Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
34 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Embargo
  • DE
  • IT
  • CN

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Hamza Armghan, Noushahi; Aamir Hamid, Khan; Hamza Ali, Khan; Marcin, Kiedrzyński; +5 Authors

    Abstract Wolfiporia cocos, a versatile fungus acclaimed for its nutritional and therapeutic benefits in Traditional Chinese Medicine, holds immense potential for pharmaceutical and industrial applications. In this study, we aimed to optimize liquid fermentation techniques and culture medium composition to maximize mycelial biomass (MB) yield, pachymic acid (PA) concentration, and overall PA production. Additionally, we investigated the molecular basis of our findings by quantifying the expression levels of genes associated with PA and MB biosynthesis using quantitative real-time polymerase chain reaction. Under the optimized fermentation conditions, significant results were achieved, with maximum MB reaching 6.68 g l−1, PA content peaking at 1.25 mg g−1, and a total PA yield of 4.76 g l−1. Notably, among the four examined genes, squalene monooxygenase, exhibited enhanced expression at 0.06 ratio under the optimized conditions. Furthermore, within the realm of carbohydrate-active enzymes, the glycoside hydrolases 16 family displayed elevated expression levels at 21 ratios, particularly during MB production. This study enhances understanding of genetic mechanism governing MB and PA production in W. cocos, highlighting the roles of squalene monooxygenase and glycoside hydrolases 16 carbohydrate-active enzymes.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Letters in Applied M...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Letters in Applied Microbiology
    Article . 2024 . Peer-reviewed
    License: OUP Standard Publication Reuse
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Letters in Applied M...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Letters in Applied Microbiology
      Article . 2024 . Peer-reviewed
      License: OUP Standard Publication Reuse
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Pia Jensen; M. Bellettato; Bjarke R. Jeppesen; Rui N. Pereira; +9 Authors

    Self-organizing nanopatterns can enable economically competitive, industrially applicable light-harvesting platforms for thin-film solar cells. In this work, we present transparent solar cell substrates having quasiperiodic uniaxial nanowrinkle patterns with high optical haze values. The self-organized nanowrinkle template is created by controlled heat-shrinking of metal-deposited pre-stretched polystyrene sheets. A scalable UV nanoimprinting method is used to transfer the nanopatterns to glass substrates on which single-junction hydrogenated amorphous silicon p-i-n solar cells are subsequently fabricated. The structural and optical analyses of the solar cell show that the nanowrinkle pattern is replicated throughout the solar cell structure leading to enhanced absorption of light. The efficient broadband light-trapping in the nanowrinkle solar cells results in very high 18.2 mA/cm2 short-circuit current density and 9.5% energy-conversion efficiency, which respectively are 35.8% and 39.7% higher than the values obtained in flat-substrate solar cells. The cost- and time-efficient technique introduces a promising new approach to customizable light-management strategies in thin-film solar cells.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Article . 2017
    Data sources: CNR ExploRA
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Nano Energy
    Article . 2017 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    bronze
    19
    citations19
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Article . 2017
      Data sources: CNR ExploRA
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Nano Energy
      Article . 2017 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Bhochhibhoya, Silu; Pizzol, Massimo; Marinello, Francesco; Cavalli, Raffaele;

    This study provides the first comprehensive overview of the sustainability performance of the hotel sector in the Himalayan region: Sagarmatha National Park and Buffer Zone, using both environmental, economic, and technical criteria. In particular, the performance of 45 buildings in this region were measured and quantified in terms of life cycle based carbon footprint, life cycle costs, heat loss rate, number of guests, energy consumption, and area. Buildings were classified into three types: traditional, semi-modern and modern. The statistical analysis included testing for significant differences between such categories by means of ANOVA, and determination of the correlation between the same parameters. Results show a significant difference between the buildings’ total carbon footprint and operation stage carbon footprint while, there is no significant difference between the buildings’ life cycle costs. Traditional buildings have on average the largest carbon footprint and life-cycle cost over the typical building lifespan of 50 years of building lifespan. The ANOVA tests highlight how heat loss rate, size of the building and number of tourists in the hotels are significantly different across the building types. A strong positive correlation is observed between environmental impact, economic impact and energy consumption for the household activities, and a negative correlation with the number of guests and building size. By considering several buildings, this study allows to draw new and more general conclusions about effective sustainability strategies in the whole hotel sector in the Himalayan region. In particular, it shows that reducing impacts in the operation stage should be highly prioritized, focusing on reducing energy consumption and heat loss and shifting to the use of renewable energy sources.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    VBN
    Article . 2020
    Data sources: VBN
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Cleaner Production
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    14
    citations14
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      VBN
      Article . 2020
      Data sources: VBN
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Cleaner Production
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Luca Fraccascia; Luca Fraccascia;

    Industrial symbiosis (IS) is recognized as an effective practice to support circular economy and sustainable development because it is able to enhance the technical efficiency of production processes, provided IS relationships among companies remain active over the long period. However, although it has been established that IS relationships can be vulnerable to disruptive events that reduce the willingness of companies to cooperate in IS synergies, to date few contributions to the literature focus attention on the events which lead firms to interrupt IS synergies. This paper contributes to the existing literature firstly by highlighting the disruptive events affecting the willingness of companies to cooperate in IS synergies and their causes, and secondly by developing an analytical model to assess the impact of each disruption on physical and monetary flows created among companies by the IS relationship. Specifically, an enterprise input-output (EIO) model is proposed, aimed at mapping the physical and monetary flows resulting from IS synergies among companies. Through this model, disruptive events can be modeled and their impact on the above-mentioned flows can be assessed. A numerical case example illustrates how the model works and how company managers and IS facilitators could use it to evaluate to what degree their current IS relationships may be vulnerable to perturbations. The model could therefore facilitate the design of adequate countermeasures and contribute to the development of perturbation resilient IS relationships. Furthermore, policymakers could adopt the model when designing policy actions to support IS practice.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    International Journal of Production Economics
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    36
    citations36
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      International Journal of Production Economics
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Fan, Xinyang;

    Der Klimawandel wird sich voraussichtlich auf das Grundwasser auswirken, aber die Prognosen sind sehr unsicher. Die Quantifizierung der historischen Auswirkungen ermöglicht ein besseres Verständnis der Reaktion des Grundwassers, wurde aber aufgrund des komplexen Einflusses verschiedener Faktoren, wie Grundwasserentnahme für die landwirtschaftliche Bewässerung und Landnutzungsänderungen, nur selten untersucht. Diese Arbeit zielt darauf ab, zum Verständnis und zur Quantifizierung der historischen Auswirkungen von Klimawandel und -schwankungen auf das Grundwasser durch drei miteinander verbundene Forschungsfragen beizutragen: Frage 1: Wie sensitiv reagieren der Grundwasserstand und die Grundwasserneubildung auf Klimaschwankungen in Australien? Frage 2: Wie stark sind die Veränderungen des Grundwasserstands auf den anthropogenen Klimawandel in Australien zurückzuführen und wann haben sich diese Auswirkungen auf das Grundwasser bemerkbar gemacht? Frage 3: Wie haben und werden sich die langfristigen Klimawandel und -schwankungen auf den Grundwasserabfluss (niedriger, mittlerer und hoher Abfluss) in einem großen Karsteinzugsgebiet (schneebeeinflusst, gemäßigtes Klima) in Mitteleuropa auswirken? Die Frage 1 wurde durch Quantifizierung der Sensitivität des Grundwasserstands und der Grundwasserneubildung gegenüber Klimaschwankungen in Australien untersucht. Insgesamt 4350 Messstellen wurden zunächst mit der Zeitreihen-Grundwasser-Toolbox HydroSight modelliert, und 1143 (26%) davon wurden als klimadominierte Messstellen identifiziert. Zur Quantifizierung der Grundwassersensitivität wurde dann ein multipler linearer Regressionsansatz angewandt, der an Studien zur Elastizität von Wasserflüssen adaptiert wurde. Die Ergebnisse zeigen, dass der Grundwasserstand und die Grundwasserneubildung etwa achtmal sensitiver auf Niederschläge reagieren als auf Veränderungen der potenziellen Evapotranspiration. Die inhärenten Eigenschaften der Gebiete, wie Klimatyp und Hydrogeologie, scheinen eine wichtige Rolle bei der Kontrolle der Grundwassersensitivität zu spielen. Die Frage 2 wurde untersucht, indem historische Veränderungen des Grundwasserstands in Australien festgestellt und auf den anthropogenen Klimawandel zurückgeführt wurden. An den vom Klima dominierten Standorten wurde ein Modellierungsexperiment durchgeführt, um die Veränderungen des Grundwasserstands sowohl in der faktischen als auch in der kontrafaktischen (natürlichen) Welt mit und ohne menschlichen Einfluss zu simulieren. Die Ergebnisse zeigen, dass 90% der Standorte seit den 1950er Jahren eine signifikante Grundwasserabsenkung erfahren haben, die auf den anthropogenen Klimawandel zurückzuführen ist. Im Südwesten Australien ist die Abnahme am höchsten und liegt viermal so hoch wie der nationale Median (-74 gegenüber -19 mm pro Jahr). Diese Ergebnisse gehören zu den ersten, die zeigen, dass das Grundwasser bereits seit längerer Zeit den negativen Auswirkungen des anthropogenen Klimawandels leidet. Zur Beantwortung von Frage 3 wurde die Reaktion des Grundwasserabflusses auf Klimawandel und -schwankungen in einem schneebeeinflussten Karsteinzugsgebiet der gemäßigten Breiten (Blautopf) in Süddeutschland zwischen 1952 und 2100 quantifiziert. In dieser Studie wurden statistische Methoden und konzeptionelle Modellierungen eingesetzt, um die langfristigen Auswirkungen zu quantifizieren. Die Ergebnisse zeigen, dass die Veränderungen des jährlichen mittleren und niedrigen Abflusses nicht signifikant waren, aber der jährliche Spitzenabfluss hat sich aufgrund der weniger intensiven Schneeschmelze auf einen niedrigen Wert (< 13,6 m3/s) verschoben. Trotz nicht signifikanter historischer Veränderungen werden alle hoch-, niedrig- und mittleren Abflüsse bis zum Jahr 2100 voraussichtlich abnehmen. Diese Ergebnisse können auf potenzielle Risiken der Wassermangelversorgung an ähnlichen klimatischen und geologischen Standorten hinweisen. Die Quantifizierung der historischen Auswirkungen von Klimawandel und -schwankungen auf das Grundwasser trägt zu einem besseren Verständnis der Reaktion des Grundwassers bei und erhöht die Zuverlässigkeit der Vorhersagen. Nur wenn wir die Vergangenheit verstehen, können wir bessere Vorhersagen für die Zukunft machen.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://dx.doi.org/1...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://dx.doi.org/10.5445/ir/...
    Doctoral thesis . 2023
    License: CC BY NC ND
    Data sources: Datacite
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://dx.doi.org/1...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://dx.doi.org/10.5445/ir/...
      Doctoral thesis . 2023
      License: CC BY NC ND
      Data sources: Datacite
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Le, Victoria;

    Um den weltweit wachsenden Energiebedarf zu decken, müssen die Anstrengungen zur Entwicklung hocheffizienter Batteriesysteme verstärkt werden. Die modernste Technologie, die Lithium-Ionen-Batterie (LIB), gilt als unumstritten und ist daher in fast allen mobilen Geräten zu finden. Trotz ihres unbestreitbaren Wertes für die Menschheit sind die Ressourcen an Lithium, Nickel, Kobalt und anderen wesentlichen Elementen begrenzt. Aus diesem Grund stellen metallfreie, organische Batterien einewünschenswerte Alternative dar. Metallorganische Radikalbatterien, die auf nitroxylhaltigen Polymeren wie Poly(2,2,6,6-tetramethylpiperidinyloxymethacrylat) (PTMA) basieren, wurden erstmals 2002 veröffentlicht, und kurz darauf wurde die erste rein organische Radikalbatterie (ORB) vorgestellt. Ein großerNachteil der organischenMaterialien ist allerdings ihre vergleichsweise geringe spezifische Kapazität, da ein großer Anteil ihrer Masse nicht an den elektrochemischen Prozessen beteiligt ist, sondern z.B. der strukturellen Stabilität von Nitroxid-Radikalen dient. Um dieses Problem zu überwinden, wurden neue Klassen von nicht-radikalischen redoxaktiven Polymeren auf der Basis von Cyclopropeniumkationen und Quadratsäureamiden untersucht. Die funktionellen Gruppen bestanden aus den kleinsten molekularen Zyklen (d.h. drei- und viergliedrigen Zyklen), welche aufgrund ihrer aromatischenNatur hohe Redoxpotentiale und Zyklenstabilität aufwiesen. Obwohl beide funktionellen Gruppen seit Jahrzehnten bekannt sind, wurde erst in den letzten Jahren die Anwendung von Cyclopropenium-Kationen als hochpotente Katholyten in Redox-Flow- Batterien (RFBs) untersucht. Soweit wir wissen, sind Quadratsäureamide seit Hünigs grundlegenden elektrochemischen Studien im Jahr 1977 nicht mehr mit dem Fokus auf Batterieanwendungen untersucht worden. Aus diesem Grund wurden neue Polymere synthetisiert, die mit Aminocyclopropeniumkationen (ACPs) und Quadratsäureamidderivaten (SAA), insbesondere Quadratsäurechinoxalinen (SQXs), dekoriert waren. Ihre physikalischen und elektrochemischen Eigenschaften wurden im Hinblick auf ihre Verwendung als organisches Kathodenmaterial für Batterien untersucht. Während die synthetisierten ACP-Polymerverbindungen sehr hygroskopisch waren und irreversible Oxidationen in Lösung unterlaufen sind, stellten sich die SAA-Polymere als vielversprechender heraus. Es konnte demonstriert werden, dass vor allem die SQX-Polymere vorteilhafte Charakteristiken wie eine hohe thermische Stabilität und reversible Redoxeigenschaften in Lösung aufweisen. In nachfolgenden galvanostatischen Zyklisierungen wurde die Leistung von ausgewählten Polymeren in Lithium Halbzellen untersucht. Ein SQX Polymer ist dabei besonders herausgestochen durch seine sehr hohe Zyklisierbarkeit über einhundert Zyklen. Obwohl die erste Entladekapazität (43.7 mAh g−1) deutlich niedriger als die theoretische Kapazität war (66.8 mAh g−1), blieben nach 100 Zyklen 91 % der ersten Entladekapazität (39.8 mAh g−1) erhalten. Es wird erwartet, dass durch weitere Untersuchungen an kritischen Faktoren für die elektrochemischen Eigenschaften diese neuen redoxaktiven SQX Polymere einen signifikanten Beitrag zu der Entwicklung von organischen Batterien leisten werden.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://dx.doi.org/1...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://dx.doi.org/10.5445/ir/...
    Doctoral thesis . 2023
    Data sources: Datacite
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://dx.doi.org/1...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://dx.doi.org/10.5445/ir/...
      Doctoral thesis . 2023
      Data sources: Datacite
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Xinyue He; Xin Jiang; Dominick V. Spracklen; Joseph Holden; +7 Authors

    AbstractMountain treelines are thought to be sensitive to climate change. However, how climate impacts mountain treelines is not yet fully understood as treelines may also be affected by other human activities. Here, we focus on “closed‐loop” mountain treelines (CLMT) that completely encircle a mountain and are less likely to have been influenced by human land‐use change. We detect a total length of ~916,425 km of CLMT across 243 mountain ranges globally and reveal a bimodal latitudinal distribution of treeline elevations with higher treeline elevations occurring at greater distances from the coast. Spatially, we find that temperature is the main climatic driver of treeline elevation in boreal and tropical regions, whereas precipitation drives CLMT position in temperate zones. Temporally, we show that 70% of CLMT have moved upward, with a mean shift rate of 1.2 m/year over the first decade of the 21st century. CLMT are shifting fastest in the tropics (mean of 3.1 m/year), but with greater variability. Our work provides a new mountain treeline database that isolates climate impacts from other anthropogenic pressures, and has important implications for biodiversity, natural resources, and ecosystem adaptation in a changing climate.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ZENODO
    Article . 2023
    Data sources: Datacite
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Global Change Biology
    Article . 2023 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    ZENODO
    Article . 2023
    Data sources: Datacite
    ZENODO
    Article . 2023
    Data sources: ZENODO
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    bronze
    12
    citations12
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    visibility6
    visibilityviews6
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ZENODO
      Article . 2023
      Data sources: Datacite
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Global Change Biology
      Article . 2023 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      ZENODO
      Article . 2023
      Data sources: Datacite
      ZENODO
      Article . 2023
      Data sources: ZENODO
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Zachary Lebens-Higgins; Nicholas Faenza; Pinaki Mukherjee; Shawn Sallis; +7 Authors

    For layered oxide cathodes, aluminum doping has widely been shown to improve performance, particularly at high degrees of delithiation. While this has led to increased interest in Al-doped systems, including $\mathrm{LiNi_{0.8}Co_{0.15}Al_{0.05}O_{2}}$ (NCA), the aluminum surface environment has not been thoroughly investigated. Using hard x-ray photoelectron spectroscopy measurements of the Al 1s core region for NCA electrodes, we examined the evolution of the surface aluminum environment under electrochemical and thermal stress. By correlating the aluminum environment to transition metal reduction and electrolyte decomposition, we provide further insight into the cathode-electrolyte interface layer. A remarkable finding is that Al-O coatings in LiPF$_6$ electrolyte mimic the evolution observed for the aluminum surface environment in doped layered oxides. ECS transactions 80(10), 197 - 206 (2017). doi:10.1149/08010.0197ecst Published by Pennington, NJ

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao DESY Publication Dat...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ECS Transactions
    Article . 2017 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    4
    citations4
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao DESY Publication Dat...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ECS Transactions
      Article . 2017 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Österle, Ines; Ulrich, Christian; Herwartz, Sebastian; Sigle, Sebastian; +4 Authors
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao DLR publication serv...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    DLR publication server
    Other ORP type . 2022
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao DLR publication serv...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      DLR publication server
      Other ORP type . 2022
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Schröder, Matthias; Gentner, Christoph; Montaner Rios, Gema; Becker, Florian; +3 Authors
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao DLR publication serv...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    DLR publication server
    Other ORP type . 2019
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao DLR publication serv...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      DLR publication server
      Other ORP type . 2019
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
34 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Hamza Armghan, Noushahi; Aamir Hamid, Khan; Hamza Ali, Khan; Marcin, Kiedrzyński; +5 Authors

    Abstract Wolfiporia cocos, a versatile fungus acclaimed for its nutritional and therapeutic benefits in Traditional Chinese Medicine, holds immense potential for pharmaceutical and industrial applications. In this study, we aimed to optimize liquid fermentation techniques and culture medium composition to maximize mycelial biomass (MB) yield, pachymic acid (PA) concentration, and overall PA production. Additionally, we investigated the molecular basis of our findings by quantifying the expression levels of genes associated with PA and MB biosynthesis using quantitative real-time polymerase chain reaction. Under the optimized fermentation conditions, significant results were achieved, with maximum MB reaching 6.68 g l−1, PA content peaking at 1.25 mg g−1, and a total PA yield of 4.76 g l−1. Notably, among the four examined genes, squalene monooxygenase, exhibited enhanced expression at 0.06 ratio under the optimized conditions. Furthermore, within the realm of carbohydrate-active enzymes, the glycoside hydrolases 16 family displayed elevated expression levels at 21 ratios, particularly during MB production. This study enhances understanding of genetic mechanism governing MB and PA production in W. cocos, highlighting the roles of squalene monooxygenase and glycoside hydrolases 16 carbohydrate-active enzymes.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Letters in Applied M...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Letters in Applied Microbiology
    Article . 2024 . Peer-reviewed
    License: OUP Standard Publication Reuse
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Letters in Applied M...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Letters in Applied Microbiology
      Article . 2024 . Peer-reviewed
      License: OUP Standard Publication Reuse
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Pia Jensen; M. Bellettato; Bjarke R. Jeppesen; Rui N. Pereira; +9 Authors

    Self-organizing nanopatterns can enable economically competitive, industrially applicable light-harvesting platforms for thin-film solar cells. In this work, we present transparent solar cell substrates having quasiperiodic uniaxial nanowrinkle patterns with high optical haze values. The self-organized nanowrinkle template is created by controlled heat-shrinking of metal-deposited pre-stretched polystyrene sheets. A scalable UV nanoimprinting method is used to transfer the nanopatterns to glass substrates on which single-junction hydrogenated amorphous silicon p-i-n solar cells are subsequently fabricated. The structural and optical analyses of the solar cell show that the nanowrinkle pattern is replicated throughout the solar cell structure leading to enhanced absorption of light. The efficient broadband light-trapping in the nanowrinkle solar cells results in very high 18.2 mA/cm2 short-circuit current density and 9.5% energy-conversion efficiency, which respectively are 35.8% and 39.7% higher than the values obtained in flat-substrate solar cells. The cost- and time-efficient technique introduces a promising new approach to customizable light-management strategies in thin-film solar cells.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Article . 2017
    Data sources: CNR ExploRA
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Nano Energy
    Article . 2017 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    bronze
    19
    citations19
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Article . 2017
      Data sources: CNR ExploRA
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Nano Energy
      Article . 2017 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Bhochhibhoya, Silu; Pizzol, Massimo; Marinello, Francesco; Cavalli, Raffaele;

    This study provides the first comprehensive overview of the sustainability performance of the hotel sector in the Himalayan region: Sagarmatha National Park and Buffer Zone, using both environmental, economic, and technical criteria. In particular, the performance of 45 buildings in this region were measured and quantified in terms of life cycle based carbon footprint, life cycle costs, heat loss rate, number of guests, energy consumption, and area. Buildings were classified into three types: traditional, semi-modern and modern. The statistical analysis included testing for significant differences between such categories by means of ANOVA, and determination of the correlation between the same parameters. Results show a significant difference between the buildings’ total carbon footprint and operation stage carbon footprint while, there is no significant difference between the buildings’ life cycle costs. Traditional buildings have on average the largest carbon footprint and life-cycle cost over the typical building lifespan of 50 years of building lifespan. The ANOVA tests highlight how heat loss rate, size of the building and number of tourists in the hotels are significantly different across the building types. A strong positive correlation is observed between environmental impact, economic impact and energy consumption for the household activities, and a negative correlation with the number of guests and building size. By considering several buildings, this study allows to draw new and more general conclusions about effective sustainability strategies in the whole hotel sector in the Himalayan region. In particular, it shows that reducing impacts in the operation stage should be highly prioritized, focusing on reducing energy consumption and heat loss and shifting to the use of renewable energy sources.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    VBN
    Article . 2020
    Data sources: VBN
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Cleaner Production
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    14
    citations14
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      VBN
      Article . 2020
      Data sources: VBN
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Cleaner Production
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Luca Fraccascia; Luca Fraccascia;

    Industrial symbiosis (IS) is recognized as an effective practice to support circular economy and sustainable development because it is able to enhance the technical efficiency of production processes, provided IS relationships among companies remain active over the long period. However, although it has been established that IS relationships can be vulnerable to disruptive events that reduce the willingness of companies to cooperate in IS synergies, to date few contributions to the literature focus attention on the events which lead firms to interrupt IS synergies. This paper contributes to the existing literature firstly by highlighting the disruptive events affecting the willingness of companies to cooperate in IS synergies and their causes, and secondly by developing an analytical model to assess the impact of each disruption on physical and monetary flows created among companies by the IS relationship. Specifically, an enterprise input-output (EIO) model is proposed, aimed at mapping the physical and monetary flows resulting from IS synergies among companies. Through this model, disruptive events can be modeled and their impact on the above-mentioned flows can be assessed. A numerical case example illustrates how the model works and how company managers and IS facilitators could use it to evaluate to what degree their current IS relationships may be vulnerable to perturbations. The model could therefore facilitate the design of adequate countermeasures and contribute to the development of perturbation resilient IS relationships. Furthermore, policymakers could adopt the model when designing policy actions to support IS practice.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    International Journal of Production Economics
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    36
    citations36
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      International Journal of Production Economics
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Fan, Xinyang;

    Der Klimawandel wird sich voraussichtlich auf das Grundwasser auswirken, aber die Prognosen sind sehr unsicher. Die Quantifizierung der historischen Auswirkungen ermöglicht ein besseres Verständnis der Reaktion des Grundwassers, wurde aber aufgrund des komplexen Einflusses verschiedener Faktoren, wie Grundwasserentnahme für die landwirtschaftliche Bewässerung und Landnutzungsänderungen, nur selten untersucht. Diese Arbeit zielt darauf ab, zum Verständnis und zur Quantifizierung der historischen Auswirkungen von Klimawandel und -schwankungen auf das Grundwasser durch drei miteinander verbundene Forschungsfragen beizutragen: Frage 1: Wie sensitiv reagieren der Grundwasserstand und die Grundwasserneubildung auf Klimaschwankungen in Australien? Frage 2: Wie stark sind die Veränderungen des Grundwasserstands auf den anthropogenen Klimawandel in Australien zurückzuführen und wann haben sich diese Auswirkungen auf das Grundwasser bemerkbar gemacht? Frage 3: Wie haben und werden sich die langfristigen Klimawandel und -schwankungen auf den Grundwasserabfluss (niedriger, mittlerer und hoher Abfluss) in einem großen Karsteinzugsgebiet (schneebeeinflusst, gemäßigtes Klima) in Mitteleuropa auswirken? Die Frage 1 wurde durch Quantifizierung der Sensitivität des Grundwasserstands und der Grundwasserneubildung gegenüber Klimaschwankungen in Australien untersucht. Insgesamt 4350 Messstellen wurden zunächst mit der Zeitreihen-Grundwasser-Toolbox HydroSight modelliert, und 1143 (26%) davon wurden als klimadominierte Messstellen identifiziert. Zur Quantifizierung der Grundwassersensitivität wurde dann ein multipler linearer Regressionsansatz angewandt, der an Studien zur Elastizität von Wasserflüssen adaptiert wurde. Die Ergebnisse zeigen, dass der Grundwasserstand und die Grundwasserneubildung etwa achtmal sensitiver auf Niederschläge reagieren als auf Veränderungen der potenziellen Evapotranspiration. Die inhärenten Eigenschaften der Gebiete, wie Klimatyp und Hydrogeologie, scheinen eine wichtige Rolle bei der Kontrolle der Grundwassersensitivität zu spielen. Die Frage 2 wurde untersucht, indem historische Veränderungen des Grundwasserstands in Australien festgestellt und auf den anthropogenen Klimawandel zurückgeführt wurden. An den vom Klima dominierten Standorten wurde ein Modellierungsexperiment durchgeführt, um die Veränderungen des Grundwasserstands sowohl in der faktischen als auch in der kontrafaktischen (natürlichen) Welt mit und ohne menschlichen Einfluss zu simulieren. Die Ergebnisse zeigen, dass 90% der Standorte seit den 1950er Jahren eine signifikante Grundwasserabsenkung erfahren haben, die auf den anthropogenen Klimawandel zurückzuführen ist. Im Südwesten Australien ist die Abnahme am höchsten und liegt viermal so hoch wie der nationale Median (-74 gegenüber -19 mm pro Jahr). Diese Ergebnisse gehören zu den ersten, die zeigen, dass das Grundwasser bereits seit längerer Zeit den negativen Auswirkungen des anthropogenen Klimawandels leidet. Zur Beantwortung von Frage 3 wurde die Reaktion des Grundwasserabflusses auf Klimawandel und -schwankungen in einem schneebeeinflussten Karsteinzugsgebiet der gemäßigten Breiten (Blautopf) in Süddeutschland zwischen 1952 und 2100 quantifiziert. In dieser Studie wurden statistische Methoden und konzeptionelle Modellierungen eingesetzt, um die langfristigen Auswirkungen zu quantifizieren. Die Ergebnisse zeigen, dass die Veränderungen des jährlichen mittleren und niedrigen Abflusses nicht signifikant waren, aber der jährliche Spitzenabfluss hat sich aufgrund der weniger intensiven Schneeschmelze auf einen niedrigen Wert (< 13,6 m3/s) verschoben. Trotz nicht signifikanter historischer Veränderungen werden alle hoch-, niedrig- und mittleren Abflüsse bis zum Jahr 2100 voraussichtlich abnehmen. Diese Ergebnisse können auf potenzielle Risiken der Wassermangelversorgung an ähnlichen klimatischen und geologischen Standorten hinweisen. Die Quantifizierung der historischen Auswirkungen von Klimawandel und -schwankungen auf das Grundwasser trägt zu einem besseren Verständnis der Reaktion des Grundwassers bei und erhöht die Zuverlässigkeit der Vorhersagen. Nur wenn wir die Vergangenheit verstehen, können wir bessere Vorhersagen für die Zukunft machen.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://dx.doi.org/1...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://dx.doi.org/10.5445/ir/...
    Doctoral thesis . 2023
    License: CC BY NC ND
    Data sources: Datacite
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://dx.doi.org/1...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://dx.doi.org/10.5445/ir/...
      Doctoral thesis . 2023
      License: CC BY NC ND
      Data sources: Datacite
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Le, Victoria;

    Um den weltweit wachsenden Energiebedarf zu decken, müssen die Anstrengungen zur Entwicklung hocheffizienter Batteriesysteme verstärkt werden. Die modernste Technologie, die Lithium-Ionen-Batterie (LIB), gilt als unumstritten und ist daher in fast allen mobilen Geräten zu finden. Trotz ihres unbestreitbaren Wertes für die Menschheit sind die Ressourcen an Lithium, Nickel, Kobalt und anderen wesentlichen Elementen begrenzt. Aus diesem Grund stellen metallfreie, organische Batterien einewünschenswerte Alternative dar. Metallorganische Radikalbatterien, die auf nitroxylhaltigen Polymeren wie Poly(2,2,6,6-tetramethylpiperidinyloxymethacrylat) (PTMA) basieren, wurden erstmals 2002 veröffentlicht, und kurz darauf wurde die erste rein organische Radikalbatterie (ORB) vorgestellt. Ein großerNachteil der organischenMaterialien ist allerdings ihre vergleichsweise geringe spezifische Kapazität, da ein großer Anteil ihrer Masse nicht an den elektrochemischen Prozessen beteiligt ist, sondern z.B. der strukturellen Stabilität von Nitroxid-Radikalen dient. Um dieses Problem zu überwinden, wurden neue Klassen von nicht-radikalischen redoxaktiven Polymeren auf der Basis von Cyclopropeniumkationen und Quadratsäureamiden untersucht. Die funktionellen Gruppen bestanden aus den kleinsten molekularen Zyklen (d.h. drei- und viergliedrigen Zyklen), welche aufgrund ihrer aromatischenNatur hohe Redoxpotentiale und Zyklenstabilität aufwiesen. Obwohl beide funktionellen Gruppen seit Jahrzehnten bekannt sind, wurde erst in den letzten Jahren die Anwendung von Cyclopropenium-Kationen als hochpotente Katholyten in Redox-Flow- Batterien (RFBs) untersucht. Soweit wir wissen, sind Quadratsäureamide seit Hünigs grundlegenden elektrochemischen Studien im Jahr 1977 nicht mehr mit dem Fokus auf Batterieanwendungen untersucht worden. Aus diesem Grund wurden neue Polymere synthetisiert, die mit Aminocyclopropeniumkationen (ACPs) und Quadratsäureamidderivaten (SAA), insbesondere Quadratsäurechinoxalinen (SQXs), dekoriert waren. Ihre physikalischen und elektrochemischen Eigenschaften wurden im Hinblick auf ihre Verwendung als organisches Kathodenmaterial für Batterien untersucht. Während die synthetisierten ACP-Polymerverbindungen sehr hygroskopisch waren und irreversible Oxidationen in Lösung unterlaufen sind, stellten sich die SAA-Polymere als vielversprechender heraus. Es konnte demonstriert werden, dass vor allem die SQX-Polymere vorteilhafte Charakteristiken wie eine hohe thermische Stabilität und reversible Redoxeigenschaften in Lösung aufweisen. In nachfolgenden galvanostatischen Zyklisierungen wurde die Leistung von ausgewählten Polymeren in Lithium Halbzellen untersucht. Ein SQX Polymer ist dabei besonders herausgestochen durch seine sehr hohe Zyklisierbarkeit über einhundert Zyklen. Obwohl die erste Entladekapazität (43.7 mAh g−1) deutlich niedriger als die theoretische Kapazität war (66.8 mAh g−1), blieben nach 100 Zyklen 91 % der ersten Entladekapazität (39.8 mAh g−1) erhalten. Es wird erwartet, dass durch weitere Untersuchungen an kritischen Faktoren für die elektrochemischen Eigenschaften diese neuen redoxaktiven SQX Polymere einen signifikanten Beitrag zu der Entwicklung von organischen Batterien leisten werden.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://dx.doi.org/1...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://dx.doi.org/10.5445/ir/...
    Doctoral thesis . 2023
    Data sources: Datacite
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://dx.doi.org/1...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://dx.doi.org/10.5445/ir/...
      Doctoral thesis . 2023
      Data sources: Datacite
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Xinyue He; Xin Jiang; Dominick V. Spracklen; Joseph Holden; +7 Authors

    AbstractMountain treelines are thought to be sensitive to climate change. However, how climate impacts mountain treelines is not yet fully understood as treelines may also be affected by other human activities. Here, we focus on “closed‐loop” mountain treelines (CLMT) that completely encircle a mountain and are less likely to have been influenced by human land‐use change. We detect a total length of ~916,425 km of CLMT across 243 mountain ranges globally and reveal a bimodal latitudinal distribution of treeline elevations with higher treeline elevations occurring at greater distances from the coast. Spatially, we find that temperature is the main climatic driver of treeline elevation in boreal and tropical regions, whereas precipitation drives CLMT position in temperate zones. Temporally, we show that 70% of CLMT have moved upward, with a mean shift rate of 1.2 m/year over the first decade of the 21st century. CLMT are shifting fastest in the tropics (mean of 3.1 m/year), but with greater variability. Our work provides a new mountain treeline database that isolates climate impacts from other anthropogenic pressures, and has important implications for biodiversity, natural resources, and ecosystem adaptation in a changing climate.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ZENODO
    Article . 2023
    Data sources: Datacite
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Global Change Biology
    Article . 2023 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    ZENODO
    Article . 2023
    Data sources: Datacite
    ZENODO
    Article . 2023
    Data sources: ZENODO
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    bronze
    12
    citations12
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    visibility6
    visibilityviews6
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ZENODO
      Article . 2023
      Data sources: Datacite
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Global Change Biology
      Article . 2023 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      ZENODO
      Article . 2023
      Data sources: Datacite
      ZENODO
      Article . 2023
      Data sources: ZENODO
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Zachary Lebens-Higgins; Nicholas Faenza; Pinaki Mukherjee; Shawn Sallis; +7 Authors

    For layered oxide cathodes, aluminum doping has widely been shown to improve performance, particularly at high degrees of delithiation. While this has led to increased interest in Al-doped systems, including $\mathrm{LiNi_{0.8}Co_{0.15}Al_{0.05}O_{2}}$ (NCA), the aluminum surface environment has not been thoroughly investigated. Using hard x-ray photoelectron spectroscopy measurements of the Al 1s core region for NCA electrodes, we examined the evolution of the surface aluminum environment under electrochemical and thermal stress. By correlating the aluminum environment to transition metal reduction and electrolyte decomposition, we provide further insight into the cathode-electrolyte interface layer. A remarkable finding is that Al-O coatings in LiPF$_6$ electrolyte mimic the evolution observed for the aluminum surface environment in doped layered oxides. ECS transactions 80(10), 197 - 206 (2017). doi:10.1149/08010.0197ecst Published by Pennington, NJ

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao DESY Publication Dat...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ECS Transactions
    Article . 2017 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    4
    citations4
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao DESY Publication Dat...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ECS Transactions
      Article . 2017 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Österle, Ines; Ulrich, Christian; Herwartz, Sebastian; Sigle, Sebastian; +4 Authors
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao DLR publication serv...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    DLR publication server
    Other ORP type . 2022
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao DLR publication serv...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      DLR publication server
      Other ORP type . 2022
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Schröder, Matthias; Gentner, Christoph; Montaner Rios, Gema; Becker, Florian; +3 Authors
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao DLR publication serv...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    DLR publication server
    Other ORP type . 2019
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao DLR publication serv...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      DLR publication server
      Other ORP type . 2019
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.