- home
- Advanced Search
- Energy Research
- CO
- Energy Research
- CO
description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:MDPI AG Authors: Valentín Molina-Moreno; Pedro Núñez-Cacho Utrilla; Francisco J. Cortés-García; Antonio Peña-García;doi: 10.3390/en11071783
The impact of public lighting on consumed energy, financial cost, use of raw materials, and the environment is a major concern nowadays. The high amounts of energy needed to satisfy the increasing demands of cities around the world has led researchers to look for alternatives to classical fossil sources, with low implementation in public lighting up to date. In this context, circular economy (CE) proposes a new perspective of engineering based on smart design for the future life of products where even wastes have an added value as technological nutrients for other applications. A convergent consideration of CE and the urgent necessity of more sustainable public lighting leads to this proposal. The ad hoc use of a local biomass plant for powering the public lighting of one small city is considered, and important conclusions reinforcing the link between lighting and CE are presented.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11071783&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11071783&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:MDPI AG Authors: Valentín Molina-Moreno; Juan Leyva-Díaz; Jorge Sánchez-Molina; Antonio Peña-García;doi: 10.3390/su9122229
The increasing demands of infrastructures in terms of energy consumption, raw material demand, greenhouse gas emissions, waste management, treatment of components after their lifetime period, and financial costs are nowadays a serious threat for sustainability. Given that the resources are limited, it is difficult to ensure an accurate level of well-being for future generations. For this reason, new perspectives in design, production and consumption are necessary. In this work, the principles of circular economy are applied to concrete branches of engineering. Departing from a design orientated to new uses after life period of infrastructures, a circular economy-aimed engineering makes possible the connection and mutual profit of such different branches like waste management and tunnel lighting. The benefits in environmental and financial terms are a strong argument in favor of a stronger link between engineering and circular economy.
Sustainability arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9122229&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9122229&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021Publisher:MDPI AG Authors: Sabrina Tabares; Andrés Morales; Sara Calvo; Valentín Molina Moreno;doi: 10.3390/su132313408
With Our Common Future and the United Nation’s global call to implement the Sustainable Development Goals (SDGs) in 2030, public policies increasingly emphasise the need for various actors to contribute to a global transformation and a more sustainable future. Despite growing research on hybrid organisations and their contributions to sustainable development, their impact on accelerating this transition might be faulty. Looking at a type of hybrid organisation, Certified B Corporations (B Corps), this article draws on a multiple case study of nine B Corps in a developing country in Latin America, Colombia. The study builds on the Structuration Theory to examine to what extent and how B Corps impact sustainable development. The article empirically shows that B Corps focus on four categories of sustainable development: considering future generations; enhancing human development; encouraging new mindsets, behaviours, and lifestyles; and promoting socio-political engagement. The findings suggest that B Corps develop communicative and narrative discourses and symbolic schemas as means of signification and follow norms and moral rules to exert legitimation and utilise authoritative resources to exercise power. The article contributes to research on hybrid organisations, sustainability transitions, and business models.
CORE arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132313408&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold more_vert CORE arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132313408&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:MDPI AG Authors: Valentín Molina-Moreno; Juan Leyva-Díaz; Jorge Sánchez-Molina;doi: 10.3390/en9100777
This study analyzes the operation of Biomass System (BIO System) technology for the combustion of pellets from almond and olive trees within the circular economy model. Its aims are the reduction of greenhouse gas emissions as well as waste removal and its energy use by reintroducing that waste into the production process as technological nutrient. In order to do so, combustion efficiency under optimal conditions at nominal power was analyzed. In addition, a TESTO 350-XL analyzer was employed to measure CO and NOx emissions. High combustion efficiency values were obtained, 87.7% and 86.3%, for pellets from olive tree and almond tree, respectively. The results of CO and NOx emission levels were very satisfactory. Under conditions close to nominal power, CO emission levels were 225.3 ppm at 6% O2 for pellet from almond tree and 351.6 ppm at 6% O2 for pellet from olive tree. Regarding NOx emissions, the values were 365.8 ppm at 6% O2 and 333.2 ppm at 6% O2 for pellets from almond tree and olive tree, respectively. In general, these values were below those legally established by current legislation in European countries. Therefore, BIO System technology is a perfectly feasible option in terms of energy use and circular economy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en9100777&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en9100777&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:MDPI AG Authors: Valentín Molina-Moreno; Pedro Núñez-Cacho Utrilla; Francisco J. Cortés-García; Antonio Peña-García;doi: 10.3390/en11071783
The impact of public lighting on consumed energy, financial cost, use of raw materials, and the environment is a major concern nowadays. The high amounts of energy needed to satisfy the increasing demands of cities around the world has led researchers to look for alternatives to classical fossil sources, with low implementation in public lighting up to date. In this context, circular economy (CE) proposes a new perspective of engineering based on smart design for the future life of products where even wastes have an added value as technological nutrients for other applications. A convergent consideration of CE and the urgent necessity of more sustainable public lighting leads to this proposal. The ad hoc use of a local biomass plant for powering the public lighting of one small city is considered, and important conclusions reinforcing the link between lighting and CE are presented.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11071783&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11071783&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:MDPI AG Authors: Valentín Molina-Moreno; Juan Leyva-Díaz; Jorge Sánchez-Molina; Antonio Peña-García;doi: 10.3390/su9122229
The increasing demands of infrastructures in terms of energy consumption, raw material demand, greenhouse gas emissions, waste management, treatment of components after their lifetime period, and financial costs are nowadays a serious threat for sustainability. Given that the resources are limited, it is difficult to ensure an accurate level of well-being for future generations. For this reason, new perspectives in design, production and consumption are necessary. In this work, the principles of circular economy are applied to concrete branches of engineering. Departing from a design orientated to new uses after life period of infrastructures, a circular economy-aimed engineering makes possible the connection and mutual profit of such different branches like waste management and tunnel lighting. The benefits in environmental and financial terms are a strong argument in favor of a stronger link between engineering and circular economy.
Sustainability arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9122229&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9122229&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021Publisher:MDPI AG Authors: Sabrina Tabares; Andrés Morales; Sara Calvo; Valentín Molina Moreno;doi: 10.3390/su132313408
With Our Common Future and the United Nation’s global call to implement the Sustainable Development Goals (SDGs) in 2030, public policies increasingly emphasise the need for various actors to contribute to a global transformation and a more sustainable future. Despite growing research on hybrid organisations and their contributions to sustainable development, their impact on accelerating this transition might be faulty. Looking at a type of hybrid organisation, Certified B Corporations (B Corps), this article draws on a multiple case study of nine B Corps in a developing country in Latin America, Colombia. The study builds on the Structuration Theory to examine to what extent and how B Corps impact sustainable development. The article empirically shows that B Corps focus on four categories of sustainable development: considering future generations; enhancing human development; encouraging new mindsets, behaviours, and lifestyles; and promoting socio-political engagement. The findings suggest that B Corps develop communicative and narrative discourses and symbolic schemas as means of signification and follow norms and moral rules to exert legitimation and utilise authoritative resources to exercise power. The article contributes to research on hybrid organisations, sustainability transitions, and business models.
CORE arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132313408&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold more_vert CORE arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132313408&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:MDPI AG Authors: Valentín Molina-Moreno; Juan Leyva-Díaz; Jorge Sánchez-Molina;doi: 10.3390/en9100777
This study analyzes the operation of Biomass System (BIO System) technology for the combustion of pellets from almond and olive trees within the circular economy model. Its aims are the reduction of greenhouse gas emissions as well as waste removal and its energy use by reintroducing that waste into the production process as technological nutrient. In order to do so, combustion efficiency under optimal conditions at nominal power was analyzed. In addition, a TESTO 350-XL analyzer was employed to measure CO and NOx emissions. High combustion efficiency values were obtained, 87.7% and 86.3%, for pellets from olive tree and almond tree, respectively. The results of CO and NOx emission levels were very satisfactory. Under conditions close to nominal power, CO emission levels were 225.3 ppm at 6% O2 for pellet from almond tree and 351.6 ppm at 6% O2 for pellet from olive tree. Regarding NOx emissions, the values were 365.8 ppm at 6% O2 and 333.2 ppm at 6% O2 for pellets from almond tree and olive tree, respectively. In general, these values were below those legally established by current legislation in European countries. Therefore, BIO System technology is a perfectly feasible option in terms of energy use and circular economy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en9100777&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en9100777&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu