- home
- Advanced Search
- Energy Research
- CY
- Energy Research
- CY
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors: Vladimir Z. Gjorgievski; Nikolas G. Chatzigeorgiou; Venizelos Venizelou; Georgios C. Christoforidis; +2 AuthorsVladimir Z. Gjorgievski; Nikolas G. Chatzigeorgiou; Venizelos Venizelou; Georgios C. Christoforidis; George E. Georghiou; Grigoris K. Papagiannis;doi: 10.3390/en13081934
Three load matching indicators (self-consumption rate, self-sufficiency rate, loss of load probability) and the CO2 emissions were evaluated for 55 Cypriot households with 3 kWp rooftop photovoltaic (PV) generators. The calculations were performed using 30-minute generation and consumption data from a large scale smart meter project in Cyprus. To investigate the effects of recent advances in local legislation, an analysis for higher PV capacities (5 kWp and 10 kWp) was also performed. The PV generation profiles for 5 kWp and 10 kWp PVs were obtained by scaling the 3 kWp PV generation profiles. The results showed that the self-consumption of the analyzed households varied seasonally, as it was related to their heating and cooling demand. More interestingly, the ratio between the households’ annual electricity generation and demand, formally defined here as generation-to-demand ratio (GTDR), was found to be related to the value ranges of the studied load matching indicators. Hence, on average, households with 3 kWp PV generators annually self-consumed 48.17% and exported 2,415.10 kWh of their PV generation. On the other hand, households with larger PV generators were characterized by a higher GTDR, but lower load matching capabilities. For the cases of 5 kWp and 10 kWp PV generators, the average self-consumption fell to 34.05% and 19.31%, while the exported PV generation was equal to 5,122.47 kWh, and 12,534.90 kWh, respectively. Along with lower load matching capabilities, households that generated more than they consumed were also found to have a lower potential for CO2 emissions reduction per installed kWp within the boundaries of the building. In this context, the GTDR could be used by stakeholders to characterize buildings, infer possible value ranges of more complex indicators and make evidence based decisions on policy and legislation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13081934&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13081934&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Vladimir Gjorgievski; George E. Georghiou; Snezana Cundeva;Abstract Due to the potential for deploying distributed generation, improving energy efficiency and adopting sustainable energy-related practices, consumers provide significant value in the energy sector transformation. If their interests and goals are similar, they can group together and form energy communities. Energy communities enable consumers to jointly pursue their individual and collective economic, environmental and social goals, while simultaneously contributing to the decarbonisation of the energy system. Considering the growing interest in this field, this paper aims to enhance the understanding of the social arrangements, the technical designs and the impacts of energy communities. The social arrangements of energy communities are discussed in relation to the different actors, their roles and interactions. Then, the paper reviews the technical aspects of designing various local energy systems, while taking into account the goals of energy community members and outside actors. The reviewed literature is benchmarked with respect to the methods, modelling objectives and the constraints used in the design process. Finally, the paper quantifies the economic, environmental, technical and social impacts of energy communities, reviews the numerical indicators used to quantify these impacts and provides a critical discussion of the findings. Based on the findings, future research directions are highlighted.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.01.078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 222 citations 222 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.01.078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors: Vladimir Z. Gjorgievski; Nikolas G. Chatzigeorgiou; Venizelos Venizelou; Georgios C. Christoforidis; +2 AuthorsVladimir Z. Gjorgievski; Nikolas G. Chatzigeorgiou; Venizelos Venizelou; Georgios C. Christoforidis; George E. Georghiou; Grigoris K. Papagiannis;doi: 10.3390/en13081934
Three load matching indicators (self-consumption rate, self-sufficiency rate, loss of load probability) and the CO2 emissions were evaluated for 55 Cypriot households with 3 kWp rooftop photovoltaic (PV) generators. The calculations were performed using 30-minute generation and consumption data from a large scale smart meter project in Cyprus. To investigate the effects of recent advances in local legislation, an analysis for higher PV capacities (5 kWp and 10 kWp) was also performed. The PV generation profiles for 5 kWp and 10 kWp PVs were obtained by scaling the 3 kWp PV generation profiles. The results showed that the self-consumption of the analyzed households varied seasonally, as it was related to their heating and cooling demand. More interestingly, the ratio between the households’ annual electricity generation and demand, formally defined here as generation-to-demand ratio (GTDR), was found to be related to the value ranges of the studied load matching indicators. Hence, on average, households with 3 kWp PV generators annually self-consumed 48.17% and exported 2,415.10 kWh of their PV generation. On the other hand, households with larger PV generators were characterized by a higher GTDR, but lower load matching capabilities. For the cases of 5 kWp and 10 kWp PV generators, the average self-consumption fell to 34.05% and 19.31%, while the exported PV generation was equal to 5,122.47 kWh, and 12,534.90 kWh, respectively. Along with lower load matching capabilities, households that generated more than they consumed were also found to have a lower potential for CO2 emissions reduction per installed kWp within the boundaries of the building. In this context, the GTDR could be used by stakeholders to characterize buildings, infer possible value ranges of more complex indicators and make evidence based decisions on policy and legislation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13081934&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13081934&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Vladimir Gjorgievski; George E. Georghiou; Snezana Cundeva;Abstract Due to the potential for deploying distributed generation, improving energy efficiency and adopting sustainable energy-related practices, consumers provide significant value in the energy sector transformation. If their interests and goals are similar, they can group together and form energy communities. Energy communities enable consumers to jointly pursue their individual and collective economic, environmental and social goals, while simultaneously contributing to the decarbonisation of the energy system. Considering the growing interest in this field, this paper aims to enhance the understanding of the social arrangements, the technical designs and the impacts of energy communities. The social arrangements of energy communities are discussed in relation to the different actors, their roles and interactions. Then, the paper reviews the technical aspects of designing various local energy systems, while taking into account the goals of energy community members and outside actors. The reviewed literature is benchmarked with respect to the methods, modelling objectives and the constraints used in the design process. Finally, the paper quantifies the economic, environmental, technical and social impacts of energy communities, reviews the numerical indicators used to quantify these impacts and provides a critical discussion of the findings. Based on the findings, future research directions are highlighted.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.01.078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 222 citations 222 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.01.078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu