- home
- Advanced Search
- Energy Research
- Open Access
- Open Source
- 13. Climate action
- 12. Responsible consumption
- DE
- AU
- Energy Research
- Open Access
- Open Source
- 13. Climate action
- 12. Responsible consumption
- DE
- AU
Research data keyboard_double_arrow_right Dataset 2023Embargo end date: 15 Sep 2023Publisher:Dryad Authors: Marzinelli, Ezequiel;# Heatwave grazing kelp microbes sequences [https://doi.org/10.5061/dryad.vhhmgqns7](https://doi.org/10.5061/dryad.vhhmgqns7) We experimentally simulated ocean warming and marine heatwaves (MHWs) to quantify effects on two dominant temperate seaweed species and their microbiota, as well as grazing by a tropical herbivore. The kelp *Ecklonia radiata*’s microbiota in sustained warming and MHW treatments were enriched with microorganisms associated with seaweed disease and tissue degradation. In contrast, the fucoid *Sargassum linearifolium*’s microbiota was unaffected by temperature\*.\* Consumption by the tropical sea-urchin *Tripneustes gratilla* was greater on *Ecklonia* where the microbiota had been altered by higher temperatures, while *Sargassum*’s consumption was unaffected. Elemental traits (carbon, nitrogen), chemical defences (phenolics) and tissue bleaching of both seaweeds were generally unaffected by temperature. ## Description of the data and file structure Juvenile *Ecklonia radiata* (length \~15cm; N=140) and *Sargassum linearifolium* (length \~10cm; N=140) were collected haphazardly (>2m apart) at Cronulla rocky reef, Sydney, Australia. We exposed seaweeds to one of four temperature profiles over seven weeks: Ambient, Warming, marine heatwave MHW, MHW variable. After seven weeks of exposure to temperature treatments, a subset of individuals from each species/temperature treatment (*Ecklonia*: n=4-6; *Sargassum*: n=3) were randomly selected. Sterile cotton swabs were used to sample microbiota on algal surfaces, with the same area (20cm2) and swabbing time (30s) sampled for all individuals. Swabs were immediately stored in liquid nitrogen and transported to the University of New South Wales (UNSW, Sydney) and kept at -80°C until DNA extraction. DNA was extracted from swabs using the DNeasy PowerSoil Kit (Qiagen) and amplified using Polymerase Chain Reaction (PCR) primers 341F (5’-CCTACGGGNGGCWGCAG-3’) and 785R (5’-GACTACHVGGGTATCTAATCC-3’), targeting the 16S rRNA gene V3-V4 regions (bacteria and archaea), and were sequenced with a 2x250bp MiSeq reagent kit v2 on the Illumina MiSeq2000 Platform. The range-expansion of tropical herbivores due to ocean warming can profoundly alter temperate reef communities by overgrazing the seaweed forests that underpin them. Such ecological interactions may be mediated by changes to seaweed-associated microbiota in response to warming, but empirical evidence demonstrating this is rare. We experimentally simulated ocean warming and marine heatwaves (MHWs) to quantify effects on two dominant temperate seaweed species and their microbiota, as well as grazing by a tropical herbivore. The kelp Ecklonia radiata’s microbiotain sustained warming and MHW treatments were enriched with microorganisms associated with seaweed disease and tissue degradation. In contrast, the fucoid Sargassum linearifolium’s microbiota was unaffected by temperature. Consumption by the tropical sea-urchin Tripneustes gratilla was greater on Ecklonia where the microbiota had been altered by higher temperatures, while Sargassum’s consumption was unaffected. Elemental traits (carbon, nitrogen), chemical defences (phenolics) and tissue bleaching of both seaweeds were generally unaffected by temperature. Effects of warming and MHWs on seaweed holobionts (host plus its microbiota) are likely species-specific. The effect of increased temperature on Ecklonia’s microbiota and subsequent increased consumption suggest that changes to kelp microbiota may underpin kelp-herbivore interactions, providing novel insights into potential mechanisms driving change in species’ interactions in warming oceans.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.vhhmgqns7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 1visibility views 1 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.vhhmgqns7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 09 Jun 2022Publisher:Dryad Authors: Liu, Yanjie; Jin, Huifei; Chang, Liang; van Kleunen, Mark;Although many studies have tested the direct effects of drought on alien plant invasion, less is known about whether drought affects alien plant invasion indirectly via interactions of plants with other groups of organisms such as soil mesofauna. To test for such indirect effects, we grew single plants of nine naturalized alien target species in pot-mesocosms with a community of five native grassland species under four combinations of two drought (well-watered vs drought) and two soil-mesofauna-inoculation (with vs without) treatments. We found that drought decreased the absolute and the relative biomass production of the alien plants, and thus reduced their competitive strength in the native community. Drought also decreased the abundance of soil mesofauna, particularly soil mites, but did not affect the abundance and richness of soil herbivores. Soil-fauna inoculation did not affect biomass of the alien plants but increased biomass of the native plant community, and thereby decreased the relative biomass production of the alien plants. This increased invasion resistance due to soil fauna, however, tended (p = 0.09) to be stronger for plants growing under well-watered conditions than under drought. Synthesis. Our multispecies experiment thus shows that soil fauna might help native communities to resist alien plant invasions, but that this effect might be weakened under drought. In other words, soil mesofauna may buffer the negative effects of drought on alien plant invasions. The file archives 'SoilFauna_Drought_PlantInvasion_Date_YJL.tar' include three dataset, one named 'SoilFauna_Drought_PlantInvasion.csv' (Biomass data), one named 'SoilFaunaData.csv' (Soil Fauna data), and one named 'SoilNitrogenData.csv' (soil nitrogen data). The file 'SoilFauna_Drought_PlantInvasion.Rmd' is the R script, and its output is 'SoilFauna_Drought_PlantInvasion.html'. All data were collected from a greenhouse expeirment at the Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.tmpg4f50d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 12visibility views 12 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.tmpg4f50d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Lorenz, Stephan; Jungclaus, Johann; Schmidt, Hauke; Haak, Helmuth; Reick, Christian; Schupfner, Martin; Wachsmann, Fabian; Gayler, Veronika; de Vrese, Philipp; Raddatz, Thomas; Mauritsen, Thorsten; von Storch, Jin-Song; Brovkin, Victor; Claussen, Martin; Crueger, Traute; Fiedler, Stephanie; Hagemann, Stefan; Hohenegger, Cathy; Jahns, Thomas; Kinne, Stefan; Kornblueh, Luis; Marotzke, Jochem; Mikolajewicz, Uwe; Modali, Kameswarrao; Müller, Wolfgang; Nabel, Julia; Notz, Dirk; Pincus, Robert; Pohlmann, Holger; Rast, Sebastian; Schnur, Reiner; Schulzweida, Uwe; Six, Katharina; Stevens, Bjorn; Roeckner, Erich; Wieners, Karl-Hermann; Esch, Monika; Giorgetta, Marco; Ilyina, Tatiana;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.CMIP.MPI-M.ICON-ESM-LR' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The ICON-ESM-LR climate model, released in 2017, includes the following components: aerosol: none, prescribed MACv2-SP, atmos: ICON-A (icosahedral/triangles; 160 km; 47 levels; top level 80 km), land: JSBACH4.20, landIce: none/prescribed, ocean: ICON-O (icosahedral/triangles; 40 km; 40 levels; top grid cell 0-12 m), ocnBgchem: HAMOCC, seaIce: unnamed (thermodynamic (Semtner zero-layer) dynamic (Hibler 79) sea ice model). The model was run by the Max Planck Institute for Meteorology, Hamburg 20146, Germany (MPI-M) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, land: 250 km, landIce: none, ocean: 50 km, ocnBgchem: 50 km, seaIce: 50 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmmxiel&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmmxiel&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:BonaRes Data Centre (Leibniz Centre for Agricultural Landscape Research (ZALF)) B��necke, Eric; Breitsameter, Laura; Br��ggeman, Nicolas; Feike, Till; Kage, Henning; Kersebaum, Kurt-Christian; St��tzel, Hartmut;This data set (TRIAL_SITES) is the starting point of a larger data set that contains data and information used in the study ���Yield development of German winter wheat between 1958 and 2015��� in the Project ���Data-Meta Analysis to assess the productivity development of cultivated plants��� funded by the DFG. This starting table contains geographical and environmental information about the experimental sites at which the N-fertilisation experiments were conducted. Amon other topics, this data set can be mainly used to analyse the impact of climatic changes on the development of winter wheat in Germany. The data set comprises following data: - Winter wheat (Triticum aestivum) yields and nitrogen application amounts from nitrogen fertilization experiments of variable duration (1-6 years) carried out at 43 locations across Germany, between 1958 and 2015, and found in 34 different sources in the literature. - The derived maximum yields (Ymax) and optimal nitrogen amounts (Nopt) from the nitrogen experiments, function coefficients, and statistics. - Geographical information (latitude, longitude, altitude) and other site specific information of the experimental sites (soil type, soil yield potential, mean annual temperature, mean annual precipitation, mean annual climatic water balance, soil climate region, cultivation region). - Processed phenological and climatic data for each experimental site.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20387/bonares-yg6f-k61b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20387/bonares-yg6f-k61b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:GFZ Data Services Authors: Jans, Yvonne; von Bloh, Werner; Schaphoff, Sibyll; Müller, Christoph;doi: 10.5880/pik.2020.001
LPJmL4 is a process-based model that simulates climate and land-use change impacts on the terrestrial biosphere, the water and carbon cycle and on agricultural production. The LPJmL4 model combines plant physiological relations, generalized empirically established functions and plant trait parameters. The model incorporates dynamic land use at the global scale and is also able to simulate the production of woody and herbaceous short-rotation bio-energy plantations. Grid cells may contain one or several types of natural or agricultural vegetation. A comprehensive description of the model is given by Schaphoff et al. (2018, http://doi.org/10.5194/gmd-2017-145). We here present an extended version of the LPJmL4 model code described and used by the publications in GMD: LPJmL4 - a dynamic global vegetation model with managed land: Part I – Model description and Part II – Model evaluation (Schaphoff et al. 2018, http://doi.org/10.5194/gmd-2017-145 and http://doi.org/10.5194/gmd-2017-146). Additional features of this version, including agricultural trees as a new cultivation type in LPJmL4, are described and used in Jans et al. (2020, HESS) The model code of LPJmL4 is programmed in C and can be run in parallel mode using MPI. Makefiles are provided for different platforms. Further informations on how to run LPJmL4 is given in the INSTALL file. Additionally to the publication a html documentation and man pages are provided. The model data presented here represent some standard LPJmL4 model results for the land surface described in Schaphoff et al. (2018 part I). Additionally, these results include agricultural trees (olives, non-citrus orchards, and cotton) implemented as a new cultivation type into LPJmL4. Standard results are evaluated in Schaphoff et al. (2018 part II). Results of cotton as a newly implemented agricultural tree are evaluated in Jans et al. (2020), HESSD. The data collection includes some key output variables made with the model setup described by Jans et al. (2020, HESS). Overall, data sets are resulting from 40 different simulations, where we combined 5 different GCMs (GFDL, HadGEM, IPSL, MIROC, NorESM) with 4 different RCPs (2p6, 4p5, 6p0, 8p5) without and with CO2 fertilization, respectively. The data cover the entire globe with a spatial resolution of 0.5° and temporal coverage from 1901-2011 on an annual basis for crop yields, absorbed photosynthetically active radiation and the water fluxes (irrigation, transpiration, evaporation,interception, blue and green evapotranspiration). Crop yields, and water fluxes are given for each crop functional type (CFT), respectively. Monthly data are provided for one carbon flux (net primary production) and the water fluxes transpiration, evaporation, interception, and runoff. The data are provided in one binary file for each variable and simulation. An overview of all variables and information on how data are stored within the binary files are given in the file inventory.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5880/pik.2020.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5880/pik.2020.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:Zenodo Authors: Pflüger, Mika; Gütschow, Johannes;Dataset containing all greenhouse gas emissions data submitted by countries under climate change convention (including CRF data) as published by the UNFCCC secretariat at 2020-10-25. {"references": ["UNSD Demographic Statistics, available at http://data.un.org", "The World Bank GDP data, available at https://data.worldbank.org/"]}
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4199622&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 242visibility views 242 download downloads 21 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4199622&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Schupfner, Martin; Wieners, Karl-Hermann; Wachsmann, Fabian; Steger, Christian; +47 AuthorsSchupfner, Martin; Wieners, Karl-Hermann; Wachsmann, Fabian; Steger, Christian; Bittner, Matthias; Jungclaus, Johann; Früh, Barbara; Pankatz, Klaus; Giorgetta, Marco; Reick, Christian; Legutke, Stephanie; Esch, Monika; Gayler, Veronika; Haak, Helmuth; de Vrese, Philipp; Raddatz, Thomas; Mauritsen, Thorsten; von Storch, Jin-Song; Behrens, Jörg; Brovkin, Victor; Claussen, Martin; Crueger, Traute; Fast, Irina; Fiedler, Stephanie; Hagemann, Stefan; Hohenegger, Cathy; Jahns, Thomas; Kloster, Silvia; Kinne, Stefan; Lasslop, Gitta; Kornblueh, Luis; Marotzke, Jochem; Matei, Daniela; Meraner, Katharina; Mikolajewicz, Uwe; Modali, Kameswarrao; Müller, Wolfgang; Nabel, Julia; Notz, Dirk; Peters-von Gehlen, Karsten; Pincus, Robert; Pohlmann, Holger; Pongratz, Julia; Rast, Sebastian; Schmidt, Hauke; Schnur, Reiner; Schulzweida, Uwe; Six, Katharina; Stevens, Bjorn; Voigt, Aiko; Roeckner, Erich;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.DKRZ.MPI-ESM1-2-HR.ssp245' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The MPI-ESM1.2-HR climate model, released in 2017, includes the following components: aerosol: none, prescribed MACv2-SP, atmos: ECHAM6.3 (spectral T127; 384 x 192 longitude/latitude; 95 levels; top level 0.01 hPa), land: JSBACH3.20, landIce: none/prescribed, ocean: MPIOM1.63 (tripolar TP04, approximately 0.4deg; 802 x 404 longitude/latitude; 40 levels; top grid cell 0-12 m), ocnBgchem: HAMOCC6, seaIce: unnamed (thermodynamic (Semtner zero-layer) dynamic (Hibler 79) sea ice model). The model was run by the Deutsches Klimarechenzentrum, Hamburg 20146, Germany (DKRZ) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, land: 100 km, landIce: none, ocean: 50 km, ocnBgchem: 50 km, seaIce: 50 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spdkme2s245&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spdkme2s245&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Jungclaus, Johann; Mikolajewicz, Uwe; Kapsch, Marie-Luise; D'Agostino, Roberta; +46 AuthorsJungclaus, Johann; Mikolajewicz, Uwe; Kapsch, Marie-Luise; D'Agostino, Roberta; Wieners, Karl-Hermann; Giorgetta, Marco; Reick, Christian; Esch, Monika; Bittner, Matthias; Legutke, Stephanie; Schupfner, Martin; Wachsmann, Fabian; Gayler, Veronika; Haak, Helmuth; de Vrese, Philipp; Raddatz, Thomas; Mauritsen, Thorsten; von Storch, Jin-Song; Behrens, Jörg; Brovkin, Victor; Claussen, Martin; Crueger, Traute; Fast, Irina; Fiedler, Stephanie; Hagemann, Stefan; Hohenegger, Cathy; Jahns, Thomas; Kloster, Silvia; Kinne, Stefan; Lasslop, Gitta; Kornblueh, Luis; Marotzke, Jochem; Matei, Daniela; Meraner, Katharina; Modali, Kameswarrao; Müller, Wolfgang; Nabel, Julia; Notz, Dirk; Peters-von Gehlen, Karsten; Pincus, Robert; Pohlmann, Holger; Pongratz, Julia; Rast, Sebastian; Schmidt, Hauke; Schnur, Reiner; Schulzweida, Uwe; Six, Katharina; Stevens, Bjorn; Voigt, Aiko; Roeckner, Erich;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.PMIP.MPI-M.MPI-ESM1-2-LR' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The MPI-ESM1.2-LR climate model, released in 2017, includes the following components: aerosol: none, prescribed MACv2-SP, atmos: ECHAM6.3 (spectral T63; 192 x 96 longitude/latitude; 47 levels; top level 0.01 hPa), land: JSBACH3.20, landIce: none/prescribed, ocean: MPIOM1.63 (bipolar GR1.5, approximately 1.5deg; 256 x 220 longitude/latitude; 40 levels; top grid cell 0-12 m), ocnBgchem: HAMOCC6, seaIce: unnamed (thermodynamic (Semtner zero-layer) dynamic (Hibler 79) sea ice model). The model was run by the Max Planck Institute for Meteorology, Hamburg 20146, Germany (MPI-M) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, land: 250 km, landIce: none, ocean: 250 km, ocnBgchem: 250 km, seaIce: 250 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6pmmxml2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6pmmxml2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Funded by:, NSF | Dissertation Research: Fu..., NSF | Collaborative Research/LT...[no funder available] ,NSF| Dissertation Research: Functional trait diversity and community assembly of trees and seedlings during tropical forest succession ,NSF| Collaborative Research/LTREB Renewal: Successional Pathways and Rates of Change in Tropical Forests of Brazil, Costa Rica and MexicoAuthors: Baumbach, Lukas; Warren, Dan; Yousefpour, Rasoul; Hanewinkel, Marc;Supplementary data underlying the main figures presented in the publication "Climate change may induce connectivity loss and mountaintop extinction in Central American forests"
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4836269&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 49visibility views 49 download downloads 9 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4836269&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Ziehn, Tilo; Chamberlain, Matthew; Lenton, Andrew; Law, Rachel; Bodman, Roger; Dix, Martin; Wang, Yingping; Dobrohotoff, Peter; Srbinovsky, Jhan; Stevens, Lauren; Vohralik, Peter; Mackallah, Chloe; Sullivan, Arnold; O'Farrell, Siobhan; Druken, Kelsey;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.CSIRO.ACCESS-ESM1-5.ssp370' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The Australian Community Climate and Earth System Simulator Earth System Model Version 1.5 climate model, released in 2019, includes the following components: aerosol: CLASSIC (v1.0), atmos: HadGAM2 (r1.1, N96; 192 x 145 longitude/latitude; 38 levels; top level 39255 m), land: CABLE2.4, ocean: ACCESS-OM2 (MOM5, tripolar primarily 1deg; 360 x 300 longitude/latitude; 50 levels; top grid cell 0-10 m), ocnBgchem: WOMBAT (same grid as ocean), seaIce: CICE4.1 (same grid as ocean). The model was run by the Commonwealth Scientific and Industrial Research Organisation, Aspendale, Victoria 3195, Australia (CSIRO) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, land: 250 km, ocean: 100 km, ocnBgchem: 100 km, seaIce: 100 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spcsaes370&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spcsaes370&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2023Embargo end date: 15 Sep 2023Publisher:Dryad Authors: Marzinelli, Ezequiel;# Heatwave grazing kelp microbes sequences [https://doi.org/10.5061/dryad.vhhmgqns7](https://doi.org/10.5061/dryad.vhhmgqns7) We experimentally simulated ocean warming and marine heatwaves (MHWs) to quantify effects on two dominant temperate seaweed species and their microbiota, as well as grazing by a tropical herbivore. The kelp *Ecklonia radiata*’s microbiota in sustained warming and MHW treatments were enriched with microorganisms associated with seaweed disease and tissue degradation. In contrast, the fucoid *Sargassum linearifolium*’s microbiota was unaffected by temperature\*.\* Consumption by the tropical sea-urchin *Tripneustes gratilla* was greater on *Ecklonia* where the microbiota had been altered by higher temperatures, while *Sargassum*’s consumption was unaffected. Elemental traits (carbon, nitrogen), chemical defences (phenolics) and tissue bleaching of both seaweeds were generally unaffected by temperature. ## Description of the data and file structure Juvenile *Ecklonia radiata* (length \~15cm; N=140) and *Sargassum linearifolium* (length \~10cm; N=140) were collected haphazardly (>2m apart) at Cronulla rocky reef, Sydney, Australia. We exposed seaweeds to one of four temperature profiles over seven weeks: Ambient, Warming, marine heatwave MHW, MHW variable. After seven weeks of exposure to temperature treatments, a subset of individuals from each species/temperature treatment (*Ecklonia*: n=4-6; *Sargassum*: n=3) were randomly selected. Sterile cotton swabs were used to sample microbiota on algal surfaces, with the same area (20cm2) and swabbing time (30s) sampled for all individuals. Swabs were immediately stored in liquid nitrogen and transported to the University of New South Wales (UNSW, Sydney) and kept at -80°C until DNA extraction. DNA was extracted from swabs using the DNeasy PowerSoil Kit (Qiagen) and amplified using Polymerase Chain Reaction (PCR) primers 341F (5’-CCTACGGGNGGCWGCAG-3’) and 785R (5’-GACTACHVGGGTATCTAATCC-3’), targeting the 16S rRNA gene V3-V4 regions (bacteria and archaea), and were sequenced with a 2x250bp MiSeq reagent kit v2 on the Illumina MiSeq2000 Platform. The range-expansion of tropical herbivores due to ocean warming can profoundly alter temperate reef communities by overgrazing the seaweed forests that underpin them. Such ecological interactions may be mediated by changes to seaweed-associated microbiota in response to warming, but empirical evidence demonstrating this is rare. We experimentally simulated ocean warming and marine heatwaves (MHWs) to quantify effects on two dominant temperate seaweed species and their microbiota, as well as grazing by a tropical herbivore. The kelp Ecklonia radiata’s microbiotain sustained warming and MHW treatments were enriched with microorganisms associated with seaweed disease and tissue degradation. In contrast, the fucoid Sargassum linearifolium’s microbiota was unaffected by temperature. Consumption by the tropical sea-urchin Tripneustes gratilla was greater on Ecklonia where the microbiota had been altered by higher temperatures, while Sargassum’s consumption was unaffected. Elemental traits (carbon, nitrogen), chemical defences (phenolics) and tissue bleaching of both seaweeds were generally unaffected by temperature. Effects of warming and MHWs on seaweed holobionts (host plus its microbiota) are likely species-specific. The effect of increased temperature on Ecklonia’s microbiota and subsequent increased consumption suggest that changes to kelp microbiota may underpin kelp-herbivore interactions, providing novel insights into potential mechanisms driving change in species’ interactions in warming oceans.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.vhhmgqns7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 1visibility views 1 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.vhhmgqns7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 09 Jun 2022Publisher:Dryad Authors: Liu, Yanjie; Jin, Huifei; Chang, Liang; van Kleunen, Mark;Although many studies have tested the direct effects of drought on alien plant invasion, less is known about whether drought affects alien plant invasion indirectly via interactions of plants with other groups of organisms such as soil mesofauna. To test for such indirect effects, we grew single plants of nine naturalized alien target species in pot-mesocosms with a community of five native grassland species under four combinations of two drought (well-watered vs drought) and two soil-mesofauna-inoculation (with vs without) treatments. We found that drought decreased the absolute and the relative biomass production of the alien plants, and thus reduced their competitive strength in the native community. Drought also decreased the abundance of soil mesofauna, particularly soil mites, but did not affect the abundance and richness of soil herbivores. Soil-fauna inoculation did not affect biomass of the alien plants but increased biomass of the native plant community, and thereby decreased the relative biomass production of the alien plants. This increased invasion resistance due to soil fauna, however, tended (p = 0.09) to be stronger for plants growing under well-watered conditions than under drought. Synthesis. Our multispecies experiment thus shows that soil fauna might help native communities to resist alien plant invasions, but that this effect might be weakened under drought. In other words, soil mesofauna may buffer the negative effects of drought on alien plant invasions. The file archives 'SoilFauna_Drought_PlantInvasion_Date_YJL.tar' include three dataset, one named 'SoilFauna_Drought_PlantInvasion.csv' (Biomass data), one named 'SoilFaunaData.csv' (Soil Fauna data), and one named 'SoilNitrogenData.csv' (soil nitrogen data). The file 'SoilFauna_Drought_PlantInvasion.Rmd' is the R script, and its output is 'SoilFauna_Drought_PlantInvasion.html'. All data were collected from a greenhouse expeirment at the Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.tmpg4f50d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 12visibility views 12 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.tmpg4f50d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Lorenz, Stephan; Jungclaus, Johann; Schmidt, Hauke; Haak, Helmuth; Reick, Christian; Schupfner, Martin; Wachsmann, Fabian; Gayler, Veronika; de Vrese, Philipp; Raddatz, Thomas; Mauritsen, Thorsten; von Storch, Jin-Song; Brovkin, Victor; Claussen, Martin; Crueger, Traute; Fiedler, Stephanie; Hagemann, Stefan; Hohenegger, Cathy; Jahns, Thomas; Kinne, Stefan; Kornblueh, Luis; Marotzke, Jochem; Mikolajewicz, Uwe; Modali, Kameswarrao; Müller, Wolfgang; Nabel, Julia; Notz, Dirk; Pincus, Robert; Pohlmann, Holger; Rast, Sebastian; Schnur, Reiner; Schulzweida, Uwe; Six, Katharina; Stevens, Bjorn; Roeckner, Erich; Wieners, Karl-Hermann; Esch, Monika; Giorgetta, Marco; Ilyina, Tatiana;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.CMIP.MPI-M.ICON-ESM-LR' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The ICON-ESM-LR climate model, released in 2017, includes the following components: aerosol: none, prescribed MACv2-SP, atmos: ICON-A (icosahedral/triangles; 160 km; 47 levels; top level 80 km), land: JSBACH4.20, landIce: none/prescribed, ocean: ICON-O (icosahedral/triangles; 40 km; 40 levels; top grid cell 0-12 m), ocnBgchem: HAMOCC, seaIce: unnamed (thermodynamic (Semtner zero-layer) dynamic (Hibler 79) sea ice model). The model was run by the Max Planck Institute for Meteorology, Hamburg 20146, Germany (MPI-M) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, land: 250 km, landIce: none, ocean: 50 km, ocnBgchem: 50 km, seaIce: 50 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmmxiel&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmmxiel&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:BonaRes Data Centre (Leibniz Centre for Agricultural Landscape Research (ZALF)) B��necke, Eric; Breitsameter, Laura; Br��ggeman, Nicolas; Feike, Till; Kage, Henning; Kersebaum, Kurt-Christian; St��tzel, Hartmut;This data set (TRIAL_SITES) is the starting point of a larger data set that contains data and information used in the study ���Yield development of German winter wheat between 1958 and 2015��� in the Project ���Data-Meta Analysis to assess the productivity development of cultivated plants��� funded by the DFG. This starting table contains geographical and environmental information about the experimental sites at which the N-fertilisation experiments were conducted. Amon other topics, this data set can be mainly used to analyse the impact of climatic changes on the development of winter wheat in Germany. The data set comprises following data: - Winter wheat (Triticum aestivum) yields and nitrogen application amounts from nitrogen fertilization experiments of variable duration (1-6 years) carried out at 43 locations across Germany, between 1958 and 2015, and found in 34 different sources in the literature. - The derived maximum yields (Ymax) and optimal nitrogen amounts (Nopt) from the nitrogen experiments, function coefficients, and statistics. - Geographical information (latitude, longitude, altitude) and other site specific information of the experimental sites (soil type, soil yield potential, mean annual temperature, mean annual precipitation, mean annual climatic water balance, soil climate region, cultivation region). - Processed phenological and climatic data for each experimental site.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20387/bonares-yg6f-k61b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20387/bonares-yg6f-k61b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:GFZ Data Services Authors: Jans, Yvonne; von Bloh, Werner; Schaphoff, Sibyll; Müller, Christoph;doi: 10.5880/pik.2020.001
LPJmL4 is a process-based model that simulates climate and land-use change impacts on the terrestrial biosphere, the water and carbon cycle and on agricultural production. The LPJmL4 model combines plant physiological relations, generalized empirically established functions and plant trait parameters. The model incorporates dynamic land use at the global scale and is also able to simulate the production of woody and herbaceous short-rotation bio-energy plantations. Grid cells may contain one or several types of natural or agricultural vegetation. A comprehensive description of the model is given by Schaphoff et al. (2018, http://doi.org/10.5194/gmd-2017-145). We here present an extended version of the LPJmL4 model code described and used by the publications in GMD: LPJmL4 - a dynamic global vegetation model with managed land: Part I – Model description and Part II – Model evaluation (Schaphoff et al. 2018, http://doi.org/10.5194/gmd-2017-145 and http://doi.org/10.5194/gmd-2017-146). Additional features of this version, including agricultural trees as a new cultivation type in LPJmL4, are described and used in Jans et al. (2020, HESS) The model code of LPJmL4 is programmed in C and can be run in parallel mode using MPI. Makefiles are provided for different platforms. Further informations on how to run LPJmL4 is given in the INSTALL file. Additionally to the publication a html documentation and man pages are provided. The model data presented here represent some standard LPJmL4 model results for the land surface described in Schaphoff et al. (2018 part I). Additionally, these results include agricultural trees (olives, non-citrus orchards, and cotton) implemented as a new cultivation type into LPJmL4. Standard results are evaluated in Schaphoff et al. (2018 part II). Results of cotton as a newly implemented agricultural tree are evaluated in Jans et al. (2020), HESSD. The data collection includes some key output variables made with the model setup described by Jans et al. (2020, HESS). Overall, data sets are resulting from 40 different simulations, where we combined 5 different GCMs (GFDL, HadGEM, IPSL, MIROC, NorESM) with 4 different RCPs (2p6, 4p5, 6p0, 8p5) without and with CO2 fertilization, respectively. The data cover the entire globe with a spatial resolution of 0.5° and temporal coverage from 1901-2011 on an annual basis for crop yields, absorbed photosynthetically active radiation and the water fluxes (irrigation, transpiration, evaporation,interception, blue and green evapotranspiration). Crop yields, and water fluxes are given for each crop functional type (CFT), respectively. Monthly data are provided for one carbon flux (net primary production) and the water fluxes transpiration, evaporation, interception, and runoff. The data are provided in one binary file for each variable and simulation. An overview of all variables and information on how data are stored within the binary files are given in the file inventory.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5880/pik.2020.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5880/pik.2020.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:Zenodo Authors: Pflüger, Mika; Gütschow, Johannes;Dataset containing all greenhouse gas emissions data submitted by countries under climate change convention (including CRF data) as published by the UNFCCC secretariat at 2020-10-25. {"references": ["UNSD Demographic Statistics, available at http://data.un.org", "The World Bank GDP data, available at https://data.worldbank.org/"]}
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4199622&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 242visibility views 242 download downloads 21 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4199622&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Schupfner, Martin; Wieners, Karl-Hermann; Wachsmann, Fabian; Steger, Christian; +47 AuthorsSchupfner, Martin; Wieners, Karl-Hermann; Wachsmann, Fabian; Steger, Christian; Bittner, Matthias; Jungclaus, Johann; Früh, Barbara; Pankatz, Klaus; Giorgetta, Marco; Reick, Christian; Legutke, Stephanie; Esch, Monika; Gayler, Veronika; Haak, Helmuth; de Vrese, Philipp; Raddatz, Thomas; Mauritsen, Thorsten; von Storch, Jin-Song; Behrens, Jörg; Brovkin, Victor; Claussen, Martin; Crueger, Traute; Fast, Irina; Fiedler, Stephanie; Hagemann, Stefan; Hohenegger, Cathy; Jahns, Thomas; Kloster, Silvia; Kinne, Stefan; Lasslop, Gitta; Kornblueh, Luis; Marotzke, Jochem; Matei, Daniela; Meraner, Katharina; Mikolajewicz, Uwe; Modali, Kameswarrao; Müller, Wolfgang; Nabel, Julia; Notz, Dirk; Peters-von Gehlen, Karsten; Pincus, Robert; Pohlmann, Holger; Pongratz, Julia; Rast, Sebastian; Schmidt, Hauke; Schnur, Reiner; Schulzweida, Uwe; Six, Katharina; Stevens, Bjorn; Voigt, Aiko; Roeckner, Erich;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.DKRZ.MPI-ESM1-2-HR.ssp245' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The MPI-ESM1.2-HR climate model, released in 2017, includes the following components: aerosol: none, prescribed MACv2-SP, atmos: ECHAM6.3 (spectral T127; 384 x 192 longitude/latitude; 95 levels; top level 0.01 hPa), land: JSBACH3.20, landIce: none/prescribed, ocean: MPIOM1.63 (tripolar TP04, approximately 0.4deg; 802 x 404 longitude/latitude; 40 levels; top grid cell 0-12 m), ocnBgchem: HAMOCC6, seaIce: unnamed (thermodynamic (Semtner zero-layer) dynamic (Hibler 79) sea ice model). The model was run by the Deutsches Klimarechenzentrum, Hamburg 20146, Germany (DKRZ) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, land: 100 km, landIce: none, ocean: 50 km, ocnBgchem: 50 km, seaIce: 50 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spdkme2s245&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spdkme2s245&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Jungclaus, Johann; Mikolajewicz, Uwe; Kapsch, Marie-Luise; D'Agostino, Roberta; +46 AuthorsJungclaus, Johann; Mikolajewicz, Uwe; Kapsch, Marie-Luise; D'Agostino, Roberta; Wieners, Karl-Hermann; Giorgetta, Marco; Reick, Christian; Esch, Monika; Bittner, Matthias; Legutke, Stephanie; Schupfner, Martin; Wachsmann, Fabian; Gayler, Veronika; Haak, Helmuth; de Vrese, Philipp; Raddatz, Thomas; Mauritsen, Thorsten; von Storch, Jin-Song; Behrens, Jörg; Brovkin, Victor; Claussen, Martin; Crueger, Traute; Fast, Irina; Fiedler, Stephanie; Hagemann, Stefan; Hohenegger, Cathy; Jahns, Thomas; Kloster, Silvia; Kinne, Stefan; Lasslop, Gitta; Kornblueh, Luis; Marotzke, Jochem; Matei, Daniela; Meraner, Katharina; Modali, Kameswarrao; Müller, Wolfgang; Nabel, Julia; Notz, Dirk; Peters-von Gehlen, Karsten; Pincus, Robert; Pohlmann, Holger; Pongratz, Julia; Rast, Sebastian; Schmidt, Hauke; Schnur, Reiner; Schulzweida, Uwe; Six, Katharina; Stevens, Bjorn; Voigt, Aiko; Roeckner, Erich;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.PMIP.MPI-M.MPI-ESM1-2-LR' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The MPI-ESM1.2-LR climate model, released in 2017, includes the following components: aerosol: none, prescribed MACv2-SP, atmos: ECHAM6.3 (spectral T63; 192 x 96 longitude/latitude; 47 levels; top level 0.01 hPa), land: JSBACH3.20, landIce: none/prescribed, ocean: MPIOM1.63 (bipolar GR1.5, approximately 1.5deg; 256 x 220 longitude/latitude; 40 levels; top grid cell 0-12 m), ocnBgchem: HAMOCC6, seaIce: unnamed (thermodynamic (Semtner zero-layer) dynamic (Hibler 79) sea ice model). The model was run by the Max Planck Institute for Meteorology, Hamburg 20146, Germany (MPI-M) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, land: 250 km, landIce: none, ocean: 250 km, ocnBgchem: 250 km, seaIce: 250 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6pmmxml2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6pmmxml2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Funded by:, NSF | Dissertation Research: Fu..., NSF | Collaborative Research/LT...[no funder available] ,NSF| Dissertation Research: Functional trait diversity and community assembly of trees and seedlings during tropical forest succession ,NSF| Collaborative Research/LTREB Renewal: Successional Pathways and Rates of Change in Tropical Forests of Brazil, Costa Rica and MexicoAuthors: Baumbach, Lukas; Warren, Dan; Yousefpour, Rasoul; Hanewinkel, Marc;Supplementary data underlying the main figures presented in the publication "Climate change may induce connectivity loss and mountaintop extinction in Central American forests"
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4836269&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 49visibility views 49 download downloads 9 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4836269&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Ziehn, Tilo; Chamberlain, Matthew; Lenton, Andrew; Law, Rachel; Bodman, Roger; Dix, Martin; Wang, Yingping; Dobrohotoff, Peter; Srbinovsky, Jhan; Stevens, Lauren; Vohralik, Peter; Mackallah, Chloe; Sullivan, Arnold; O'Farrell, Siobhan; Druken, Kelsey;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.CSIRO.ACCESS-ESM1-5.ssp370' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The Australian Community Climate and Earth System Simulator Earth System Model Version 1.5 climate model, released in 2019, includes the following components: aerosol: CLASSIC (v1.0), atmos: HadGAM2 (r1.1, N96; 192 x 145 longitude/latitude; 38 levels; top level 39255 m), land: CABLE2.4, ocean: ACCESS-OM2 (MOM5, tripolar primarily 1deg; 360 x 300 longitude/latitude; 50 levels; top grid cell 0-10 m), ocnBgchem: WOMBAT (same grid as ocean), seaIce: CICE4.1 (same grid as ocean). The model was run by the Commonwealth Scientific and Industrial Research Organisation, Aspendale, Victoria 3195, Australia (CSIRO) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, land: 250 km, ocean: 100 km, ocnBgchem: 100 km, seaIce: 100 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spcsaes370&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spcsaes370&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu