- home
- Advanced Search
- Energy Research
- CO
- Energy Research
- CO
description Publicationkeyboard_double_arrow_right Article 2022 TurkeyPublisher:Elsevier BV Authors: Juan Zapata-Mina; Seyed Mohammad Safieddin Ardebili; Alvaro Restrepo; Hamit Solmaz; +2 AuthorsJuan Zapata-Mina; Seyed Mohammad Safieddin Ardebili; Alvaro Restrepo; Hamit Solmaz; Alper Calam; Özer Can;handle: 11499/46744
Homogeneous Charge compression ignition (HCCI) combustion mode is a very interesting new combustion model with high efficiency, low nitrogen oxide (NOx), and soot emissions. In the present investigation, the performance of an HCCI engine operated with three fuel ratios, i.e., 40% diethyl ether and 60% fusel oil (D40F60), 60% diethyl ether and 40% fusel oil (D60F40), and 80% diethyl ether and 20% fusel oil (D80F20), at different lambda values and engine speeds was assessed from exergy indicators. The results indicate that the lambda variation allows observing the best performance zones when operating with fuel blends. From the comparison of the exergy indicators, it is concluded that the highest engine efficiency is obtained when operating with D40F60 at a lambda between 2.1 and 2.2. However, it was determined that the increase of diethyl ether in the blend decreases the HCCI engine performance. Also, greater stability of performance was recorded when operating with D80F20. A higher exergy destruction rate is observed between lambda 3.4 and 3.9 when operating with D80F20. The exergetic efficiency values varied from 5.34% to 23.85%. According to the results obtained, the lowest and highest value of exergy efficiency was recorded for the D80F20 and D40F60, respectively.
Pamukkale University... arrow_drop_down Pamukkale University RepositoryArticle . 2022Full-Text: https://doi.org/10.1016/j.csite.2022.101899Data sources: Bielefeld Academic Search Engine (BASE)Case Studies in Thermal EngineeringArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.csite.2022.101899&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Pamukkale University... arrow_drop_down Pamukkale University RepositoryArticle . 2022Full-Text: https://doi.org/10.1016/j.csite.2022.101899Data sources: Bielefeld Academic Search Engine (BASE)Case Studies in Thermal EngineeringArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.csite.2022.101899&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022 TurkeyPublisher:Elsevier BV Authors: Juan Zapata-Mina; Seyed Mohammad Safieddin Ardebili; Alvaro Restrepo; Hamit Solmaz; +2 AuthorsJuan Zapata-Mina; Seyed Mohammad Safieddin Ardebili; Alvaro Restrepo; Hamit Solmaz; Alper Calam; Özer Can;handle: 11499/46744
Homogeneous Charge compression ignition (HCCI) combustion mode is a very interesting new combustion model with high efficiency, low nitrogen oxide (NOx), and soot emissions. In the present investigation, the performance of an HCCI engine operated with three fuel ratios, i.e., 40% diethyl ether and 60% fusel oil (D40F60), 60% diethyl ether and 40% fusel oil (D60F40), and 80% diethyl ether and 20% fusel oil (D80F20), at different lambda values and engine speeds was assessed from exergy indicators. The results indicate that the lambda variation allows observing the best performance zones when operating with fuel blends. From the comparison of the exergy indicators, it is concluded that the highest engine efficiency is obtained when operating with D40F60 at a lambda between 2.1 and 2.2. However, it was determined that the increase of diethyl ether in the blend decreases the HCCI engine performance. Also, greater stability of performance was recorded when operating with D80F20. A higher exergy destruction rate is observed between lambda 3.4 and 3.9 when operating with D80F20. The exergetic efficiency values varied from 5.34% to 23.85%. According to the results obtained, the lowest and highest value of exergy efficiency was recorded for the D80F20 and D40F60, respectively.
Pamukkale University... arrow_drop_down Pamukkale University RepositoryArticle . 2022Full-Text: https://doi.org/10.1016/j.csite.2022.101899Data sources: Bielefeld Academic Search Engine (BASE)Case Studies in Thermal EngineeringArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.csite.2022.101899&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Pamukkale University... arrow_drop_down Pamukkale University RepositoryArticle . 2022Full-Text: https://doi.org/10.1016/j.csite.2022.101899Data sources: Bielefeld Academic Search Engine (BASE)Case Studies in Thermal EngineeringArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.csite.2022.101899&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu