- home
- Advanced Search
- Energy Research
- Open Source
- Embargo
- 7. Clean energy
- DE
- CN
- RU
- Energy Research
- Open Source
- Embargo
- 7. Clean energy
- DE
- CN
- RU
description Publicationkeyboard_double_arrow_right Article , Journal 2021Embargo end date: 08 Jul 2022 FrancePublisher:Elsevier BV Patrick Rousset; Mark Daniel G. de Luna; Arjay A. Arpia; Arjay A. Arpia; Wei Hsin Chen; Wei Hsin Chen; Wei Hsin Chen; Su Shiung Lam; Su Shiung Lam;Abstract With drastic fossil fuel depletion and environmental deterioration concerns, a move towards a more sustainable bioenergy-based economy is essential. Lately, the application of microwave (MW) irradiation for waste processing has been attracting interest globally. MW-assisted heating possesses several advantages such as the provision of high microwave energy into dielectric materials with deeper penetration for internal heat generation, showing beneficial features in improving the heating rate and reducing the reaction time. Consequently, the most recent literature regarding the applications of MW-assisted heating for biomass pretreatment as well as biofuel and bioenergy production was reviewed and consolidated in this study. An impressive increase in the product yield and improvement of the product properties are reported, with the use of MW-assisted heating in several conversion routes to produce biofuels. Despite being a promising technology for biofuel production, some major fundamental data of MW-assisted heating have not been comprehensively identified. Therefore, the feasibility of this technology for large-scale implementation is still subpar. Understanding the interaction between the feedstock and the microwave electromagnetic field, and the optimization of several operational and mechanical parameters are the two main keystones that would propel the industrialization of MW heating in the near future. This provides key insights leading to increased feasibility and more advanced application of MW heating.
Agritrop arrow_drop_down Chemical Engineering JournalArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2020.126233&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 241 citations 241 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Agritrop arrow_drop_down Chemical Engineering JournalArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2020.126233&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 06 Jan 2021 GermanyPublisher:Royal Society of Chemistry (RSC) Jiaguo Yu; Licheng Sun; Licheng Sun; Yufei Jia; Panyong Kuang; Biaobiao Zhang; Ke Fan; Ke Fan; A. Ken Inge; Lizhou Fan; Min He; N. V. R. Aditya Dharanipragada;An amorphous WO3 induced lattice distortion strategy leads to only 2 wt% Ir for efficient overall water splitting in acid.
DESY Publication Dat... arrow_drop_down Sustainable Energy & FuelsArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9se01282f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert DESY Publication Dat... arrow_drop_down Sustainable Energy & FuelsArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9se01282f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Funded by:FCT | Core-shell and core-host ..., FCT | Si QuaDot PV, FCT | Institute of Nanostructur...FCT| Core-shell and core-host interactions in functional silicon-nanoparticles ,FCT| Si QuaDot PV ,FCT| Institute of Nanostructures, Nanomodelling and NanofabricationPia Jensen; M. Bellettato; Bjarke R. Jeppesen; Rui N. Pereira; Rui N. Pereira; Bruno P. Falcão; Emil H. Eriksen; Caterina Summonte; Derese Desta; Peter Balling; Sanjay K. Ram; Rita Rizzoli; Arne Nylandsted Larsen;Self-organizing nanopatterns can enable economically competitive, industrially applicable light-harvesting platforms for thin-film solar cells. In this work, we present transparent solar cell substrates having quasiperiodic uniaxial nanowrinkle patterns with high optical haze values. The self-organized nanowrinkle template is created by controlled heat-shrinking of metal-deposited pre-stretched polystyrene sheets. A scalable UV nanoimprinting method is used to transfer the nanopatterns to glass substrates on which single-junction hydrogenated amorphous silicon p-i-n solar cells are subsequently fabricated. The structural and optical analyses of the solar cell show that the nanowrinkle pattern is replicated throughout the solar cell structure leading to enhanced absorption of light. The efficient broadband light-trapping in the nanowrinkle solar cells results in very high 18.2 mA/cm2 short-circuit current density and 9.5% energy-conversion efficiency, which respectively are 35.8% and 39.7% higher than the values obtained in flat-substrate solar cells. The cost- and time-efficient technique introduces a promising new approach to customizable light-management strategies in thin-film solar cells.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nanoen.2017.04.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nanoen.2017.04.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 ItalyPublisher:Elsevier BV Funded by:EC | NASCENTEC| NASCENTManuel Schnabel; Sergi Hernández; J. López-Vidrier; Philipp Löper; Mariaconcetta Canino; B. Garrido; Caterina Summonte; Stefan Janz;The optical and photovoltaic properties of Si NCs / SiC multilayers (MLs) are investigated using a membrane-based solar cell structure. By removing the Si substrate in the active cell area, the MLs are studied without any bulk Si substrate contribution. The occurrence is confirmed by scanning electron microscopy and light-beam induced current mapping . Optical characterization combined with simulations allows us to determine the absorption within the ML absorber layer, isolated from the other cell stack layers. The results indicate that the absorption at wavelengths longer than 800 nm is only due to the SiC matrix. The measured short-circuit current is significantly lower than that theoretically obtained from absorption within the ML absorber, which is ascribed to losses that limit carrier extraction. The origin of these losses is discussed in terms of the material regions where recombination takes place. Our results indicate that carrier extraction is most efficient from the Si NCs themselves, whereas recombination is strongest in SiC and residual a-Si domains . Together with the observed onset of the external quantum efficiency (EQE) at 700-800 nm, this fact is an evidence of quantum confinement in Si NCs embedded in SiC on device level.
CNR ExploRA arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2015.10.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2015.10.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SerbiaPublisher:Elsevier BV Funded by:MESTD | Ministry of Education, Sc...MESTD| Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200172 (Serbian Academy of Sciences and Arts - SASA, Geographical Institute 'Jovan Cvijic', Belgrade)Milanović-Pešić, Ana; Brankov, Jovana; Denda, Stefan; Bjeljac, Željko; Micić, Jasna;handle: 21.15107/rcub_dais_13309
In the 21st century, many countries are starting to use geothermal energy (GTE) as a new energy source. Serbia also has the potential to use it as a renewable energy source. The complex geological structure of its terrain has given rise to a large number of thermomineral springs and geothermal wells. Based on the existing measurements, the geothermal heat flow density in Serbia ranges from 80 to 120 mW/m2, which is above Europe's average (60 mW/m2). Currently, there are 66 projects in Serbia that directly use geothermal energy. There are an estimated 1005 geothermal heat pump units. Their power varies between 10 kW and 40 kW and they operate for 2860 full load hours per year. This paper deals with the development, current state and perspectives of geothermal energy utilization for heating in Serbia. To illustrate the current state of geothermal energy utilization in Serbia, spa settlements Vranjska Banja and Gornja Trepča, as well as the Bogatić Municipality have been singled out as examples of good practice. The presented analysis includes determining the available amount of geothermal energy and its utilization for district heating or heating of selected public facilities. The concept and methodology of the presented research are based on data collection through literature review, surveys and field research. The analysis confirms the cost-effectiveness of using geothermal energy and reveals numerous ecological advantages over other energy sources. However, it was concluded that аlthough there is potential, geothermal sources, as a renewable energy source, are used negligibly in Serbia.
Mikra xinakia arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2022.112442&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 135visibility views 135 download downloads 13 Powered bymore_vert Mikra xinakia arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2022.112442&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021Embargo end date: 08 Jul 2022 FrancePublisher:Elsevier BV Patrick Rousset; Mark Daniel G. de Luna; Arjay A. Arpia; Arjay A. Arpia; Wei Hsin Chen; Wei Hsin Chen; Wei Hsin Chen; Su Shiung Lam; Su Shiung Lam;Abstract With drastic fossil fuel depletion and environmental deterioration concerns, a move towards a more sustainable bioenergy-based economy is essential. Lately, the application of microwave (MW) irradiation for waste processing has been attracting interest globally. MW-assisted heating possesses several advantages such as the provision of high microwave energy into dielectric materials with deeper penetration for internal heat generation, showing beneficial features in improving the heating rate and reducing the reaction time. Consequently, the most recent literature regarding the applications of MW-assisted heating for biomass pretreatment as well as biofuel and bioenergy production was reviewed and consolidated in this study. An impressive increase in the product yield and improvement of the product properties are reported, with the use of MW-assisted heating in several conversion routes to produce biofuels. Despite being a promising technology for biofuel production, some major fundamental data of MW-assisted heating have not been comprehensively identified. Therefore, the feasibility of this technology for large-scale implementation is still subpar. Understanding the interaction between the feedstock and the microwave electromagnetic field, and the optimization of several operational and mechanical parameters are the two main keystones that would propel the industrialization of MW heating in the near future. This provides key insights leading to increased feasibility and more advanced application of MW heating.
Agritrop arrow_drop_down Chemical Engineering JournalArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2020.126233&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 241 citations 241 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Agritrop arrow_drop_down Chemical Engineering JournalArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2020.126233&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 06 Jan 2021 GermanyPublisher:Royal Society of Chemistry (RSC) Jiaguo Yu; Licheng Sun; Licheng Sun; Yufei Jia; Panyong Kuang; Biaobiao Zhang; Ke Fan; Ke Fan; A. Ken Inge; Lizhou Fan; Min He; N. V. R. Aditya Dharanipragada;An amorphous WO3 induced lattice distortion strategy leads to only 2 wt% Ir for efficient overall water splitting in acid.
DESY Publication Dat... arrow_drop_down Sustainable Energy & FuelsArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9se01282f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert DESY Publication Dat... arrow_drop_down Sustainable Energy & FuelsArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9se01282f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Funded by:FCT | Core-shell and core-host ..., FCT | Si QuaDot PV, FCT | Institute of Nanostructur...FCT| Core-shell and core-host interactions in functional silicon-nanoparticles ,FCT| Si QuaDot PV ,FCT| Institute of Nanostructures, Nanomodelling and NanofabricationPia Jensen; M. Bellettato; Bjarke R. Jeppesen; Rui N. Pereira; Rui N. Pereira; Bruno P. Falcão; Emil H. Eriksen; Caterina Summonte; Derese Desta; Peter Balling; Sanjay K. Ram; Rita Rizzoli; Arne Nylandsted Larsen;Self-organizing nanopatterns can enable economically competitive, industrially applicable light-harvesting platforms for thin-film solar cells. In this work, we present transparent solar cell substrates having quasiperiodic uniaxial nanowrinkle patterns with high optical haze values. The self-organized nanowrinkle template is created by controlled heat-shrinking of metal-deposited pre-stretched polystyrene sheets. A scalable UV nanoimprinting method is used to transfer the nanopatterns to glass substrates on which single-junction hydrogenated amorphous silicon p-i-n solar cells are subsequently fabricated. The structural and optical analyses of the solar cell show that the nanowrinkle pattern is replicated throughout the solar cell structure leading to enhanced absorption of light. The efficient broadband light-trapping in the nanowrinkle solar cells results in very high 18.2 mA/cm2 short-circuit current density and 9.5% energy-conversion efficiency, which respectively are 35.8% and 39.7% higher than the values obtained in flat-substrate solar cells. The cost- and time-efficient technique introduces a promising new approach to customizable light-management strategies in thin-film solar cells.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nanoen.2017.04.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nanoen.2017.04.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 ItalyPublisher:Elsevier BV Funded by:EC | NASCENTEC| NASCENTManuel Schnabel; Sergi Hernández; J. López-Vidrier; Philipp Löper; Mariaconcetta Canino; B. Garrido; Caterina Summonte; Stefan Janz;The optical and photovoltaic properties of Si NCs / SiC multilayers (MLs) are investigated using a membrane-based solar cell structure. By removing the Si substrate in the active cell area, the MLs are studied without any bulk Si substrate contribution. The occurrence is confirmed by scanning electron microscopy and light-beam induced current mapping . Optical characterization combined with simulations allows us to determine the absorption within the ML absorber layer, isolated from the other cell stack layers. The results indicate that the absorption at wavelengths longer than 800 nm is only due to the SiC matrix. The measured short-circuit current is significantly lower than that theoretically obtained from absorption within the ML absorber, which is ascribed to losses that limit carrier extraction. The origin of these losses is discussed in terms of the material regions where recombination takes place. Our results indicate that carrier extraction is most efficient from the Si NCs themselves, whereas recombination is strongest in SiC and residual a-Si domains . Together with the observed onset of the external quantum efficiency (EQE) at 700-800 nm, this fact is an evidence of quantum confinement in Si NCs embedded in SiC on device level.
CNR ExploRA arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2015.10.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2015.10.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SerbiaPublisher:Elsevier BV Funded by:MESTD | Ministry of Education, Sc...MESTD| Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200172 (Serbian Academy of Sciences and Arts - SASA, Geographical Institute 'Jovan Cvijic', Belgrade)Milanović-Pešić, Ana; Brankov, Jovana; Denda, Stefan; Bjeljac, Željko; Micić, Jasna;handle: 21.15107/rcub_dais_13309
In the 21st century, many countries are starting to use geothermal energy (GTE) as a new energy source. Serbia also has the potential to use it as a renewable energy source. The complex geological structure of its terrain has given rise to a large number of thermomineral springs and geothermal wells. Based on the existing measurements, the geothermal heat flow density in Serbia ranges from 80 to 120 mW/m2, which is above Europe's average (60 mW/m2). Currently, there are 66 projects in Serbia that directly use geothermal energy. There are an estimated 1005 geothermal heat pump units. Their power varies between 10 kW and 40 kW and they operate for 2860 full load hours per year. This paper deals with the development, current state and perspectives of geothermal energy utilization for heating in Serbia. To illustrate the current state of geothermal energy utilization in Serbia, spa settlements Vranjska Banja and Gornja Trepča, as well as the Bogatić Municipality have been singled out as examples of good practice. The presented analysis includes determining the available amount of geothermal energy and its utilization for district heating or heating of selected public facilities. The concept and methodology of the presented research are based on data collection through literature review, surveys and field research. The analysis confirms the cost-effectiveness of using geothermal energy and reveals numerous ecological advantages over other energy sources. However, it was concluded that аlthough there is potential, geothermal sources, as a renewable energy source, are used negligibly in Serbia.
Mikra xinakia arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2022.112442&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 135visibility views 135 download downloads 13 Powered bymore_vert Mikra xinakia arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2022.112442&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu