Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
  • Access
    Clear
  • Type
  • Year range
  • Field of Science
  • SDG [Beta]
    Clear
  • Country
    Clear
  • Language
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
39 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Open Source
  • Embargo
  • 12. Responsible consumption
  • CN
  • DE
  • US
  • CA

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Adesina, Adeyemi;

    Engineered cementitious composites (ECCs) are special types of fibre-reinforced cementitious composites (FRCC) with higher strain capacity which can be achieved with low fibre volume as low as 2% and total elimination of coarse aggregates. Due to the outstanding performance of ECCs, they are suitable for various construction and repair applications. However, in order for ECCs to achieve their properties; a high amount of binder which is primarily composed of Portland cement (PC) is used alongside a special type of ultrafine silica sand (USS) which is different from the conventional natural fine aggregates. The production of PC is known to be detrimental to the environment due to its high carbon dioxide emissions coupled with the high consumption of natural resources. Thus, the high use of PC content in ECCs posed a sustainability threat. Similarly, the USS used in ECCs are not readily available everywhere and are expensive. The processing of the USS coupled with its transportation over long distances would also increase the cost and embodied carbon of ECCs. Hence, in order to promote more development and applications of ECCs for various applications; this dissertation aims to provide innovative ways to improve the sustainability of ECCs and their performances. This dissertation offers four solutions to improve the sustainability of ECCs which are (i) use of unconventional industrial by-products as partial replacement of PC (ii) total replacement of PC in ECCs with alternative sustainable binders (iii) replacement of USS in ECCs with recycled materials and (iv) the use of supplementary cementitious materials to replace a high volume of PC. The findings from this study revealed sustainable ECCs with acceptable mechanical and durability performance can be achieved with the use of alternative binders or replacement of the conventional USS used in ECC mixtures. The sustainability and cost assessment of the ECCs indicated that the incorporation of industrial by-products such as blast furnace slag (BFS) especially at higher content is beneficial to reducing the negative environmental impact and economic burden associated with ECCs compared to the conventional ECC. The sustainability index and cost index of the ECCs further showed that the use of BFS is more beneficial when the sustainability and cost of the ECCs are compared with the corresponding performance. Similarly, the use of recycled materials as an alternative to USS was found to result in a significant reduction in the embodied carbon and cost of ECCs. The use of recycled materials such as expanded glass (EG) as aggregates in ECCs was also found to improve the thermal insulation properties of ECCs making such ECC suitable for the production of building envelope elements.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Scholarship at UWind...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Scholarship at UWindsor
    Doctoral thesis . 2022
    License: CC BY NC ND
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Scholarship at UWind...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Scholarship at UWindsor
      Doctoral thesis . 2022
      License: CC BY NC ND
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Adesina, Adeyemi;

    Engineered cementitious composites (ECCs) are special types of fibre-reinforced cementitious composites (FRCC) with higher strain capacity which can be achieved with low fibre volume as low as 2% and total elimination of coarse aggregates. Due to the outstanding performance of ECCs, they are suitable for various construction and repair applications. However, in order for ECCs to achieve their properties; a high amount of binder which is primarily composed of Portland cement (PC) is used alongside a special type of ultrafine silica sand (USS) which is different from the conventional natural fine aggregates. The production of PC is known to be detrimental to the environment due to its high carbon dioxide emissions coupled with the high consumption of natural resources. Thus, the high use of PC content in ECCs posed a sustainability threat. Similarly, the USS used in ECCs are not readily available everywhere and are expensive. The processing of the USS coupled with its transportation over long distances would also increase the cost and embodied carbon of ECCs. Hence, in order to promote more development and applications of ECCs for various applications; this dissertation aims to provide innovative ways to improve the sustainability of ECCs and their performances. This dissertation offers four solutions to improve the sustainability of ECCs which are (i) use of unconventional industrial by-products as partial replacement of PC (ii) total replacement of PC in ECCs with alternative sustainable binders (iii) replacement of USS in ECCs with recycled materials and (iv) the use of supplementary cementitious materials to replace a high volume of PC. The findings from this study revealed sustainable ECCs with acceptable mechanical and durability performance can be achieved with the use of alternative binders or replacement of the conventional USS used in ECC mixtures. The sustainability and cost assessment of the ECCs indicated that the incorporation of industrial by-products such as blast furnace slag (BFS) especially at higher content is beneficial to reducing the negative environmental impact and economic burden associated with ECCs compared to the conventional ECC. The sustainability index and cost index of the ECCs further showed that the use of BFS is more beneficial when the sustainability and cost of the ECCs are compared with the corresponding performance. Similarly, the use of recycled materials as an alternative to USS was found to result in a significant reduction in the embodied carbon and cost of ECCs. The use of recycled materials such as expanded glass (EG) as aggregates in ECCs was also found to improve the thermal insulation properties of ECCs making such ECC suitable for the production of building envelope elements.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Scholarship at UWind...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Scholarship at UWindsor
    Doctoral thesis . 2022
    License: CC BY NC ND
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Scholarship at UWind...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Scholarship at UWindsor
      Doctoral thesis . 2022
      License: CC BY NC ND
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Francesca Verones;
    Francesca Verones
    ORCID
    Harvested from ORCID Public Data File

    Francesca Verones in OpenAIRE
    Francesca Verones; orcid Peter Bayer;
    Peter Bayer
    ORCID
    Harvested from ORCID Public Data File

    Peter Bayer in OpenAIRE
    orcid Stefanie Hellweg;
    Stefanie Hellweg
    ORCID
    Harvested from ORCID Public Data File

    Stefanie Hellweg in OpenAIRE
    +3 Authors

    In industrialized countries, large amounts of mineral wastes are produced. They are re-used in various ways, particularly in road and earth constructions, substituting primary resources such as gravel. However, they may also contain pollutants, such as heavy metals, which may be leached to the groundwater. The toxic impacts of these emissions are so far often neglected within Life Cycle Assessments (LCA) of products or waste treatment services and thus, potentially large environmental impacts are currently missed. This study aims at closing this gap by assessing the ecotoxic impacts of heavy metal leaching from industrial mineral wastes in road and earth constructions. The flows of metals such as Sb, As, Pb, Cd, Cr, Cu, Mo, Ni, V and Zn originating from three typical constructions to the environment are quantified, their fate in the environment is assessed and potential ecotoxic effects evaluated. For our reference country, Germany, the industrial wastes that are applied as Granular Secondary Construction Material (GSCM) carry more than 45,000 t of diverse heavy metals per year. Depending on the material quality and construction type applied, up to 150 t of heavy metals may leach to the environment within the first 100 years after construction. Heavy metal retardation in subsoil can potentially reduce the fate to groundwater by up to 100%. One major challenge of integrating leaching from constructions into macro-scale LCA frameworks is the high variability in micro-scale technical and geographical factors, such as material qualities, construction types and soil types. In our work, we consider a broad range of parameter values in the modeling of leaching and fate. This allows distinguishing between the impacts of various road constructions, as well as sites with different soil properties. The findings of this study promote the quantitative consideration of environmental impacts of long-term leaching in Life Cycle Assessment, complementing site-specific risk assessment, for the design of waste management strategies, particularly in the construction sector.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Radboud Repositoryarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Radboud Repository
    Article . 2014
    Data sources: Radboud Repository
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Waste Management
    Article . 2014 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    44
    citations44
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Radboud Repositoryarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Radboud Repository
      Article . 2014
      Data sources: Radboud Repository
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Waste Management
      Article . 2014 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Francesca Verones;
    Francesca Verones
    ORCID
    Harvested from ORCID Public Data File

    Francesca Verones in OpenAIRE
    Francesca Verones; orcid Peter Bayer;
    Peter Bayer
    ORCID
    Harvested from ORCID Public Data File

    Peter Bayer in OpenAIRE
    orcid Stefanie Hellweg;
    Stefanie Hellweg
    ORCID
    Harvested from ORCID Public Data File

    Stefanie Hellweg in OpenAIRE
    +3 Authors

    In industrialized countries, large amounts of mineral wastes are produced. They are re-used in various ways, particularly in road and earth constructions, substituting primary resources such as gravel. However, they may also contain pollutants, such as heavy metals, which may be leached to the groundwater. The toxic impacts of these emissions are so far often neglected within Life Cycle Assessments (LCA) of products or waste treatment services and thus, potentially large environmental impacts are currently missed. This study aims at closing this gap by assessing the ecotoxic impacts of heavy metal leaching from industrial mineral wastes in road and earth constructions. The flows of metals such as Sb, As, Pb, Cd, Cr, Cu, Mo, Ni, V and Zn originating from three typical constructions to the environment are quantified, their fate in the environment is assessed and potential ecotoxic effects evaluated. For our reference country, Germany, the industrial wastes that are applied as Granular Secondary Construction Material (GSCM) carry more than 45,000 t of diverse heavy metals per year. Depending on the material quality and construction type applied, up to 150 t of heavy metals may leach to the environment within the first 100 years after construction. Heavy metal retardation in subsoil can potentially reduce the fate to groundwater by up to 100%. One major challenge of integrating leaching from constructions into macro-scale LCA frameworks is the high variability in micro-scale technical and geographical factors, such as material qualities, construction types and soil types. In our work, we consider a broad range of parameter values in the modeling of leaching and fate. This allows distinguishing between the impacts of various road constructions, as well as sites with different soil properties. The findings of this study promote the quantitative consideration of environmental impacts of long-term leaching in Life Cycle Assessment, complementing site-specific risk assessment, for the design of waste management strategies, particularly in the construction sector.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Radboud Repositoryarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Radboud Repository
    Article . 2014
    Data sources: Radboud Repository
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Waste Management
    Article . 2014 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    44
    citations44
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Radboud Repositoryarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Radboud Repository
      Article . 2014
      Data sources: Radboud Repository
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Waste Management
      Article . 2014 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Julian M. Allwood;
    Julian M. Allwood
    ORCID
    Harvested from ORCID Public Data File

    Julian M. Allwood in OpenAIRE
    orcid Zenaida Sobral Mourão;
    Zenaida Sobral Mourão
    ORCID
    Harvested from ORCID Public Data File

    Zenaida Sobral Mourão in OpenAIRE
    Jochen Linssen; D. Dennis Konadu; +9 Authors

    Abstract While it is generally accepted that our fossil fuel-dominated energy systems must undergo a sustainable transition, researchers have often neglected the potential impacts of this on water and land systems. However, if unintended environmental impacts from this process are to be avoided, understanding its implications for land use and water demand is of crucial importance. Moreover, developed countries may induce environmental stress beyond their own borders, for instance through extensive imports of bioenergy. In this paper, Germany serves as an example of a developed country with ambitious energy transformation targets. Results show that in particular, the politically-driven aspiration for more organic farming in Germany results in a higher import quota of biomass, especially biofuels. These imports translate into land demand, which will exceed the area available in Germany for bioenergy by a factor of 3–6.5 by 2050. As this will likely bring about land stress in the respective exporting countries, this effect of the German energy transformation ought to be limited as much as possible. In contrast, domestic water demand for the German energy system is expected to decrease by over 80% through 2050 due to declining numbers of fossil-fuelled power plants. However, possible future irrigation needs for bioenergy may reduce or even counterbalance this decreasing effect. In addition, energy policy targets specific to the transport sector show a high sensitivity to biomass imports. In particular, the sector-specific target for greenhouse gas reductions will seemingly promote biomass imports, leading to the above-described challenges in the pursuit of sustainability.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Juelich Shared Elect...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    7
    citations7
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Juelich Shared Elect...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Julian M. Allwood;
    Julian M. Allwood
    ORCID
    Harvested from ORCID Public Data File

    Julian M. Allwood in OpenAIRE
    orcid Zenaida Sobral Mourão;
    Zenaida Sobral Mourão
    ORCID
    Harvested from ORCID Public Data File

    Zenaida Sobral Mourão in OpenAIRE
    Jochen Linssen; D. Dennis Konadu; +9 Authors

    Abstract While it is generally accepted that our fossil fuel-dominated energy systems must undergo a sustainable transition, researchers have often neglected the potential impacts of this on water and land systems. However, if unintended environmental impacts from this process are to be avoided, understanding its implications for land use and water demand is of crucial importance. Moreover, developed countries may induce environmental stress beyond their own borders, for instance through extensive imports of bioenergy. In this paper, Germany serves as an example of a developed country with ambitious energy transformation targets. Results show that in particular, the politically-driven aspiration for more organic farming in Germany results in a higher import quota of biomass, especially biofuels. These imports translate into land demand, which will exceed the area available in Germany for bioenergy by a factor of 3–6.5 by 2050. As this will likely bring about land stress in the respective exporting countries, this effect of the German energy transformation ought to be limited as much as possible. In contrast, domestic water demand for the German energy system is expected to decrease by over 80% through 2050 due to declining numbers of fossil-fuelled power plants. However, possible future irrigation needs for bioenergy may reduce or even counterbalance this decreasing effect. In addition, energy policy targets specific to the transport sector show a high sensitivity to biomass imports. In particular, the sector-specific target for greenhouse gas reductions will seemingly promote biomass imports, leading to the above-described challenges in the pursuit of sustainability.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Juelich Shared Elect...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    7
    citations7
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Juelich Shared Elect...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Broska, Lisa Hanna;

    Abstract Behavior change towards sustainable lifestyles such as adoption of renewable energy technologies is a significant element in the fight against anthropogenic climate change. Increasingly, private households can be observed to take up different renewable energy technologies; however, the introduction of these technologies is not accompanied by a broader adoption of pro-environmental behaviors, as recent studies have shown. At the same time, group settings and social capital seem to promote the uptake of wide-ranging sustainability measures. Six case studies were conducted among different sustainable community projects in Germany to shed light on why and how broad sustainability transformation in such settings comes about. Findings suggest that successful implementation of wide-ranging sustainable measures and changes in behaviors in community settings result from motivations that originate from an interplay of social needs, social capital, social norms, and environmental concern. Strong environmental attitudes, not among all, but a critical mass of members and key individuals are necessary. The desire for community and other motives, along with social influence and social norms push individuals with low environmental concern to participate in sustainable endeavors.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Juelich Shared Elect...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Research & Social Science
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    44
    citations44
    popularityTop 10%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Juelich Shared Elect...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Research & Social Science
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Broska, Lisa Hanna;

    Abstract Behavior change towards sustainable lifestyles such as adoption of renewable energy technologies is a significant element in the fight against anthropogenic climate change. Increasingly, private households can be observed to take up different renewable energy technologies; however, the introduction of these technologies is not accompanied by a broader adoption of pro-environmental behaviors, as recent studies have shown. At the same time, group settings and social capital seem to promote the uptake of wide-ranging sustainability measures. Six case studies were conducted among different sustainable community projects in Germany to shed light on why and how broad sustainability transformation in such settings comes about. Findings suggest that successful implementation of wide-ranging sustainable measures and changes in behaviors in community settings result from motivations that originate from an interplay of social needs, social capital, social norms, and environmental concern. Strong environmental attitudes, not among all, but a critical mass of members and key individuals are necessary. The desire for community and other motives, along with social influence and social norms push individuals with low environmental concern to participate in sustainable endeavors.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Juelich Shared Elect...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Research & Social Science
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    44
    citations44
    popularityTop 10%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Juelich Shared Elect...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Research & Social Science
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid H.M. Junginger;
    H.M. Junginger
    ORCID
    Harvested from ORCID Public Data File

    H.M. Junginger in OpenAIRE
    Wouter Schakel; orcid Bothwell Batidzirai;
    Bothwell Batidzirai
    ORCID
    Harvested from ORCID Public Data File

    Bothwell Batidzirai in OpenAIRE
    André Faaij; +2 Authors

    Torrefaction is a promising bioenergy pre-treatment technology, with potential to make a major contribution to the commodification of biomass. However, there is limited scientific knowledge on the techno-economic performance of torrefaction. This study therefore improves available knowledge on torrefaction by providing detailed insights into state of the art prospects of the commercial utilisation of torrefaction technology over time. Focussing on and based on the current status of the compact moving bed reactor, we identify process performance characteristics such as thermal efficiency and mass yield and discuss their determining factors through analysis of mass and energy balances. This study has shown that woody biomass can be torrefied with a thermal and mass efficiency of 94% and 48% respectively (on a dry ash free basis). For straw, the corresponding theoretical energetic efficiency is 96% and mass efficiency is 65%. In the long term, the technical performance of torrefaction processes is expected to improve and energy efficiencies are expected to be at least 97% as optimal torgas use and efficient heat transfer are realised. Short term production costs for woody biomass TOPs (torrefied pellets) are estimated to be between 3.3 and 4.8 US$/GJLHV, falling to 2.1–5.1 US$/GJLHV in the long term. At such cost levels, torrefied pellets would become competitive with traditional pellets. For full commercialisation, torrefaction reactors still require to be optimised. Of importance to torrefaction system performance is the achievement of consistent and homogeneous, fully hydrophobic and stable product, capable of utilising different feedstocks, at desired end-use energy densities.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Utrecht University R...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy
    Article . 2013 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    Energy
    Article . 2013
    addClaim
    279
    citations279
    popularityTop 1%
    influenceTop 1%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Utrecht University R...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy
      Article . 2013 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      Energy
      Article . 2013
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid H.M. Junginger;
    H.M. Junginger
    ORCID
    Harvested from ORCID Public Data File

    H.M. Junginger in OpenAIRE
    Wouter Schakel; orcid Bothwell Batidzirai;
    Bothwell Batidzirai
    ORCID
    Harvested from ORCID Public Data File

    Bothwell Batidzirai in OpenAIRE
    André Faaij; +2 Authors

    Torrefaction is a promising bioenergy pre-treatment technology, with potential to make a major contribution to the commodification of biomass. However, there is limited scientific knowledge on the techno-economic performance of torrefaction. This study therefore improves available knowledge on torrefaction by providing detailed insights into state of the art prospects of the commercial utilisation of torrefaction technology over time. Focussing on and based on the current status of the compact moving bed reactor, we identify process performance characteristics such as thermal efficiency and mass yield and discuss their determining factors through analysis of mass and energy balances. This study has shown that woody biomass can be torrefied with a thermal and mass efficiency of 94% and 48% respectively (on a dry ash free basis). For straw, the corresponding theoretical energetic efficiency is 96% and mass efficiency is 65%. In the long term, the technical performance of torrefaction processes is expected to improve and energy efficiencies are expected to be at least 97% as optimal torgas use and efficient heat transfer are realised. Short term production costs for woody biomass TOPs (torrefied pellets) are estimated to be between 3.3 and 4.8 US$/GJLHV, falling to 2.1–5.1 US$/GJLHV in the long term. At such cost levels, torrefied pellets would become competitive with traditional pellets. For full commercialisation, torrefaction reactors still require to be optimised. Of importance to torrefaction system performance is the achievement of consistent and homogeneous, fully hydrophobic and stable product, capable of utilising different feedstocks, at desired end-use energy densities.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Utrecht University R...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy
    Article . 2013 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    Energy
    Article . 2013
    addClaim
    279
    citations279
    popularityTop 1%
    influenceTop 1%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Utrecht University R...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy
      Article . 2013 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      Energy
      Article . 2013
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Sikkema, Richard;
    Sikkema, Richard
    ORCID
    Harvested from ORCID Public Data File

    Sikkema, Richard in OpenAIRE
    orcid Junginger, Martin;
    Junginger, Martin
    ORCID
    Harvested from ORCID Public Data File

    Junginger, Martin in OpenAIRE
    McFarlane, Paul; Faaij, André;

    Some Parties (Countries) to the UNFCCC decided to include the carbon uptake by harvested wood products (HWP) in a new general accounting framework after 2012 (post Kyoto). The analysis aims to make a comparison between the cascaded use of HWP and the use of wood for energy. We combine the new HWP framework with an assumed increased 50 million m3harvest level in Canada and evaluate the impact of the GHG emissions over a 100-year period. Our reference case assumes all harvested wood is an immediate CO2emission (IPCC default) and no substitution effects, i.e. annual GHG emissions of 41 million tonnes CO2eq. In our wood utilization scenario's, harvested trees are allocated (in varying shares) to three end-products: construction wood, paper products and pellets for power production. In comparison with our base case, a combination of fossil fuel substitution, material substitution and temporary carbon uptake by HWP leads to significant decreases in GHG emissions. All scenario's show annual GHG emission between 18 and 21 million tonnes CO2eqexcept for triple use without recycling (at least 24 million tonnes CO2eq). We conclude that GHG emissions of our scenarios are substantially lower than IPCC default. However, it is difficult to incorporate one single method to account for GHG uptake and emissions by HWP, due to end use efficiency and recycling options. Further GHG allocation over individual countries is not straightforward and needs further research. © 2013 Elsevier Ltd.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Utrecht University R...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Science & Policy
    Article . 2013 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    54
    citations54
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Utrecht University R...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Science & Policy
      Article . 2013 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Sikkema, Richard;
    Sikkema, Richard
    ORCID
    Harvested from ORCID Public Data File

    Sikkema, Richard in OpenAIRE
    orcid Junginger, Martin;
    Junginger, Martin
    ORCID
    Harvested from ORCID Public Data File

    Junginger, Martin in OpenAIRE
    McFarlane, Paul; Faaij, André;

    Some Parties (Countries) to the UNFCCC decided to include the carbon uptake by harvested wood products (HWP) in a new general accounting framework after 2012 (post Kyoto). The analysis aims to make a comparison between the cascaded use of HWP and the use of wood for energy. We combine the new HWP framework with an assumed increased 50 million m3harvest level in Canada and evaluate the impact of the GHG emissions over a 100-year period. Our reference case assumes all harvested wood is an immediate CO2emission (IPCC default) and no substitution effects, i.e. annual GHG emissions of 41 million tonnes CO2eq. In our wood utilization scenario's, harvested trees are allocated (in varying shares) to three end-products: construction wood, paper products and pellets for power production. In comparison with our base case, a combination of fossil fuel substitution, material substitution and temporary carbon uptake by HWP leads to significant decreases in GHG emissions. All scenario's show annual GHG emission between 18 and 21 million tonnes CO2eqexcept for triple use without recycling (at least 24 million tonnes CO2eq). We conclude that GHG emissions of our scenarios are substantially lower than IPCC default. However, it is difficult to incorporate one single method to account for GHG uptake and emissions by HWP, due to end use efficiency and recycling options. Further GHG allocation over individual countries is not straightforward and needs further research. © 2013 Elsevier Ltd.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Utrecht University R...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Science & Policy
    Article . 2013 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    54
    citations54
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Utrecht University R...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Science & Policy
      Article . 2013 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Saavedra, Casilda; W.Budd, William;

    Abstract This work focuses on the efforts being made by King County, Washington to respond to the challenges of global climate change, concentrating on both mitigation and adaptation. King County is a leader in the United States in the development and implementation of meaningful climate change efforts in local government. The county, in conjunction with ICLEI, recently produced a workbook on Preparing for Climate Change at the Local, Regional, and State levels. While the vast majority of local governments in the United States have only taken limited steps to respond to global warming, King County stands out as aggressively looking to move in a new direction. The King County Climate Plan is based on the conviction that climate change is both a problem and an opportunity for communities to improve environmental quality through mitigation of greenhouse gases and simultaneously build resilience to adapt to global climate change. Its exceptional combination of responsibilities in planning and opportunities makes this an invaluable experience to other local governments throughout the world. The work to be presented is a case study that examines the underlying issues and challenges faced by this jurisdiction in adopting its climate change plan; the development and adoption of the plan; issues associated with monitoring and sustaining these efforts; and the broader challenges of building more resilient and adaptive communities. The case study will focus both on procedural issues, as well as, on the types of mitigation and adaptive responses. One aspect of the paper will examine King County's efforts to link climate change efforts/policy/plans to other critical community concerns (e.g., issues of equity and race), and to the economic opportunities that have become critical motivators to successfully as moving forward the county attempts to establish itself as a global leader in meeting the challenges of global climate change.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao LAReferencia - Red F...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    UTP-RIDDA2
    Article . 2009
    Data sources: UTP-RIDDA2
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Habitat International
    Article . 2009 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    80
    citations80
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao LAReferencia - Red F...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      UTP-RIDDA2
      Article . 2009
      Data sources: UTP-RIDDA2
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Habitat International
      Article . 2009 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Saavedra, Casilda; W.Budd, William;

    Abstract This work focuses on the efforts being made by King County, Washington to respond to the challenges of global climate change, concentrating on both mitigation and adaptation. King County is a leader in the United States in the development and implementation of meaningful climate change efforts in local government. The county, in conjunction with ICLEI, recently produced a workbook on Preparing for Climate Change at the Local, Regional, and State levels. While the vast majority of local governments in the United States have only taken limited steps to respond to global warming, King County stands out as aggressively looking to move in a new direction. The King County Climate Plan is based on the conviction that climate change is both a problem and an opportunity for communities to improve environmental quality through mitigation of greenhouse gases and simultaneously build resilience to adapt to global climate change. Its exceptional combination of responsibilities in planning and opportunities makes this an invaluable experience to other local governments throughout the world. The work to be presented is a case study that examines the underlying issues and challenges faced by this jurisdiction in adopting its climate change plan; the development and adoption of the plan; issues associated with monitoring and sustaining these efforts; and the broader challenges of building more resilient and adaptive communities. The case study will focus both on procedural issues, as well as, on the types of mitigation and adaptive responses. One aspect of the paper will examine King County's efforts to link climate change efforts/policy/plans to other critical community concerns (e.g., issues of equity and race), and to the economic opportunities that have become critical motivators to successfully as moving forward the county attempts to establish itself as a global leader in meeting the challenges of global climate change.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao LAReferencia - Red F...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    UTP-RIDDA2
    Article . 2009
    Data sources: UTP-RIDDA2
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Habitat International
    Article . 2009 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    80
    citations80
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao LAReferencia - Red F...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      UTP-RIDDA2
      Article . 2009
      Data sources: UTP-RIDDA2
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Habitat International
      Article . 2009 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Cui Haiyun; Huang Zhixiong; orcid Serhat Yüksel;
    Serhat Yüksel
    ORCID
    Harvested from ORCID Public Data File

    Serhat Yüksel in OpenAIRE
    orcid Hasan Dinçer;
    Hasan Dinçer
    ORCID
    Harvested from ORCID Public Data File

    Hasan Dinçer in OpenAIRE

    Abstract This study aims to analyze the innovation strategies for the green supply chain management with QFD (quality function deployment) multidimensionally. The novelty of the study is to define the criteria of green supply chain for each stage of QFD and propose a hybrid model by IVIF (interval-valued intuitionistic fuzzy) DEMATEL (decision making trial and evaluation laboratory) and IVIF MOORA (Multi-Objective Optimization by Ratio Analysis) respectively. The results demonstrate that understanding the customer expectations with customer relation management is the most important innovation strategy for the green supply chain management in energy industry with the consecutive stages of QFD whereas benchmarking the competitive market environment has relatively the last seat in the ranking. Hence, it is recommended that energy companies should have an effective customer relationship management. In this context, these companies should make a detailed analysis to learn what their customers directly expect from them. With the help of this issue, these companies should generate their product and services based on these expectations. Additionally, it is also stated that new service and product development is also essential for energy companies to improve their innovativeness. For this purpose, a research and development department should be created, and the qualified people should be employed. Additionally, different opinions should be collected from various parties, such as customers, employees, and suppliers. Since customers who are satisfied will prefer these companies, the energy companies can catch the opportunity to increase their market share.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao İstanbul Medipol Uni...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    171
    citations171
    popularityTop 0.1%
    influenceTop 10%
    impulseTop 0.1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao İstanbul Medipol Uni...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Cui Haiyun; Huang Zhixiong; orcid Serhat Yüksel;
    Serhat Yüksel
    ORCID
    Harvested from ORCID Public Data File

    Serhat Yüksel in OpenAIRE
    orcid Hasan Dinçer;
    Hasan Dinçer
    ORCID
    Harvested from ORCID Public Data File

    Hasan Dinçer in OpenAIRE

    Abstract This study aims to analyze the innovation strategies for the green supply chain management with QFD (quality function deployment) multidimensionally. The novelty of the study is to define the criteria of green supply chain for each stage of QFD and propose a hybrid model by IVIF (interval-valued intuitionistic fuzzy) DEMATEL (decision making trial and evaluation laboratory) and IVIF MOORA (Multi-Objective Optimization by Ratio Analysis) respectively. The results demonstrate that understanding the customer expectations with customer relation management is the most important innovation strategy for the green supply chain management in energy industry with the consecutive stages of QFD whereas benchmarking the competitive market environment has relatively the last seat in the ranking. Hence, it is recommended that energy companies should have an effective customer relationship management. In this context, these companies should make a detailed analysis to learn what their customers directly expect from them. With the help of this issue, these companies should generate their product and services based on these expectations. Additionally, it is also stated that new service and product development is also essential for energy companies to improve their innovativeness. For this purpose, a research and development department should be created, and the qualified people should be employed. Additionally, different opinions should be collected from various parties, such as customers, employees, and suppliers. Since customers who are satisfied will prefer these companies, the energy companies can catch the opportunity to increase their market share.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao İstanbul Medipol Uni...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    171
    citations171
    popularityTop 0.1%
    influenceTop 10%
    impulseTop 0.1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao İstanbul Medipol Uni...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Weiwei Dong; Guohua Zhao; orcid Serhat Yüksel;
    Serhat Yüksel
    ORCID
    Harvested from ORCID Public Data File

    Serhat Yüksel in OpenAIRE
    orcid Hasan Dinçer;
    Hasan Dinçer
    ORCID
    Harvested from ORCID Public Data File

    Hasan Dinçer in OpenAIRE
    +1 Authors

    Wind energy projects provide clean energy so that they should be increased to reach the sustainable development goals of the countries. However, current decision-making process should be improved for the effectiveness of these projects. Thus, critical factors should be considered to understand the significant indicators of the performance of the wind energy projects. This article aims to determine the factors that should be considered when deciding on wind energy investments. In this context, 9 different criteria belonging to 3 dimensions (project, firm, market) are determined based on literature review. Later, an analysis is carried out by using hesitant interval-valued intuitionistic fuzzy (IVIF) Decision Making Trial and Evaluation Laboratory (DEMATEL) to identify the most important factors. Furthermore, 4 different investment strategies in Boston Consultancy Group (BCG) matrix have been determined as alternatives. To determine which of these strategies is suitable for wind energy investments, the hesitant IVIF multi-objective optimization on the basis of ratio analysis (MOORA) method has been considered. Additionally, a comparative evaluation is also performed by using technique for order preference by similarity to ideal solution (TOPSIS) methodology. Similarly, sensitivity analysis is also made by considering 9 different cases. The analysis results of different methodologies are quite similar which shows the coherency and reliability of the findings. It is concluded that firm-based factors play the most significant role. It is also identified that technical development, financial performance and organizational effectiveness are the most significant criteria to make investment decision on wind energy projects. Furthermore, due to the market growth potential, it is recommended that wind energy investors increase their investments and strengthen their position in the market.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao İstanbul Medipol Uni...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable Energy
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    108
    citations108
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao İstanbul Medipol Uni...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable Energy
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Weiwei Dong; Guohua Zhao; orcid Serhat Yüksel;
    Serhat Yüksel
    ORCID
    Harvested from ORCID Public Data File

    Serhat Yüksel in OpenAIRE
    orcid Hasan Dinçer;
    Hasan Dinçer
    ORCID
    Harvested from ORCID Public Data File

    Hasan Dinçer in OpenAIRE
    +1 Authors

    Wind energy projects provide clean energy so that they should be increased to reach the sustainable development goals of the countries. However, current decision-making process should be improved for the effectiveness of these projects. Thus, critical factors should be considered to understand the significant indicators of the performance of the wind energy projects. This article aims to determine the factors that should be considered when deciding on wind energy investments. In this context, 9 different criteria belonging to 3 dimensions (project, firm, market) are determined based on literature review. Later, an analysis is carried out by using hesitant interval-valued intuitionistic fuzzy (IVIF) Decision Making Trial and Evaluation Laboratory (DEMATEL) to identify the most important factors. Furthermore, 4 different investment strategies in Boston Consultancy Group (BCG) matrix have been determined as alternatives. To determine which of these strategies is suitable for wind energy investments, the hesitant IVIF multi-objective optimization on the basis of ratio analysis (MOORA) method has been considered. Additionally, a comparative evaluation is also performed by using technique for order preference by similarity to ideal solution (TOPSIS) methodology. Similarly, sensitivity analysis is also made by considering 9 different cases. The analysis results of different methodologies are quite similar which shows the coherency and reliability of the findings. It is concluded that firm-based factors play the most significant role. It is also identified that technical development, financial performance and organizational effectiveness are the most significant criteria to make investment decision on wind energy projects. Furthermore, due to the market growth potential, it is recommended that wind energy investors increase their investments and strengthen their position in the market.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao İstanbul Medipol Uni...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable Energy
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    108
    citations108
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao İstanbul Medipol Uni...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable Energy
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Han, Zhihong; Gong, Lixin; orcid Chen, Huiwen;
    Chen, Huiwen
    ORCID
    Harvested from ORCID Public Data File

    Chen, Huiwen in OpenAIRE
    orcid Yüksel, Serhat;
    Yüksel, Serhat
    ORCID
    Harvested from ORCID Public Data File

    Yüksel, Serhat in OpenAIRE

    Climate change and rising global temperatures pose significant challenges for natural resource management. While developed economies have made progress in addressing these issues, emerging economies are still striving to achieve carbon neutrality, sustainable resource use, and environmental sustainability. This research aims to identify the factors driving carbon emissions in emerging economies over the past three decades. The study establishes a long-run relationship among the factors under investigation by employing various panel diagnostic methods. Non-parametric approaches are used to account for the non-symmetric distribution of panel data. The findings reveal that natural resource components have asymmetric impacts on carbon emissions, with oil rents reducing emissions and mineral rents increasing them. Economic growth and agricultural value added are identified as significant contributors to carbon emissions in the region. On the other hand, renewable energy consumption plays a crucial role in achieving carbon neutrality targets. Gross capital formation exhibits a mixed influence on carbon emissions, being positive and significant in lower quantiles and significantly negative in upper quantiles. These estimates are robust and align with existing literature. The study recommends sustainable resource abstraction and utilization, renewable energy production and consumption improvements, and enhanced capital formation. By providing empirical evidence and policy recommendations, this research contributes to understanding the relationship between these factors and their impact on carbon emissions, facilitating effective strategies for sustainable development and environmental preservation. Xinyang Normal University

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao İstanbul Medipol Uni...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Resources Policy
    Article . 2023 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    21
    citations21
    popularityAverage
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao İstanbul Medipol Uni...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Resources Policy
      Article . 2023 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Han, Zhihong; Gong, Lixin; orcid Chen, Huiwen;
    Chen, Huiwen
    ORCID
    Harvested from ORCID Public Data File

    Chen, Huiwen in OpenAIRE
    orcid Yüksel, Serhat;
    Yüksel, Serhat
    ORCID
    Harvested from ORCID Public Data File

    Yüksel, Serhat in OpenAIRE

    Climate change and rising global temperatures pose significant challenges for natural resource management. While developed economies have made progress in addressing these issues, emerging economies are still striving to achieve carbon neutrality, sustainable resource use, and environmental sustainability. This research aims to identify the factors driving carbon emissions in emerging economies over the past three decades. The study establishes a long-run relationship among the factors under investigation by employing various panel diagnostic methods. Non-parametric approaches are used to account for the non-symmetric distribution of panel data. The findings reveal that natural resource components have asymmetric impacts on carbon emissions, with oil rents reducing emissions and mineral rents increasing them. Economic growth and agricultural value added are identified as significant contributors to carbon emissions in the region. On the other hand, renewable energy consumption plays a crucial role in achieving carbon neutrality targets. Gross capital formation exhibits a mixed influence on carbon emissions, being positive and significant in lower quantiles and significantly negative in upper quantiles. These estimates are robust and align with existing literature. The study recommends sustainable resource abstraction and utilization, renewable energy production and consumption improvements, and enhanced capital formation. By providing empirical evidence and policy recommendations, this research contributes to understanding the relationship between these factors and their impact on carbon emissions, facilitating effective strategies for sustainable development and environmental preservation. Xinyang Normal University

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao İstanbul Medipol Uni...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Resources Policy
    Article . 2023 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    21
    citations21
    popularityAverage
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao İstanbul Medipol Uni...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Resources Policy
      Article . 2023 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • chevron_right
Powered by OpenAIRE graph