- home
- Advanced Search
- Energy Research
- DE
- AT
- PL
- RWTH Aachen University
- Energy Research
- DE
- AT
- PL
- RWTH Aachen University
description Publicationkeyboard_double_arrow_right Article , Journal 2021 GermanyPublisher:Springer Science and Business Media LLC Mahmoud Mani; Kasra Amini; Kasra Amini; Arash Mehrjou; Arash Mehrjou;handle: 10900/118001
Among all its effects, the development of the boundary layer, its separation, and formation of the wake region could lead to higher convective heat transfer over the body, if the flow conditions cause high gradient velocity profiles in the surface vicinities of the field. And also, a low-pressure region in the downstream of the geometry is formed, which increases the pressure drag exerted on it. The influence of the aforementioned issue on the zero energy house design has been tackled by introducing a new flow control mechanism. The so-called flow controlling blades (FCBs) were recently designed and investigated on a smart sustainable house, in order to control the flow field around the house, prevent the separation, and decrease the wake intensity, targeting a lower level of convective heat loss and drag force exerted on the body. The angular orientation of these FCBs was formerly determined for 12 different free wind directions (30° increments), as a look-up table for the main control system of the house. To increase the resolution of the orientations, we make use of a recently successful tool in machine learning called neural networks to estimate the desired orientation of the blades for the wind directions that do not exist in the said look-up table. Consequently, all the sample investigated sub-intervals not originally covered by the CFD data, showing great coincidence with the data driven from the neural network utilized in this study.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12053-021-09931-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12053-021-09931-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Italy, United KingdomPublisher:S. Karger AG Kiyak C.; Deluca P.; Norton S.; Simonetti M. E.; Preti E.;Introduction: Elaborated intrusion theory suggests that imagery is central to craving; however, the possibility that cue-elicited multisensory imagery produces such urges has not been studied enough in the literature. Thus, we investigated the role of cue-elicited multisensory imagery on alcohol craving in individuals who are hazardous and social drinkers compared to mental and neutral imagery conditions. Methods: In an online experiment, hazardous and social drinkers (N = 348) between 18 and 45 years old were randomised to multisensory, mental, and neutral imagery exposure. The level of craving intensity was measured before and after imagery exposure. Also, participants rated vividness and sensory features scales after the exposure. Results: The level of craving was significantly higher in multisensory imagery condition compared to neutral condition (b = 1.94, p < 0.001, SE = 0.30, t(344) = 6.52, standardised mean difference [SMD] = 0.89) and in mental imagery condition compared to neutral condition (b = 1.82, SE = 0.30, t(344) = 6.52, p < 0.001, SMD = 0.83). The difference between the level of craving intensity between the multisensory and mental was not significant (b = 0.12, SE = 0.22, t(344) = 0.53, p = 0.594, SMD = 0.06). Moreover, craving intensity in response to multisensory versus neutral imagery was significantly stronger among hazardous drinkers (b = −2.90, SE = 0.83, t(341) = −3.50, p < 0.001). The level of vividness was not significantly different between any conditions. The difference between levels of sensory features was higher in multisensory imagery condition compared to neutral (b = 0.95, SE = 0.30, t(345) = 3.17, p = 0.002, SMD = 0.49) and mental imagery condition (b = 0.67, SE = 0.23, t(345) = 2.36, p = 0.004, SMD = 0.35). Conclusion: Results suggest that cue-elicited multisensory imagery may be a useful tool for eliciting alcohol craving responses and provide an additional means for better understanding the multi-layered mechanism of craving.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2023 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)King's College, London: Research PortalArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1159/000531844&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2023 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)King's College, London: Research PortalArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1159/000531844&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Springer Science and Business Media LLC Authors: R. Puffer; Klemens Reich; R. Weissnar;In recent years, Austrian Power Grid AG (APG) has successfully introduced dynamic line rating for the weather-dependent determination of the current-carrying capacity on various overhead lines. The higher current loading of overhead lines also increases the current loading in substations. In some cases busbars appear to be the new limiting element. As weather-dependent operation of tubular busbars is not yet in practice, a physical model working in a similar way as dynamic rating for overhead lines has been developed and evaluated. Due to the significantly larger surface area of tubular busbars compared to conductors of overhead lines, radiation as well as absorption and convection have a greater influence on the current-carrying capacity of tubular busbars than of conductors of overhead lines. Calculations of the current-carrying capacity of a tubular busbar based on the weather data over one year show that the current-carrying capacity can be regularly increased by several ten percentage points. In the near future, dynamic rating will be used for tubular busbars at APG in network operation to be able to significantly increase the current-carrying capacity of busbars in suitable ambient conditions.
e & i Elektrotechnik... arrow_drop_down e & i Elektrotechnik und InformationstechnikArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00502-020-00847-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert e & i Elektrotechnik... arrow_drop_down e & i Elektrotechnik und InformationstechnikArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00502-020-00847-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Germany, DenmarkPublisher:Elsevier BV Soner Candas; Christoph Muschner; Stefanie Buchholz; Rasmus Bramstoft; Jonas van Ouwerkerk; Karlo Hainsch; Konstantin Löffler; Stephan Günther; Sarah Berendes; Stefanie Nguyen; Aparna Justin;Renewable & sustainable energy reviews 161, 112272 (2022). doi:10.1016/j.rser.2022.112272 special issue: "MODEX: energy system model comparisons through harmonized applications / Edited by Hans Christian Gils, Jochen Linßen, Dominik Möst, Christoph Weber" Published by Elsevier Science, Amsterdam [u.a.]
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefOnline Research Database In TechnologyArticle . 2022Data sources: Online Research Database In TechnologyPublikationsserver der RWTH Aachen UniversityArticle . 2022Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2022.112272&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 34 citations 34 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefOnline Research Database In TechnologyArticle . 2022Data sources: Online Research Database In TechnologyPublikationsserver der RWTH Aachen UniversityArticle . 2022Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2022.112272&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Springer Science and Business Media LLC Authors: Matthias Thewes; Andreas Kolbeck; Markus Schwaderlapp; Philipp Ad omeit;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1365/s38313-012-0139-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1365/s38313-012-0139-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Institute of Electrical and Electronics Engineers (IEEE) Jiarong Li; Jin Lin; Philipp-Matthias Heuser; Heidi Ursula Heinrichs; Jinyu Xiao; Feng Liu; Martin Robinius; Yonghua Song; Detlef Stolten;Converting wind energy into ammonia (WtA) has been recognized as a promising pathway to produce green ammonia compared with traditional coal-based technologies. As the key part of WtA, Power-to-Ammonia (PtA) has great potential to facilitate the usage of wind generation. This paper proposes a co-planning approach for regional wind resources-based ammonia industry and the electric network (EN). To this end, PtA is first modeled as a flexible power load of power systems with spatial and temporal constraints on hydrogen supply chains (HSC). Then a novel co-planning model of WtA and EN is established to optimize the WtA configuration and the EN expansion. An alternating direction method of multipliers (ADMM) based algorithm is introduced to effectively solve this model. Real data of Inner Mongolia Province in China is adopted to verify the effectiveness and significance of the proposed approach. It is shown that the siting and operation flexibility of PtA with HSC can reduce the expansion burden of EN. The co-planning of WtA and EN can significantly enhance wind power utilization and reduce total investment costs. Furthermore, feasibility analysis on WtA in comparison with coal-to-ammonia (CtA) and ultra-high voltage transmission (UHV) provides helpful guidelines for the realization of WtA.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2022 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2021.3089365&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2022 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2021.3089365&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Daniel Wölki; Christoph van Treeck; Carolin Schmidt; Jérôme Frisch; Henning Metzmacher;Abstract This paper presents a system for the real-time analysis of human skin temperatures using sensor fusion and thermal image recognition. The aim of this work is to introduce an open and extensible framework that supports multi-modal sensor input with a focus on merging optical data and conventional sensor input for advanced thermal comfort analysis. The goal is to obtain a more complete representation of a person in various indoor climatic conditions. Methods proposed in this paper are important for research and industrial applications with respect to the real-time analysis of thermal comfort and human physiology in indoor climates. Although this paper mainly focuses on the analysis of skin temperatures, the proposed architecture is conceived for being extendable for statistical evaluation and numerical models. Arbitrary software components can be integrated as data sources and sinks by means of a conventional TCP/IP networking interface. Main contributions of this paper are a general architecture for the fusion of multi-modal sensor input using a centralized data server structure, a method for combining depth-map based face and pose tracking with a thermal imaging device and preliminary studies demonstrating the behavior and validity of the system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2017.09.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu96 citations 96 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2017.09.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2018 GermanyPublisher:RWTH Aachen University Authors: Bhola, M.; Sreeharsha, R.; Kumar, N.;11th International Fluid Power Conference, 11. IFK, Aachen, Germany, 19 Mar 2018 - 21 Mar 2018; Aachen : [Mainz], 72-81 (2018). Published by [Mainz], Aachen
Publikationsserver d... arrow_drop_down Publikationsserver der RWTH Aachen UniversityConference object . 2018Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18154/rwth-2018-224370&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Publikationsserver d... arrow_drop_down Publikationsserver der RWTH Aachen UniversityConference object . 2018Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18154/rwth-2018-224370&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Abdul Azem; Paul Mathis; Frederik Stute; Martin Hoffmann; Dirk Müller; Georg Hetzel;Abstract In this paper, a free running centrifugal fan inside a rectangular duct is investigated via measurements and CFD. A rectangular cuboid-shaped body is mounted downstream of the free running centrifugal fan, covering most of the space next to the fan wheel, leaving only a small channel for the air near the duct walls to pass through. We call this cube a ‘pressure regain unit’ (PRU). The cube increases the fan efficiency by reducing vortices downstream of the fan and tranfering a larger part of the kinetic energy into static pressure. Experiments are conducted with several PRU geometry variations. The measurements show that an increase in efficiency of 10% is possible compared to a free running fan in an empty duct. Subsequently, a numerical analysis is performed to analyze the effect which leads to efficiency increase. Comparing the installation with and without PRU shows that the main difference is a recirculation area behind the fan wheel when no PRU is installed. Higher level of turbulence and strong shear layers in the empty duct cause efficiency losses. The turbulence level and the amount of shear layers are reduced by the PRU. Both experimental and numerical data show an energy saving potential by optimizing the downstream region of the free running centrifugal fan.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2018.01.041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2018.01.041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2011 FrancePublisher:Springer Science and Business Media LLC Authors: Lichtfouse, Eric; Schwarzbauer, Jan; Robert, Didier;This article is both an essay to propose social chemistry as a new scientific discipline and a preface of the books Environmental Chemistry for a Sustainable World. Environmental chemistry is a fast emerging discipline aiming at the understanding the fate of pollutants in ecosystems and at designing novel processes that are safe for ecosystems. Past pollution should be cleaned, and future pollution should be predicted and avoided (Lichtfouse et al. 2005a). Such advices are still not applied by humans as demonstrated by the Fukushima nuclear event and global warming. Human errors are repeatable. We therefore suggest a possible solution, which involves bridging chemistry and society by integrating social sciences in chemical research. In particular, citizen discourse analysis should be useful to design chemicals that are both innovative and accepted by society. Then, we present the recent success of environmental chemistry through the foundation of the Association of Chemistry and the Environment; the increase in the impact factor of Environmental Chemistry Letters from 0.814 in 2006 to 2.109 in 2009; and over 35,000 chapter downloads of the book Environmental Chemistry. Lastly, we highlight major topics of the new book series Environmental Chemistry for a Sustainable World (Lichtfouse et al. 2011a, b). The two first volumes are entitled Nanotechnology and Health Risk, and Remediation of Air and Water Pollution.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Environmental Chemistry LettersArticle . 2011 . Peer-reviewedLicense: Springer TDMData sources: CrossrefHAL - Université de Bourgogne (HAL-uB)Other literature type . 2012Data sources: HAL - Université de Bourgogne (HAL-uB)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10311-011-0333-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 7 citations 7 popularity Average influence Average impulse Average Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Environmental Chemistry LettersArticle . 2011 . Peer-reviewedLicense: Springer TDMData sources: CrossrefHAL - Université de Bourgogne (HAL-uB)Other literature type . 2012Data sources: HAL - Université de Bourgogne (HAL-uB)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10311-011-0333-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021 GermanyPublisher:Springer Science and Business Media LLC Mahmoud Mani; Kasra Amini; Kasra Amini; Arash Mehrjou; Arash Mehrjou;handle: 10900/118001
Among all its effects, the development of the boundary layer, its separation, and formation of the wake region could lead to higher convective heat transfer over the body, if the flow conditions cause high gradient velocity profiles in the surface vicinities of the field. And also, a low-pressure region in the downstream of the geometry is formed, which increases the pressure drag exerted on it. The influence of the aforementioned issue on the zero energy house design has been tackled by introducing a new flow control mechanism. The so-called flow controlling blades (FCBs) were recently designed and investigated on a smart sustainable house, in order to control the flow field around the house, prevent the separation, and decrease the wake intensity, targeting a lower level of convective heat loss and drag force exerted on the body. The angular orientation of these FCBs was formerly determined for 12 different free wind directions (30° increments), as a look-up table for the main control system of the house. To increase the resolution of the orientations, we make use of a recently successful tool in machine learning called neural networks to estimate the desired orientation of the blades for the wind directions that do not exist in the said look-up table. Consequently, all the sample investigated sub-intervals not originally covered by the CFD data, showing great coincidence with the data driven from the neural network utilized in this study.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12053-021-09931-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12053-021-09931-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Italy, United KingdomPublisher:S. Karger AG Kiyak C.; Deluca P.; Norton S.; Simonetti M. E.; Preti E.;Introduction: Elaborated intrusion theory suggests that imagery is central to craving; however, the possibility that cue-elicited multisensory imagery produces such urges has not been studied enough in the literature. Thus, we investigated the role of cue-elicited multisensory imagery on alcohol craving in individuals who are hazardous and social drinkers compared to mental and neutral imagery conditions. Methods: In an online experiment, hazardous and social drinkers (N = 348) between 18 and 45 years old were randomised to multisensory, mental, and neutral imagery exposure. The level of craving intensity was measured before and after imagery exposure. Also, participants rated vividness and sensory features scales after the exposure. Results: The level of craving was significantly higher in multisensory imagery condition compared to neutral condition (b = 1.94, p < 0.001, SE = 0.30, t(344) = 6.52, standardised mean difference [SMD] = 0.89) and in mental imagery condition compared to neutral condition (b = 1.82, SE = 0.30, t(344) = 6.52, p < 0.001, SMD = 0.83). The difference between the level of craving intensity between the multisensory and mental was not significant (b = 0.12, SE = 0.22, t(344) = 0.53, p = 0.594, SMD = 0.06). Moreover, craving intensity in response to multisensory versus neutral imagery was significantly stronger among hazardous drinkers (b = −2.90, SE = 0.83, t(341) = −3.50, p < 0.001). The level of vividness was not significantly different between any conditions. The difference between levels of sensory features was higher in multisensory imagery condition compared to neutral (b = 0.95, SE = 0.30, t(345) = 3.17, p = 0.002, SMD = 0.49) and mental imagery condition (b = 0.67, SE = 0.23, t(345) = 2.36, p = 0.004, SMD = 0.35). Conclusion: Results suggest that cue-elicited multisensory imagery may be a useful tool for eliciting alcohol craving responses and provide an additional means for better understanding the multi-layered mechanism of craving.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2023 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)King's College, London: Research PortalArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1159/000531844&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2023 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)King's College, London: Research PortalArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1159/000531844&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Springer Science and Business Media LLC Authors: R. Puffer; Klemens Reich; R. Weissnar;In recent years, Austrian Power Grid AG (APG) has successfully introduced dynamic line rating for the weather-dependent determination of the current-carrying capacity on various overhead lines. The higher current loading of overhead lines also increases the current loading in substations. In some cases busbars appear to be the new limiting element. As weather-dependent operation of tubular busbars is not yet in practice, a physical model working in a similar way as dynamic rating for overhead lines has been developed and evaluated. Due to the significantly larger surface area of tubular busbars compared to conductors of overhead lines, radiation as well as absorption and convection have a greater influence on the current-carrying capacity of tubular busbars than of conductors of overhead lines. Calculations of the current-carrying capacity of a tubular busbar based on the weather data over one year show that the current-carrying capacity can be regularly increased by several ten percentage points. In the near future, dynamic rating will be used for tubular busbars at APG in network operation to be able to significantly increase the current-carrying capacity of busbars in suitable ambient conditions.
e & i Elektrotechnik... arrow_drop_down e & i Elektrotechnik und InformationstechnikArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00502-020-00847-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert e & i Elektrotechnik... arrow_drop_down e & i Elektrotechnik und InformationstechnikArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00502-020-00847-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Germany, DenmarkPublisher:Elsevier BV Soner Candas; Christoph Muschner; Stefanie Buchholz; Rasmus Bramstoft; Jonas van Ouwerkerk; Karlo Hainsch; Konstantin Löffler; Stephan Günther; Sarah Berendes; Stefanie Nguyen; Aparna Justin;Renewable & sustainable energy reviews 161, 112272 (2022). doi:10.1016/j.rser.2022.112272 special issue: "MODEX: energy system model comparisons through harmonized applications / Edited by Hans Christian Gils, Jochen Linßen, Dominik Möst, Christoph Weber" Published by Elsevier Science, Amsterdam [u.a.]
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefOnline Research Database In TechnologyArticle . 2022Data sources: Online Research Database In TechnologyPublikationsserver der RWTH Aachen UniversityArticle . 2022Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2022.112272&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 34 citations 34 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefOnline Research Database In TechnologyArticle . 2022Data sources: Online Research Database In TechnologyPublikationsserver der RWTH Aachen UniversityArticle . 2022Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2022.112272&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Springer Science and Business Media LLC Authors: Matthias Thewes; Andreas Kolbeck; Markus Schwaderlapp; Philipp Ad omeit;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1365/s38313-012-0139-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1365/s38313-012-0139-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Institute of Electrical and Electronics Engineers (IEEE) Jiarong Li; Jin Lin; Philipp-Matthias Heuser; Heidi Ursula Heinrichs; Jinyu Xiao; Feng Liu; Martin Robinius; Yonghua Song; Detlef Stolten;Converting wind energy into ammonia (WtA) has been recognized as a promising pathway to produce green ammonia compared with traditional coal-based technologies. As the key part of WtA, Power-to-Ammonia (PtA) has great potential to facilitate the usage of wind generation. This paper proposes a co-planning approach for regional wind resources-based ammonia industry and the electric network (EN). To this end, PtA is first modeled as a flexible power load of power systems with spatial and temporal constraints on hydrogen supply chains (HSC). Then a novel co-planning model of WtA and EN is established to optimize the WtA configuration and the EN expansion. An alternating direction method of multipliers (ADMM) based algorithm is introduced to effectively solve this model. Real data of Inner Mongolia Province in China is adopted to verify the effectiveness and significance of the proposed approach. It is shown that the siting and operation flexibility of PtA with HSC can reduce the expansion burden of EN. The co-planning of WtA and EN can significantly enhance wind power utilization and reduce total investment costs. Furthermore, feasibility analysis on WtA in comparison with coal-to-ammonia (CtA) and ultra-high voltage transmission (UHV) provides helpful guidelines for the realization of WtA.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2022 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2021.3089365&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2022 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2021.3089365&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Daniel Wölki; Christoph van Treeck; Carolin Schmidt; Jérôme Frisch; Henning Metzmacher;Abstract This paper presents a system for the real-time analysis of human skin temperatures using sensor fusion and thermal image recognition. The aim of this work is to introduce an open and extensible framework that supports multi-modal sensor input with a focus on merging optical data and conventional sensor input for advanced thermal comfort analysis. The goal is to obtain a more complete representation of a person in various indoor climatic conditions. Methods proposed in this paper are important for research and industrial applications with respect to the real-time analysis of thermal comfort and human physiology in indoor climates. Although this paper mainly focuses on the analysis of skin temperatures, the proposed architecture is conceived for being extendable for statistical evaluation and numerical models. Arbitrary software components can be integrated as data sources and sinks by means of a conventional TCP/IP networking interface. Main contributions of this paper are a general architecture for the fusion of multi-modal sensor input using a centralized data server structure, a method for combining depth-map based face and pose tracking with a thermal imaging device and preliminary studies demonstrating the behavior and validity of the system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2017.09.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu96 citations 96 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2017.09.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2018 GermanyPublisher:RWTH Aachen University Authors: Bhola, M.; Sreeharsha, R.; Kumar, N.;11th International Fluid Power Conference, 11. IFK, Aachen, Germany, 19 Mar 2018 - 21 Mar 2018; Aachen : [Mainz], 72-81 (2018). Published by [Mainz], Aachen
Publikationsserver d... arrow_drop_down Publikationsserver der RWTH Aachen UniversityConference object . 2018Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18154/rwth-2018-224370&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Publikationsserver d... arrow_drop_down Publikationsserver der RWTH Aachen UniversityConference object . 2018Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18154/rwth-2018-224370&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Abdul Azem; Paul Mathis; Frederik Stute; Martin Hoffmann; Dirk Müller; Georg Hetzel;Abstract In this paper, a free running centrifugal fan inside a rectangular duct is investigated via measurements and CFD. A rectangular cuboid-shaped body is mounted downstream of the free running centrifugal fan, covering most of the space next to the fan wheel, leaving only a small channel for the air near the duct walls to pass through. We call this cube a ‘pressure regain unit’ (PRU). The cube increases the fan efficiency by reducing vortices downstream of the fan and tranfering a larger part of the kinetic energy into static pressure. Experiments are conducted with several PRU geometry variations. The measurements show that an increase in efficiency of 10% is possible compared to a free running fan in an empty duct. Subsequently, a numerical analysis is performed to analyze the effect which leads to efficiency increase. Comparing the installation with and without PRU shows that the main difference is a recirculation area behind the fan wheel when no PRU is installed. Higher level of turbulence and strong shear layers in the empty duct cause efficiency losses. The turbulence level and the amount of shear layers are reduced by the PRU. Both experimental and numerical data show an energy saving potential by optimizing the downstream region of the free running centrifugal fan.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2018.01.041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2018.01.041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2011 FrancePublisher:Springer Science and Business Media LLC Authors: Lichtfouse, Eric; Schwarzbauer, Jan; Robert, Didier;This article is both an essay to propose social chemistry as a new scientific discipline and a preface of the books Environmental Chemistry for a Sustainable World. Environmental chemistry is a fast emerging discipline aiming at the understanding the fate of pollutants in ecosystems and at designing novel processes that are safe for ecosystems. Past pollution should be cleaned, and future pollution should be predicted and avoided (Lichtfouse et al. 2005a). Such advices are still not applied by humans as demonstrated by the Fukushima nuclear event and global warming. Human errors are repeatable. We therefore suggest a possible solution, which involves bridging chemistry and society by integrating social sciences in chemical research. In particular, citizen discourse analysis should be useful to design chemicals that are both innovative and accepted by society. Then, we present the recent success of environmental chemistry through the foundation of the Association of Chemistry and the Environment; the increase in the impact factor of Environmental Chemistry Letters from 0.814 in 2006 to 2.109 in 2009; and over 35,000 chapter downloads of the book Environmental Chemistry. Lastly, we highlight major topics of the new book series Environmental Chemistry for a Sustainable World (Lichtfouse et al. 2011a, b). The two first volumes are entitled Nanotechnology and Health Risk, and Remediation of Air and Water Pollution.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Environmental Chemistry LettersArticle . 2011 . Peer-reviewedLicense: Springer TDMData sources: CrossrefHAL - Université de Bourgogne (HAL-uB)Other literature type . 2012Data sources: HAL - Université de Bourgogne (HAL-uB)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10311-011-0333-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 7 citations 7 popularity Average influence Average impulse Average Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Environmental Chemistry LettersArticle . 2011 . Peer-reviewedLicense: Springer TDMData sources: CrossrefHAL - Université de Bourgogne (HAL-uB)Other literature type . 2012Data sources: HAL - Université de Bourgogne (HAL-uB)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10311-011-0333-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu