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Yan Ding; orcid Qiaochu Wang;
    Qiaochu Wang
    ORCID
    Harvested from ORCID Public Data File

    Qiaochu Wang in OpenAIRE
    orcid bw Xiangfei Kong;
    Xiangfei Kong
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Xiangfei Kong in OpenAIRE
    orcid Kun Yang;
    Kun Yang
    ORCID
    Harvested from ORCID Public Data File

    Kun Yang in OpenAIRE

    Abstract The time-varying nature of the heating loads of public buildings creates scope for exploring strategies to improve the energy system efficiency and to reduce the energy consumption and system operating costs. A well-researched and refined energy system operation strategy based on time-varying heating load demands is proposed in this paper. The proposed strategy is more effective and efficient than the existing experience-based operation strategies used to run energy systems. With full consideration of the factors affecting building heating loads under various scenarios, a multi-objective particle swarm optimisation algorithm combined with a scenario analysis is presented in this paper. The system efficiency and operation cost are set as two basic objectives to generate a Pareto frontier, and the occupant thermal comfort level is the dominant consideration while selecting an optimal state point for the final operation strategy. Using this simplified decision-making process, this approach can simultaneously calculate both the starting sequence and parameter settings for an optimised operation of the heat supply units. An energy plant on a university campus in Tianjin was selected to implement and evaluate this optimisation strategy. The case study results show that, without compromising the requirements of the thermal comfort of the building occupants, the energy system operating cost can be reduced by 38.9%, with an increase by a factor of 2.24 in the system coefficient of performance when compared with the current experience-based operation strategies.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Energy
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    29
    citations29
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Energy
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Chao Guo; Weiqi Yuan; Jie Ji; orcid Wei He;
    Wei He
    ORCID
    Harvested from ORCID Public Data File

    Wei He in OpenAIRE
    +2 Authors

    Simple and reliable, PV direct-coupled DC pumps are promising in solar water heating systems (SWHS). However, there is limited experimental data on the performance comparison of PV-coupled SWHS with traditional SWHS. Hence in this study, a comparative test rig is set up to measure and analyze the performance of the PV-coupled SWHS and the traditional system under the same conditions. The experimental results show that on sunny days the PV-coupled SWHS has similar daily thermal efficiency as the traditional SWHS, and slightly higher efficiency after improving the design of the PV module. Under low irradiation, the PV-coupled SWHS gains much more heat than the traditional SWHS, which indicates the potential of the PV-coupled SWHS having much higher efficiency than the traditional SWHS on cloudy days. In order to improve the performance of the PV-coupled SWHS, two different designs of PV module are proposed, and their influence on the pump startup characteristics, the flow rate profile, and the thermal efficiency of the system is investigated. It is found that the modified design of the PV module can reduce the requirement of PV cells and increase the efficiency of the system.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Energy
    Article . 2014 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    26
    citations26
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Energy
      Article . 2014 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Chao Guo; Weiqi Yuan; Jie Ji; orcid Wei He;
    Wei He
    ORCID
    Harvested from ORCID Public Data File

    Wei He in OpenAIRE
    +2 Authors

    Simple and reliable, PV direct-coupled DC pumps are promising in solar water heating systems (SWHS). However, there is limited experimental data on the performance comparison of PV-coupled SWHS with traditional SWHS. Hence in this study, a comparative test rig is set up to measure and analyze the performance of the PV-coupled SWHS and the traditional system under the same conditions. The experimental results show that on sunny days the PV-coupled SWHS has similar daily thermal efficiency as the traditional SWHS, and slightly higher efficiency after improving the design of the PV module. Under low irradiation, the PV-coupled SWHS gains much more heat than the traditional SWHS, which indicates the potential of the PV-coupled SWHS having much higher efficiency than the traditional SWHS on cloudy days. In order to improve the performance of the PV-coupled SWHS, two different designs of PV module are proposed, and their influence on the pump startup characteristics, the flow rate profile, and the thermal efficiency of the system is investigated. It is found that the modified design of the PV module can reduce the requirement of PV cells and increase the efficiency of the system.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Energy
    Article . 2014 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    26
    citations26
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Energy
      Article . 2014 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Liu, Junbei; orcid Zhuge, Chengxiang;
    Zhuge, Chengxiang
    ORCID
    Harvested from ORCID Public Data File

    Zhuge, Chengxiang in OpenAIRE
    Tang, Justin Hayse Chiwing G.; orcid Meng, Meng;
    Meng, Meng
    ORCID
    Harvested from ORCID Public Data File

    Meng, Meng in OpenAIRE
    +1 Authors

    The potential widespread adoption of Electric Vehicles (EVs) has received considerable attention across the globe. However, as a promising technology for both EVs and smart grid, Vehicle-to-Grid (V2G) tended to receive much less attention. This paper developed an agent-based joint EV and V2G model to simultaneously simulate how EVs and V2G might diffuse across space and over time, with empirical findings from a questionnaire survey in Beijing. In particular, random forest models were developed with the survey data to generate each agent’s preferences and attitudes towards EVs and V2G. The joint model also considered three typical levels of social influence, i.e., global influence, neighbor effect, and friendship effect, in the diffusion of EVs and V2G. Finally, the joint model was tested through several “what-if” scenarios, considering different V2G prices, EV/V2G advertisement intensities, and vehicle purchase restrictions. The survey results suggested that 67.7% of the respondents were familiar with EVs, but only 3.3% of them were familiar with V2G. However, over 70% of them would/might try V2G given that they had an EV. The model results suggested that the number of CV applicants was 6.19 times that of BEV applicants in 2030 in the baseline scenario, and only 27.8% of BEV users adopted V2G. Furthermore, V2G selling price, EV/V2G advertisement, and dedicated PHEV purchase permits were not very influential to the diffusion of V2G. The outcomes would be helpful for EV- and V2G-related stakeholders in policy making and technology investment.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Bath's...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Energy
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    27
    citations27
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Bath's...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Energy
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Liu, Junbei; orcid Zhuge, Chengxiang;
    Zhuge, Chengxiang
    ORCID
    Harvested from ORCID Public Data File

    Zhuge, Chengxiang in OpenAIRE
    Tang, Justin Hayse Chiwing G.; orcid Meng, Meng;
    Meng, Meng
    ORCID
    Harvested from ORCID Public Data File

    Meng, Meng in OpenAIRE
    +1 Authors

    The potential widespread adoption of Electric Vehicles (EVs) has received considerable attention across the globe. However, as a promising technology for both EVs and smart grid, Vehicle-to-Grid (V2G) tended to receive much less attention. This paper developed an agent-based joint EV and V2G model to simultaneously simulate how EVs and V2G might diffuse across space and over time, with empirical findings from a questionnaire survey in Beijing. In particular, random forest models were developed with the survey data to generate each agent’s preferences and attitudes towards EVs and V2G. The joint model also considered three typical levels of social influence, i.e., global influence, neighbor effect, and friendship effect, in the diffusion of EVs and V2G. Finally, the joint model was tested through several “what-if” scenarios, considering different V2G prices, EV/V2G advertisement intensities, and vehicle purchase restrictions. The survey results suggested that 67.7% of the respondents were familiar with EVs, but only 3.3% of them were familiar with V2G. However, over 70% of them would/might try V2G given that they had an EV. The model results suggested that the number of CV applicants was 6.19 times that of BEV applicants in 2030 in the baseline scenario, and only 27.8% of BEV users adopted V2G. Furthermore, V2G selling price, EV/V2G advertisement, and dedicated PHEV purchase permits were not very influential to the diffusion of V2G. The outcomes would be helpful for EV- and V2G-related stakeholders in policy making and technology investment.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Bath's...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Energy
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    27
    citations27
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Bath's...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Energy
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Xing Fan; Wen Zhang; orcid bw Weiwei Chen;
    Weiwei Chen
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Weiwei Chen in OpenAIRE
    Bin Chen;

    Abstract Agriculture plays an important role in global climate change. The interaction and efficiency of use of land, water, and energy in agricultural activities are the principal factors affecting greenhouse gas (GHG) emissions and food production. However, comprehensive analysis exploring the mechanism of the land–water–energy system in agricultural production remains lacking. This study developed such a framework based on regional agricultural GHG emissions by combining top-down analysis that considered cross-sectoral interactions with bottom-up analysis that addressed the context-specific conditions of resources and technology. We employed the proposed framework to analyze the interaction of land–water–energy and factors influencing agricultural GHG emissions and to explore mitigation measures based on a case study of the Sanjiang Plain (China). Results showed cropland on the Sanjiang Plain produced 1.8 million tonnes of protein and released 10.9 million tonnes of CO2eq in 2015 using 3.0 million ha of arable land, 12.1 billion m3 of water, and 100.4 PJ of energy. Owing to their high input of resources and flooded cultivation, rice fields produced 29% of total crop protein but consumed 51% of total crop water use, 43% of total crop energy use, and emitted 54% of total crop GHG (CO2eq). Structural adjustment through conversion of half the paddy fields into dryland crops (e.g., wheat) could mitigate GHG emissions by 18.8% in 2020 compared with the baseline scenario. However, such change would be almost impossible given the Sanjiang Plain is one of China’s most important rice-producing areas. If integrated technology improvements were adopted, e.g., advanced crop–soil nutrition management, groundwater protection measures, water-saving irrigation technology, and low-carbon energy technology, GHG emissions could be reduced by 23.9% without sacrificing food production. This study used the nexus approach to analyze agricultural GHG emissions, providing a framework for sustainable agricultural management and a reference for understanding the land–water–energy nexus.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Energy
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    80
    citations80
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Energy
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Xing Fan; Wen Zhang; orcid bw Weiwei Chen;
    Weiwei Chen
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Weiwei Chen in OpenAIRE
    Bin Chen;

    Abstract Agriculture plays an important role in global climate change. The interaction and efficiency of use of land, water, and energy in agricultural activities are the principal factors affecting greenhouse gas (GHG) emissions and food production. However, comprehensive analysis exploring the mechanism of the land–water–energy system in agricultural production remains lacking. This study developed such a framework based on regional agricultural GHG emissions by combining top-down analysis that considered cross-sectoral interactions with bottom-up analysis that addressed the context-specific conditions of resources and technology. We employed the proposed framework to analyze the interaction of land–water–energy and factors influencing agricultural GHG emissions and to explore mitigation measures based on a case study of the Sanjiang Plain (China). Results showed cropland on the Sanjiang Plain produced 1.8 million tonnes of protein and released 10.9 million tonnes of CO2eq in 2015 using 3.0 million ha of arable land, 12.1 billion m3 of water, and 100.4 PJ of energy. Owing to their high input of resources and flooded cultivation, rice fields produced 29% of total crop protein but consumed 51% of total crop water use, 43% of total crop energy use, and emitted 54% of total crop GHG (CO2eq). Structural adjustment through conversion of half the paddy fields into dryland crops (e.g., wheat) could mitigate GHG emissions by 18.8% in 2020 compared with the baseline scenario. However, such change would be almost impossible given the Sanjiang Plain is one of China’s most important rice-producing areas. If integrated technology improvements were adopted, e.g., advanced crop–soil nutrition management, groundwater protection measures, water-saving irrigation technology, and low-carbon energy technology, GHG emissions could be reduced by 23.9% without sacrificing food production. This study used the nexus approach to analyze agricultural GHG emissions, providing a framework for sustainable agricultural management and a reference for understanding the land–water–energy nexus.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Energy
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    80
    citations80
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Energy
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Xiaofeng He; Xiaofei Xin; orcid Xiaoyu Yan;
    Xiaoyu Yan
    ORCID
    Harvested from ORCID Public Data File

    Xiaoyu Yan in OpenAIRE
    Miao Yang; +6 Authors

    Abstract The use of agricultural residues to produce biomass briquette fuel (BBF) can reduce waste of resources and consumption of fossil fuels. We report the first detailed environmental impact assessment of cornstalk-based BBF in China using a cradle-to-grave life cycle assessment (LCA). The LCA study was conducted based on a typical large-scale cornstalk BBF demonstration project in China with an integrated and automated production system. The key life cycle stages such as cornstalk growth, cornstalk transportation, BBF production, transportation and utilisation were investigated. Our results suggest that cornstalk BBF in China is much more environmentally friendly than coal and is favourable when compared with other types of solid fuels produced from different biomass feedstock. For example, the climate change and fossil depletion impacts of cornstalk BBF in China (11 g CO2 eq./MJ and 2 g oil eq./MJ, respectively) are an order of magnitude lower than those of coal (146 g CO2 eq./MJ and 26 g oil eq./MJ, respectively). The results of this study can assist policy makers in evaluating the potential benefits of the large scale use of BBF made from agricultural residues.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Energy
    Article . 2017 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    61
    citations61
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Energy
      Article . 2017 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Xiaofeng He; Xiaofei Xin; orcid Xiaoyu Yan;
    Xiaoyu Yan
    ORCID
    Harvested from ORCID Public Data File

    Xiaoyu Yan in OpenAIRE
    Miao Yang; +6 Authors

    Abstract The use of agricultural residues to produce biomass briquette fuel (BBF) can reduce waste of resources and consumption of fossil fuels. We report the first detailed environmental impact assessment of cornstalk-based BBF in China using a cradle-to-grave life cycle assessment (LCA). The LCA study was conducted based on a typical large-scale cornstalk BBF demonstration project in China with an integrated and automated production system. The key life cycle stages such as cornstalk growth, cornstalk transportation, BBF production, transportation and utilisation were investigated. Our results suggest that cornstalk BBF in China is much more environmentally friendly than coal and is favourable when compared with other types of solid fuels produced from different biomass feedstock. For example, the climate change and fossil depletion impacts of cornstalk BBF in China (11 g CO2 eq./MJ and 2 g oil eq./MJ, respectively) are an order of magnitude lower than those of coal (146 g CO2 eq./MJ and 26 g oil eq./MJ, respectively). The results of this study can assist policy makers in evaluating the potential benefits of the large scale use of BBF made from agricultural residues.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Energy
    Article . 2017 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    61
    citations61
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Energy
      Article . 2017 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph