- home
- Advanced Search
- Energy Research
- 2021-2025
- DE
- AT
- TH
- RWTH Aachen University
- Energy Research
- 2021-2025
- DE
- AT
- TH
- RWTH Aachen University
Research data keyboard_double_arrow_right Dataset 2024Publisher:Zenodo Authors:Figgener, Jan;
Figgener, Jan
Figgener, Jan in OpenAIREHaberschusz, David;
Haberschusz, David
Haberschusz, David in OpenAIREWessels, Oliver;
Wessels, Oliver
Wessels, Oliver in OpenAIREKairies, Kai-Philipp;
+3 AuthorsKairies, Kai-Philipp
Kairies, Kai-Philipp in OpenAIREFiggener, Jan;
Figgener, Jan
Figgener, Jan in OpenAIREHaberschusz, David;
Haberschusz, David
Haberschusz, David in OpenAIREWessels, Oliver;
Wessels, Oliver
Wessels, Oliver in OpenAIREKairies, Kai-Philipp;
Kairies, Kai-Philipp
Kairies, Kai-Philipp in OpenAIREBors, Jakob;
Bors, Jakob
Bors, Jakob in OpenAIREvan Ouwerkerk, Jonas;
van Ouwerkerk, Jonas
van Ouwerkerk, Jonas in OpenAIRESauer, Dirk Uwe;
Sauer, Dirk Uwe
Sauer, Dirk Uwe in OpenAIREThe dataset accompanies the Nature Energy publication by Figgener et al. (2024), Multi-year field measurements of home storage systems and their use in capacity estimation, DOI 10.1038/s41560-024-01620-9. In addition, we use the dataset in Figgener et al. (2024), Degradation mode estimation using reconstructed open circuit voltage curves from multi-year home storage field data, DOI 10.48550/arXiv.2411.08025 The ISEA / CARL of RWTH Aachen University measured 21 private home storage systems in Germany over up to eight years from 2015 to 2022. All these storage systems are combined with residential photovoltaic systems to increase self-consumption. The measured quantities published are system-level battery current, voltage, power, battery pack housing temperature, and room temperature. The sample rate is one second. The dataset consists of 106 system years, 14 billion data points, and 1,270 monthly files stored in 21 system folders. Use the data as follows:1. Download the data (Data_ID_01.zip to Data_ID_21.zip) and the belonging repository (Metadata_and_Code.zip) 2. Uncompress the files so that the uncompressed folders have the same name as the .zip files. 3. Copy all data folders in folder "Metadata_and_Code/00_Data/01_Operational_Data". Read and execute the file "StartUp_Read_and_Execute.m" and stay in this folder for any script you execute. In addition, a detailed description of the dataset and how to use it can be found in the supplementary information of the publication.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.12091223&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.12091223&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Funded by:[no funder available]Authors:Jana Gerta Backes;
Jana Gerta Backes
Jana Gerta Backes in OpenAIRELaura Schmidt;
Laura Schmidt
Laura Schmidt in OpenAIREJan Bielak;
Jan Bielak
Jan Bielak in OpenAIREPamela Del Rosario;
+2 AuthorsPamela Del Rosario
Pamela Del Rosario in OpenAIREJana Gerta Backes;
Jana Gerta Backes
Jana Gerta Backes in OpenAIRELaura Schmidt;
Laura Schmidt
Laura Schmidt in OpenAIREJan Bielak;
Jan Bielak
Jan Bielak in OpenAIREPamela Del Rosario;
Pamela Del Rosario
Pamela Del Rosario in OpenAIREMarzia Traverso;
Marzia Traverso
Marzia Traverso in OpenAIREMartin Claßen;
Martin Claßen
Martin Claßen in OpenAIREDue to climate change and current efforts to reduce emissions in the construction sector, this study evaluates and discusses the results of a comparative cradle-to-grave Life Cycle Assessment (LCA), with a main focus on Global Warming Potential for functionally equivalent carbon-reinforced concrete (CRC) and steel-reinforced concrete (SRC) façade panels for the first time. The novelty of this study is the focus on construction waste and, in particular, the worst-case application of non-recycled construction waste. The use of CRC requires a lower concrete thickness than SRC because the carbon fiber reinforcement does not corrode, in contrast to steel reinforcement. Façade panels of the same geometrical dimensions and structural performance were defined as functional units (FU). Assuming an End-of-Life (EoL) scenario of 50% landfill and 50% recycling, the Global Warming Potential (GWP, given in CO2 equivalent (CO2e)) of the CRC façade (411–496 kg CO2e) is shown to perform better than or equal to the SRC façade (492 kg CO2e). Changing the assumption of CRC to a worst-case scenario, going fully to landfill and not being recycled (single life cycle), turns the GWP results in favor of the SRC façade. Assuming a 50-year service life for the SRC façade panel and relativizing the emissions to the years, the more durable CRC façade performs much better. Finally, depending on the system boundary, the assumed EoL and lifetime, CRC can represent a lower-emission alternative to a functionally equivalent component made of SRC. The most important and “novel” result in this study, which also leads to future research opportunities, is that delicate adjustments (especially concerning EoL scenarios and expected service life) can lead to completely different recommendations for decision-makers. Only by combining the knowledge of LCA experts, structural engineers, and builders optimal decisions can be made regarding sustainable materials and building components.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151511548&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151511548&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2024Publisher:UK Zhende Publishing Limited Company doi: 10.24084/repqj17.210
This studypresentsan investigation of the annual cooling load in buildings by analyzingthe influenceof parameters of phase change materials(PCMs)integrated into the envelopes of the buildings. For the use cases, well-knownCases 600 and 650 of ASHRAE Standard 140were considered. Wemodified vertical walls of the use cases incorporating various PCM layers. The impact of variousfactors of PCM layers in four climates was assessed. These factors were the thickness, melting temperature, latent heat of fusion, density, specific heat capacity, and thermal conductivity. The results showed that the variation of the density, latent heat of fusion, and the thickness of PCMs had a high impact on the reduction ofthe annual cooling energy. However, the level of thickness, latent heat of fusion, and density stuck inthe maximum value, whereas the level of thermal conductivity and specific heat capacity stuckinthe minimum value. Generally, during the globaland multi-objective optimization problems, theseparameters may beexcludedfrom the variable settingsexcept for thickness whereby the penalty function can be set. The general thermodynamic pattern of the results concludes that buildings with lightweight envelopes require as much heat storage as possiblepreventing it from theflow ofheat to the surrounding.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.24084/repqj17.210&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.24084/repqj17.210&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Royal Society of Chemistry (RSC) Funded by:[no funder available]Authors: Schwarz, Florian; Larenz, Elizabeth;Mechler, Anna Katharina;
Mechler, Anna Katharina
Mechler, Anna Katharina in OpenAIRECorrection for ‘Sustainable electrochemical synthesis of dry formaldehyde from anhydrous methanol’ by Florian Schwarz et al., Green Chem., 2024, 26, 4645–4652, https://doi.org/10.1039/D3GC04978G.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4gc90078b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4gc90078b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Springer Science and Business Media LLC Authors:Rapp, Tobias;
Rapp, Tobias
Rapp, Tobias in OpenAIREJacobs, Georg;
Bosse, Dennis; Schröder, Tim; +5 AuthorsJacobs, Georg
Jacobs, Georg in OpenAIRERapp, Tobias;
Rapp, Tobias
Rapp, Tobias in OpenAIREJacobs, Georg;
Bosse, Dennis; Schröder, Tim; Starzmann, Ralf;Jacobs, Georg
Jacobs, Georg in OpenAIREKaufmann, Nicholas;
Grassow, Matthias; Scholl, Stefan;Kaufmann, Nicholas
Kaufmann, Nicholas in OpenAIREZweiffel, Maximilian;
Zweiffel, Maximilian
Zweiffel, Maximilian in OpenAIREAbstractAs a regenerative energy source, tidal energy can significantly contribute to greenhouse gas reduction, even though the potentially achievable energy output is lower than that of wind or solar energy. The decisive advantage of tidal turbines lies in the simply and reliably predictable energy output. However, their commercial use has so far been impeded by the fact that on the one hand complex mechanical systems are required to convert energy of tidal currents and on the other hand multi-axial loading conditions caused by turbulent ocean currents act on the turbine. For this reason, field tests on prototypes are an essential part of the development strategy to ensure operational reliability. However, in-field tests do not allow for accelerated lifetime testing, so that test bench experiments are becoming an increasingly important alternative. Today, established procedures for testing the turbines main bearings and gearing system are already available, both for setting up the required test configuration and for determining the corresponding test loads. However, the use of advanced calculation methods, such as the finite element method for stress calculation, requires a deep understanding of the examined components and hinders the transfer of the approaches to other components.To simplify the process of test loads determination, a general methodology is presented, which relies exclusively on standardized empirical calculation rules. Doing this, fatigue equivalent loads can be determined for any component in a simple process. It was shown that the achieved reduction in complexity opens further potential for test acceleration, since several components can be tested simultaneously.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10010-021-00456-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10010-021-00456-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Funded by:[no funder available]Authors: O. Hatzfeld; Jochen Ströhle; Viktor Scherer;Stefan Pielsticker;
+5 AuthorsStefan Pielsticker
Stefan Pielsticker in OpenAIREO. Hatzfeld; Jochen Ströhle; Viktor Scherer;Stefan Pielsticker;
C. Ontyd;Stefan Pielsticker
Stefan Pielsticker in OpenAIREReinhold Kneer;
Reinhold Kneer
Reinhold Kneer in OpenAIREBernd Epple;
Bernd Epple
Bernd Epple in OpenAIREMartin Schiemann;
Coskun Yildiz;Martin Schiemann
Martin Schiemann in OpenAIREAbstract A thermogravimetric analyzer (TGA), a fluidized bed reactor (FBR) and a drop tube reactor (DTR) are used to study the effect of reactor type, heating rate and temperature on the pyrolysis of pulverized walnut shell particles in N2 and in CO2. These setups cover a temperature range of 400–1300 K with heating rates of 10−1 to 105 K s−1. The single first-order model in combination with an Arrhenius approach is used to describe the pyrolysis reaction. Derived activation energies for all setups show similar values ( E a , TGA = 71.96 kJ mol−1, E a , FBR = 68.60 kJ mol−1 and E a , DTR = 60.83 kJ mol−1), while an increase in the reactor temperature tend to lower the activation energy. Pyrolysis gas compositions in FBR and DTR reveal consistent trends towards lower H2O and higher CO contents with increasing reactor temperature. To evaluate the impact of CO2 on the solid conversion, TGA measurements in CO2 are used to determine gasification kinetics ( E a , g = 214.1 kJ mol−1, A g = 71.96 s−1). CFD simulations using these kinetics in CO2 drop tube experiments let assume that the changed thermophysical properties of the gas and not the gasification reaction lead to the observed stronger conversion in CO2 compared to N2.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2020.119313&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2020.119313&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:IOP Publishing Authors: Thomas Storek; Alexander Kümpel;Dirk Müller;
Jonathan Kriwet;Dirk Müller
Dirk Müller in OpenAIREAbstract The integration of renewable energy sources into building energy systems and the progressive coupling between the thermal and electrical domains makes the analysis of these systems increasingly complex. At the same time, however, more and more building monitoring data is being collected. The manual evaluation of this data is time-consuming and requires expert knowledge. Hence, there is a strong need for tools that enable the automatic knowledge extraction from these huge data sets to support system integrators and favor the development of smart energy services, e.g., predictive maintenance. One crucial step in knowledge extraction is the detection of change points and hidden states in measurements. In this work, we present a tool for automated detection of hidden operation modes based on multivariate time series data deploying motif-aware state assignment (MASA). The tool is evaluated utilizing measurements of a heat pump and compared to two baseline algorithms, namely k-Means and k-Medoids. MASA performs particularly well on noisy data, where it shows only a small deviation in the number of detected change points compared to the ground truth with up to 77% accuracy. Furthermore, it almost always outperforms the baseline algorithms, which in turn require extensive preprocessing.
Journal of Physics C... arrow_drop_down Journal of Physics Conference SeriesArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/2042/1/012071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Physics C... arrow_drop_down Journal of Physics Conference SeriesArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/2042/1/012071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors:Hannes Hobbie;
Hannes Hobbie
Hannes Hobbie in OpenAIREJonas Mehlem;
Jonas Mehlem
Jonas Mehlem in OpenAIREChristina Wolff;
Christina Wolff
Christina Wolff in OpenAIRELukas Weber;
+3 AuthorsLukas Weber
Lukas Weber in OpenAIREHannes Hobbie;
Hannes Hobbie
Hannes Hobbie in OpenAIREJonas Mehlem;
Jonas Mehlem
Jonas Mehlem in OpenAIREChristina Wolff;
Christina Wolff
Christina Wolff in OpenAIRELukas Weber;
Franziska Flachsbarth;Lukas Weber
Lukas Weber in OpenAIREDominik Möst;
Dominik Möst
Dominik Möst in OpenAIREAlbert Moser;
Albert Moser
Albert Moser in OpenAIRERenewable & sustainable energy reviews 159, 112163 (2022). doi:10.1016/j.rser.2022.112163 special issue: "MODEX: energy system model comparisons through harmonized applications / Edited by Hans-Christian Gils, Christoph Weber, Dominik Möst, Jochen Linßen" Published by Elsevier Science, Amsterdam [u.a.]
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2022.112163&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2022.112163&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors:Karsten Geuder;
Sebastian Klick;Karsten Geuder
Karsten Geuder in OpenAIREPhilipp Finster;
Philipp Finster
Philipp Finster in OpenAIREKarl Martin Graff;
+4 AuthorsKarl Martin Graff
Karl Martin Graff in OpenAIREKarsten Geuder;
Sebastian Klick;Karsten Geuder
Karsten Geuder in OpenAIREPhilipp Finster;
Philipp Finster
Philipp Finster in OpenAIREKarl Martin Graff;
Martin Winter;Karl Martin Graff
Karl Martin Graff in OpenAIRESascha Nowak;
Hans Jürgen Seifert;Sascha Nowak
Sascha Nowak in OpenAIRECarlos Ziebert;
Carlos Ziebert
Carlos Ziebert in OpenAIREThe purpose of this study was to investigate the calendar aging of lithium-ion batteries by using both open circuit and floating current measurements. Existing degradation studies usually focus on commercial cells. The initial electrolyte composition and formation protocol for these cells is often unknown. This study investigates the role of electrolyte additives, specifically, vinylene carbonate (VC) and fluoroethylene carbonate (FEC), in the aging process of lithium-ion batteries. The results showed that self-discharge plays a significant role in determining the severity of aging for cells without additives. Interestingly, the aging was less severe for the cells without additives as they deviated more from their original storage state of charge. It was also observed that the addition of VC and FEC had an effect on the formation and stability of the solid electrolyte interphase (SEI) layer on the surface of the carbonaceous anode. By gaining a better understanding of the aging processes and the effects of different electrolyte additives, we can improve the safety and durability of lithium-ion batteries, which is critical for their widespread adoption in various applications.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries10080275&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries10080275&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Embargo end date: 01 Jul 2021 Switzerland, SwitzerlandPublisher:Royal Society of Chemistry (RSC) Authors:Marvin Bachmann;
Marvin Bachmann
Marvin Bachmann in OpenAIREBenedikt Winter;
Benedikt Winter;Benedikt Winter
Benedikt Winter in OpenAIREArne Kätelhön;
+5 AuthorsArne Kätelhön
Arne Kätelhön in OpenAIREMarvin Bachmann;
Marvin Bachmann
Marvin Bachmann in OpenAIREBenedikt Winter;
Benedikt Winter;Benedikt Winter
Benedikt Winter in OpenAIREArne Kätelhön;
Arne Kätelhön
Arne Kätelhön in OpenAIRELeonard Jan Müller;
Leonard Jan Müller
Leonard Jan Müller in OpenAIRERaoul Meys;
Raoul Meys
Raoul Meys in OpenAIREAndré Bardow;
André Bardow; André Bardow;André Bardow
André Bardow in OpenAIREIn this study, we explore synergetic effects between biomass and CO2 utilization to reduce both GHG emissions and renewable resource use.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0fd00134a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0fd00134a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu