- home
- Advanced Search
- Energy Research
- 15. Life on land
- 3. Good health
- CN
- DE
- PLoS ONE
- Energy Research
- 15. Life on land
- 3. Good health
- CN
- DE
- PLoS ONE
description Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2017Publisher:Public Library of Science (PLoS) Publicly fundedAuthors: Lijuan Miao; Daniel Müller; Xuefeng Cui; Meihong Ma;Climate change affects the timing of phenological events, such as the start, end, and length of the growing season of vegetation. A better understanding of how the phenology responded to climatic determinants is important in order to better anticipate future climate-ecosystem interactions. We examined the changes of three phenological events for the Mongolian Plateau and their climatic determinants. To do so, we derived three phenological metrics from remotely sensed vegetation indices and associated these with climate data for the period of 1982 to 2011. The results suggested that the start of the growing season advanced by 0.10 days yr-1, the end was delayed by 0.11 days yr-1, and the length of the growing season expanded by 6.3 days during the period from 1982 to 2011. The delayed end and extended length of the growing season were observed consistently in grassland, forest, and shrubland, while the earlier start was only observed in grassland. Partial correlation analysis between the phenological events and the climate variables revealed that higher temperature was associated with an earlier start of the growing season, and both temperature and precipitation contributed to the later ending. Overall, our findings suggest that climate change will substantially alter the vegetation phenology in the grasslands of the Mongolian Plateau, and likely also in biomes with similar environmental conditions, such as other semi-arid steppe regions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0190313&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0190313&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Public Library of Science (PLoS) Aixing Deng; Jin Chen; Baoming Zhang; Yunlu Tian; Weijian Zhang; Song Zhenwei; Changqing Chen; Chengyan Zheng;Climatic warming is often predicted to reduce wheat yield and grain quality in China. However, direct evidence is still lacking. We conducted a three-year experiment with a Free Air Temperature Increase (FATI) facility to examine the responses of winter wheat growth and plant N accumulation to a moderate temperature increase of 1.5°C predicted to prevail by 2050 in East China. Three warming treatments (AW: all-day warming; DW: daytime warming; NW: nighttime warming) were applied for an entire growth period. Consistent warming effects on wheat plant were recorded across the experimental years. An increase of ca. 1.5°C in daily, daytime and nighttime mean temperatures shortened the length of pre-anthesis period averagely by 12.7, 8.3 and 10.7 d (P<0.05), respectively, but had no significant impact on the length of the post-anthesis period. Warming did not significantly alter the aboveground biomass production, but the grain yield was 16.3, 18.1 and 19.6% (P<0.05) higher in the AW, DW and NW plots than the non-warmed plot, respectively. Warming also significantly increased plant N uptake and total biomass N accumulation. However, warming significantly reduced grain N concentrations while increased N concentrations in the leaves and stems. Together, our results demonstrate differential impacts of warming on the depositions of grain starch and protein, highlighting the needs to further understand the mechanisms that underlie warming impacts on plant C and N metabolism in wheat.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0095108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0095108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Public Library of Science (PLoS) Angang Ming; Yi Tao; Hongyan Jia; Yuanfa Li; Jinlong Zhao;More than 60% of the total area of tree plantations in China is in subtropical, and over 70% of subtropical plantations consist of pure stands of coniferous species. Because of the poor ecosystem services provided by pure coniferous plantations and the ecological instability of these stands, a movement is under way to promote indigenous broadleaf plantation cultivation as a promising alternative. However, little is known about the carbon (C) stocks in indigenous broadleaf plantations and their dependence on stand age. Thus, we studied above- and below-ground biomass and C stocks in a chronosequence of Mytilaria laosensis plantations in subtropical China; stands were 7, 10, 18, 23, 29 and 33 years old. Our assessments included tree, shrub, herb and litter layers. We used plot-level inventories and destructive tree sampling to determine vegetation C stocks. We also measured soil C stocks by analyses of soil profiles to 100 cm depth. C stocks in the tree layer dominated the above-ground ecosystem C pool across the chronosequence. C stocks increased with age from 7 to 29 years and plateaued thereafter due to a reduction in tree growth rates. Minor C stocks were found in the shrub and herb layers of all six plantations and their temporal fluctuations were relatively small. C stocks in the litter and soil layers increased with stand age. Total above-ground ecosystem C also increased with stand age. Most increases in C stocks in below-ground and total ecosystems were attributable to increases in soil C content and tree biomass. Therefore, considerations of C sequestration potential in indigenous broadleaf plantations must take stand age into account.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0109730&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0109730&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 GermanyPublisher:Public Library of Science (PLoS) Authors: Hammer, Edith C.; Rillig, Matthias C.;Glomalin is a glycoprotein produced by arbuscular mycorrhizal (AM) fungi, and the soil fraction containing glomalin is correlated with soil aggregation. Thus, factors potentially influencing glomalin production could be of relevance for this ecosystem process and for understanding AM fungal physiology. Previous work indicated that glomalin production in AM fungi may be a stress response, or related to suboptimal mycelium growth. We show here that environmental stress can enhance glomalin production in the mycelium of the AM fungus Glomus intraradices. We applied NaCl and glycerol in different intensities to the medium in which the fungus was grown in vitro, causing salinity stress and osmotic stress, respectively. As a third stress type, we simulated grazing on the extraradical hyphae of the fungus by mechanically injuring the mycelium by clipping. NaCl caused a strong increase, while the clipping treatment led to a marginally significant increase in glomalin production. Even though salinity stress includes osmotic stress, we found substantially different responses in glomalin production due to the NaCl and the glycerol treatment, as glycerol addition did not cause any response. Thus, our results indicate that glomalin is involved in inducible stress responses in AM fungi for salinity, and possibly grazing stress.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0028426&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 84 citations 84 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0028426&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 Germany, France, FrancePublisher:Public Library of Science (PLoS) Herbert Siegel; Gaute Lavik; Carolin R. Löscher; Harald Schunck; Harald Schunck; Markus Schilhabel; Dhwani K. Desai; Dhwani K. Desai; Sergio Contreras; Sergio Contreras; Marcel M. M. Kuypers; Philip Rosenstiel; Ruth A. Schmitz; Tobias Großkopf; Tobias Großkopf; Moritz Holtappels; Tim Kalvelage; Michelle Graco; Julie LaRoche; Julie LaRoche; Aurélien Paulmier;In Eastern Boundary Upwelling Systems nutrient-rich waters are transported to the ocean surface, fuelling high photoautotrophic primary production. Subsequent heterotrophic decomposition of the produced biomass increases the oxygen-depletion at intermediate water depths, which can result in the formation of oxygen minimum zones (OMZ). OMZs can sporadically accumulate hydrogen sulfide (H2S), which is toxic to most multicellular organisms and has been implicated in massive fish kills. During a cruise to the OMZ off Peru in January 2009 we found a sulfidic plume in continental shelf waters, covering an area >5500 km(2), which contained ∼2.2×10(4) tons of H2S. This was the first time that H2S was measured in the Peruvian OMZ and with ∼440 km(3) the largest plume ever reported for oceanic waters. We assessed the phylogenetic and functional diversity of the inhabiting microbial community by high-throughput sequencing of DNA and RNA, while its metabolic activity was determined with rate measurements of carbon fixation and nitrogen transformation processes. The waters were dominated by several distinct γ-, δ- and ε-proteobacterial taxa associated with either sulfur oxidation or sulfate reduction. Our results suggest that these chemolithoautotrophic bacteria utilized several oxidants (oxygen, nitrate, nitrite, nitric oxide and nitrous oxide) to detoxify the sulfidic waters well below the oxic surface. The chemolithoautotrophic activity at our sampling site led to high rates of dark carbon fixation. Assuming that these chemolithoautotrophic rates were maintained throughout the sulfidic waters, they could be representing as much as ∼30% of the photoautotrophic carbon fixation. Postulated changes such as eutrophication and global warming, which lead to an expansion and intensification of OMZs, might also increase the frequency of sulfidic waters. We suggest that the chemolithoautotrophically fixed carbon may be involved in a negative feedback loop that could fuel further sulfate reduction and potentially stabilize the sulfidic OMZ waters.
OceanRep arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverInstitut national des sciences de l'Univers: HAL-INSUArticle . 2013Full-Text: https://hal.science/hal-00998673Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2013 . Peer-reviewedData sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0068661&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 183 citations 183 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert OceanRep arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverInstitut national des sciences de l'Univers: HAL-INSUArticle . 2013Full-Text: https://hal.science/hal-00998673Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2013 . Peer-reviewedData sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0068661&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Public Library of Science (PLoS) Funded by:SSHRCSSHRCAuthors: Guillaume Peterson St-Laurent; Shannon Hagerman; Robert Kozak; George Hoberg;The role of forest management in mitigating climate change is a central concern for the Canadian province of British Columbia. The successful implementation of forest management activities to achieve climate change mitigation in British Columbia will be strongly influenced by public support or opposition. While we now have increasingly clear ideas of the management opportunities associated with forest mitigation and some insight into public support for climate change mitigation in the context of sustainable forest management, very little is known with respect to the levels and basis of public support for potential forest management strategies to mitigate climate change. This paper, by describing the results of a web-based survey, documents levels of public support for the implementation of eight forest carbon mitigation strategies in British Columbia's forest sector, and examines and quantifies the influence of the factors that shape this support. Overall, respondents ascribed a high level of importance to forest carbon mitigation and supported all of the eight proposed strategies, indicating that the British Columbia public is inclined to consider alternative practices in managing forests and wood products to mitigate climate change. That said, we found differences in levels of support for the mitigation strategies. In general, we found greater levels of support for a rehabilitation strategy (e.g. reforestation of unproductive forest land), and to a lesser extent for conservation strategies (e.g. old growth conservation, reduced harvest) over enhanced forest management strategies (e.g. improved harvesting and silvicultural techniques). We also highlighted multiple variables within the British Columbia population that appear to play a role in predicting levels of support for conservation and/or enhanced forest management strategies, including environmental values, risk perception, trust in groups of actors, prioritized objectives of forest management and socio-demographic factors.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0195999&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 3visibility views 3 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0195999&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Public Library of Science (PLoS) Jianping Ge; Guirui Yu; Ruili Wang; Qiufeng Wang; Ning Zhao; Fucai Xia; Nianpeng He; Zhiwei Xu;Understanding the variation in stomatal characteristics in relation to climatic gradients can reveal the adaptation strategies of plants, and help us to predict their responses to future climate changes. In this study, we investigated stomatal density (SD) and stomatal length (SL) in 150 plant species along an elevation gradient (540-2357 m) in Changbai Mountain, China, and explored the patterns and drivers of stomatal characteristics across species and plant functional types (PFTs: trees, shrubs, and herbs). The average values of SD and SL for all species combined were 156 mm(-2) and 35 µm, respectively. SD was higher in trees (224 mm(-2)) than in shrubs (156 mm(-2)) or herbs (124 mm(-2)), and SL was largest in herbs (37 µm). SD was negatively correlated with SL in all species and PFTs (P < 0.01). The relationship between stomatal characteristics and elevation differed among PFTs. In trees, SD decreased and SL increased with elevation; in shrubs and herbs, SD initially increased and then decreased. Elevation-related differences in SL were not significant. PFT explained 7.20-17.6% of the total variation in SD and SL; the contributions of CO2 partial pressure (P CO2), precipitation, and soil water content (SWC) were weak (0.02-2.28%). Our findings suggest that elevation-related patterns of stomatal characteristics in leaves are primarily a function of PFT, and highlight the importance of differences among PFTs in modeling gas exchange in terrestrial ecosystems under global climate change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0115395&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0115395&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Public Library of Science (PLoS) Anil K. Pokharia; Rajesh Agnihotri; Shalini Sharma; Sunil Bajpai; Jitendra Nath; R. N. Kumaran; Bipin Chandra Negi;Archaeological sites hold important clues to complex climate-human relationships of the past. Human settlements in the peripheral zone of Indus culture (Gujarat, western India) are of considerable importance in the assessment of past monsoon-human-subsistence-culture relationships and their survival thresholds against climatic stress exerted by abrupt changes. During the mature phase of Harappan culture between ~4,600-3,900yrsBP, the ~4,100±100yrsBP time slice is widely recognized as one of the major, abrupt arid-events imprinted innumerous well-dated palaeo records. However, the veracity of this dry event has not been established from any archaeological site representing the Indus (Harappan) culture, and issues concerning timing, changes in subsistence pattern, and the likely causes of eventual abandonment (collapse) continue to be debated. Here we show a significant change in crop-pattern (from barley-wheat based agriculture to 'drought-resistant' millet-based crops) at ~4,200 yrs BP, based on abundant macrobotanical remains and C isotopes of soil organic matter (δ13CSOM) in an archaeological site at Khirsara, in the Gujarat state of western India. The crop-change appears to be intentional and was likely used as an adaptation measure in response to deteriorated monsoonal conditions. The ceramic and architectural remains of the site indicate that habitation survived and continued after the ~4,200yrsBP dry climatic phase, but with declined economic prosperity. Switching to millet-based crops initially helped inhabitants to avoid immediate collapse due to climatic stresses, but continued aridity and altered cropping pattern led to a decline in prosperity levels of inhabitants and eventual abandonment of the site at the end of the mature Harappan phase.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0185684&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 52 citations 52 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0185684&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United KingdomPublisher:Public Library of Science (PLoS) Authors: Meineke, T.; Manisseri, C.; Voigt, C.A.;The production of ethanol from pretreated plant biomass during fermentation is a strategy to mitigate climate change by substituting fossil fuels. However, biomass conversion is mainly limited by the recalcitrant nature of the plant cell wall. To overcome recalcitrance, the optimization of the plant cell wall for subsequent processing is a promising approach. Based on their phylogenetic proximity to existing and emerging energy crops, model plants have been proposed to study bioenergy-related cell wall biochemistry. One example is Brachypodium distachyon, which has been considered as a general model plant for cell wall analysis in grasses. To test whether relative phylogenetic proximity would be sufficient to qualify as a model plant not only for cell wall composition but also for the complete process leading to bioethanol production, we compared the processing of leaf and stem biomass from the C3 grasses B. distachyon and Triticum aestivum (wheat) with the C4 grasses Zea mays (maize) and Miscanthus x giganteus, a perennial energy crop. Lambda scanning with a confocal laser-scanning microscope allowed a rapid qualitative analysis of biomass saccharification. A maximum of 108-117 mg ethanol·g(-1) dry biomass was yielded from thermo-chemically and enzymatically pretreated stem biomass of the tested plant species. Principal component analysis revealed that a relatively strong correlation between similarities in lignocellulosic ethanol production and phylogenetic relation was only given for stem and leaf biomass of the two tested C4 grasses. Our results suggest that suitability of B. distachyon as a model plant for biomass conversion of energy crops has to be specifically tested based on applied processing parameters and biomass tissue type.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0103580&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 3visibility views 3 download downloads 6 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0103580&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 United KingdomPublisher:Public Library of Science (PLoS) Authors: Liu, M.; Wang, B.; Osborne, C.P.; Jiang, G.;Grassland degradation caused by overgrazing poses a threat to both animal husbandry and environmental sustainability in most semi-arid areas especially north China. Although the Chinese Government has made huge efforts to restore degraded grasslands, a considerable attempt has unfortunately failed due to an inadequate consideration of economic benefits to local communities.A controlled field experiment was conducted to test our hypothesis that utilizing natural grasslands as both habitat and feed resources for chickens and replacing the traditional husbandry system with chicken farming would increase environmental sustainability and raise income. Aboveground plant biomass elevated from 25 g m(-2) for grazing sheep to 84 g m(-2) for chicken farming. In contrast to the fenced (unstocked) grassland, chicken farming did not significantly decrease aboveground plant biomass, but did increase the root biomass by 60% (p<0.01). Compared with traditional sheep grazing, chicken farming significantly improved soil surface water content (0-10 cm), from 5% to 15%. Chicken farming did not affect the soil bulk density, while the traditional sheep grazing increased the soil bulk density in the 0-10 cm soil layer by 35% of the control (p<0.05). Most importantly, the economic income of local herdsmen has been raised about six times compared with the traditional practice of raising sheep. Ecologically, such an innovative solution allowed large degraded grasslands to naturally regenerate. Grasslands also provided a high quality organic poultry product which could be marketed in big cities.Chicken farming is an innovative alternative strategy for increasing environmental sustainability and economic income, rather than a challenge to the traditional nomadic pastoral system. Our approach might be technically applicable to other large degraded grasslands of the world, especially in China.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0053977&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Average influence Average impulse Average Powered by BIP!
visibility 7visibility views 7 download downloads 28 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0053977&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2017Publisher:Public Library of Science (PLoS) Publicly fundedAuthors: Lijuan Miao; Daniel Müller; Xuefeng Cui; Meihong Ma;Climate change affects the timing of phenological events, such as the start, end, and length of the growing season of vegetation. A better understanding of how the phenology responded to climatic determinants is important in order to better anticipate future climate-ecosystem interactions. We examined the changes of three phenological events for the Mongolian Plateau and their climatic determinants. To do so, we derived three phenological metrics from remotely sensed vegetation indices and associated these with climate data for the period of 1982 to 2011. The results suggested that the start of the growing season advanced by 0.10 days yr-1, the end was delayed by 0.11 days yr-1, and the length of the growing season expanded by 6.3 days during the period from 1982 to 2011. The delayed end and extended length of the growing season were observed consistently in grassland, forest, and shrubland, while the earlier start was only observed in grassland. Partial correlation analysis between the phenological events and the climate variables revealed that higher temperature was associated with an earlier start of the growing season, and both temperature and precipitation contributed to the later ending. Overall, our findings suggest that climate change will substantially alter the vegetation phenology in the grasslands of the Mongolian Plateau, and likely also in biomes with similar environmental conditions, such as other semi-arid steppe regions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0190313&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0190313&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Public Library of Science (PLoS) Aixing Deng; Jin Chen; Baoming Zhang; Yunlu Tian; Weijian Zhang; Song Zhenwei; Changqing Chen; Chengyan Zheng;Climatic warming is often predicted to reduce wheat yield and grain quality in China. However, direct evidence is still lacking. We conducted a three-year experiment with a Free Air Temperature Increase (FATI) facility to examine the responses of winter wheat growth and plant N accumulation to a moderate temperature increase of 1.5°C predicted to prevail by 2050 in East China. Three warming treatments (AW: all-day warming; DW: daytime warming; NW: nighttime warming) were applied for an entire growth period. Consistent warming effects on wheat plant were recorded across the experimental years. An increase of ca. 1.5°C in daily, daytime and nighttime mean temperatures shortened the length of pre-anthesis period averagely by 12.7, 8.3 and 10.7 d (P<0.05), respectively, but had no significant impact on the length of the post-anthesis period. Warming did not significantly alter the aboveground biomass production, but the grain yield was 16.3, 18.1 and 19.6% (P<0.05) higher in the AW, DW and NW plots than the non-warmed plot, respectively. Warming also significantly increased plant N uptake and total biomass N accumulation. However, warming significantly reduced grain N concentrations while increased N concentrations in the leaves and stems. Together, our results demonstrate differential impacts of warming on the depositions of grain starch and protein, highlighting the needs to further understand the mechanisms that underlie warming impacts on plant C and N metabolism in wheat.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0095108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0095108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Public Library of Science (PLoS) Angang Ming; Yi Tao; Hongyan Jia; Yuanfa Li; Jinlong Zhao;More than 60% of the total area of tree plantations in China is in subtropical, and over 70% of subtropical plantations consist of pure stands of coniferous species. Because of the poor ecosystem services provided by pure coniferous plantations and the ecological instability of these stands, a movement is under way to promote indigenous broadleaf plantation cultivation as a promising alternative. However, little is known about the carbon (C) stocks in indigenous broadleaf plantations and their dependence on stand age. Thus, we studied above- and below-ground biomass and C stocks in a chronosequence of Mytilaria laosensis plantations in subtropical China; stands were 7, 10, 18, 23, 29 and 33 years old. Our assessments included tree, shrub, herb and litter layers. We used plot-level inventories and destructive tree sampling to determine vegetation C stocks. We also measured soil C stocks by analyses of soil profiles to 100 cm depth. C stocks in the tree layer dominated the above-ground ecosystem C pool across the chronosequence. C stocks increased with age from 7 to 29 years and plateaued thereafter due to a reduction in tree growth rates. Minor C stocks were found in the shrub and herb layers of all six plantations and their temporal fluctuations were relatively small. C stocks in the litter and soil layers increased with stand age. Total above-ground ecosystem C also increased with stand age. Most increases in C stocks in below-ground and total ecosystems were attributable to increases in soil C content and tree biomass. Therefore, considerations of C sequestration potential in indigenous broadleaf plantations must take stand age into account.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0109730&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0109730&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 GermanyPublisher:Public Library of Science (PLoS) Authors: Hammer, Edith C.; Rillig, Matthias C.;Glomalin is a glycoprotein produced by arbuscular mycorrhizal (AM) fungi, and the soil fraction containing glomalin is correlated with soil aggregation. Thus, factors potentially influencing glomalin production could be of relevance for this ecosystem process and for understanding AM fungal physiology. Previous work indicated that glomalin production in AM fungi may be a stress response, or related to suboptimal mycelium growth. We show here that environmental stress can enhance glomalin production in the mycelium of the AM fungus Glomus intraradices. We applied NaCl and glycerol in different intensities to the medium in which the fungus was grown in vitro, causing salinity stress and osmotic stress, respectively. As a third stress type, we simulated grazing on the extraradical hyphae of the fungus by mechanically injuring the mycelium by clipping. NaCl caused a strong increase, while the clipping treatment led to a marginally significant increase in glomalin production. Even though salinity stress includes osmotic stress, we found substantially different responses in glomalin production due to the NaCl and the glycerol treatment, as glycerol addition did not cause any response. Thus, our results indicate that glomalin is involved in inducible stress responses in AM fungi for salinity, and possibly grazing stress.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0028426&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 84 citations 84 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0028426&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 Germany, France, FrancePublisher:Public Library of Science (PLoS) Herbert Siegel; Gaute Lavik; Carolin R. Löscher; Harald Schunck; Harald Schunck; Markus Schilhabel; Dhwani K. Desai; Dhwani K. Desai; Sergio Contreras; Sergio Contreras; Marcel M. M. Kuypers; Philip Rosenstiel; Ruth A. Schmitz; Tobias Großkopf; Tobias Großkopf; Moritz Holtappels; Tim Kalvelage; Michelle Graco; Julie LaRoche; Julie LaRoche; Aurélien Paulmier;In Eastern Boundary Upwelling Systems nutrient-rich waters are transported to the ocean surface, fuelling high photoautotrophic primary production. Subsequent heterotrophic decomposition of the produced biomass increases the oxygen-depletion at intermediate water depths, which can result in the formation of oxygen minimum zones (OMZ). OMZs can sporadically accumulate hydrogen sulfide (H2S), which is toxic to most multicellular organisms and has been implicated in massive fish kills. During a cruise to the OMZ off Peru in January 2009 we found a sulfidic plume in continental shelf waters, covering an area >5500 km(2), which contained ∼2.2×10(4) tons of H2S. This was the first time that H2S was measured in the Peruvian OMZ and with ∼440 km(3) the largest plume ever reported for oceanic waters. We assessed the phylogenetic and functional diversity of the inhabiting microbial community by high-throughput sequencing of DNA and RNA, while its metabolic activity was determined with rate measurements of carbon fixation and nitrogen transformation processes. The waters were dominated by several distinct γ-, δ- and ε-proteobacterial taxa associated with either sulfur oxidation or sulfate reduction. Our results suggest that these chemolithoautotrophic bacteria utilized several oxidants (oxygen, nitrate, nitrite, nitric oxide and nitrous oxide) to detoxify the sulfidic waters well below the oxic surface. The chemolithoautotrophic activity at our sampling site led to high rates of dark carbon fixation. Assuming that these chemolithoautotrophic rates were maintained throughout the sulfidic waters, they could be representing as much as ∼30% of the photoautotrophic carbon fixation. Postulated changes such as eutrophication and global warming, which lead to an expansion and intensification of OMZs, might also increase the frequency of sulfidic waters. We suggest that the chemolithoautotrophically fixed carbon may be involved in a negative feedback loop that could fuel further sulfate reduction and potentially stabilize the sulfidic OMZ waters.
OceanRep arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverInstitut national des sciences de l'Univers: HAL-INSUArticle . 2013Full-Text: https://hal.science/hal-00998673Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2013 . Peer-reviewedData sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0068661&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 183 citations 183 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert OceanRep arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverInstitut national des sciences de l'Univers: HAL-INSUArticle . 2013Full-Text: https://hal.science/hal-00998673Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2013 . Peer-reviewedData sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0068661&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Public Library of Science (PLoS) Funded by:SSHRCSSHRCAuthors: Guillaume Peterson St-Laurent; Shannon Hagerman; Robert Kozak; George Hoberg;The role of forest management in mitigating climate change is a central concern for the Canadian province of British Columbia. The successful implementation of forest management activities to achieve climate change mitigation in British Columbia will be strongly influenced by public support or opposition. While we now have increasingly clear ideas of the management opportunities associated with forest mitigation and some insight into public support for climate change mitigation in the context of sustainable forest management, very little is known with respect to the levels and basis of public support for potential forest management strategies to mitigate climate change. This paper, by describing the results of a web-based survey, documents levels of public support for the implementation of eight forest carbon mitigation strategies in British Columbia's forest sector, and examines and quantifies the influence of the factors that shape this support. Overall, respondents ascribed a high level of importance to forest carbon mitigation and supported all of the eight proposed strategies, indicating that the British Columbia public is inclined to consider alternative practices in managing forests and wood products to mitigate climate change. That said, we found differences in levels of support for the mitigation strategies. In general, we found greater levels of support for a rehabilitation strategy (e.g. reforestation of unproductive forest land), and to a lesser extent for conservation strategies (e.g. old growth conservation, reduced harvest) over enhanced forest management strategies (e.g. improved harvesting and silvicultural techniques). We also highlighted multiple variables within the British Columbia population that appear to play a role in predicting levels of support for conservation and/or enhanced forest management strategies, including environmental values, risk perception, trust in groups of actors, prioritized objectives of forest management and socio-demographic factors.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0195999&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 3visibility views 3 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0195999&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Public Library of Science (PLoS) Jianping Ge; Guirui Yu; Ruili Wang; Qiufeng Wang; Ning Zhao; Fucai Xia; Nianpeng He; Zhiwei Xu;Understanding the variation in stomatal characteristics in relation to climatic gradients can reveal the adaptation strategies of plants, and help us to predict their responses to future climate changes. In this study, we investigated stomatal density (SD) and stomatal length (SL) in 150 plant species along an elevation gradient (540-2357 m) in Changbai Mountain, China, and explored the patterns and drivers of stomatal characteristics across species and plant functional types (PFTs: trees, shrubs, and herbs). The average values of SD and SL for all species combined were 156 mm(-2) and 35 µm, respectively. SD was higher in trees (224 mm(-2)) than in shrubs (156 mm(-2)) or herbs (124 mm(-2)), and SL was largest in herbs (37 µm). SD was negatively correlated with SL in all species and PFTs (P < 0.01). The relationship between stomatal characteristics and elevation differed among PFTs. In trees, SD decreased and SL increased with elevation; in shrubs and herbs, SD initially increased and then decreased. Elevation-related differences in SL were not significant. PFT explained 7.20-17.6% of the total variation in SD and SL; the contributions of CO2 partial pressure (P CO2), precipitation, and soil water content (SWC) were weak (0.02-2.28%). Our findings suggest that elevation-related patterns of stomatal characteristics in leaves are primarily a function of PFT, and highlight the importance of differences among PFTs in modeling gas exchange in terrestrial ecosystems under global climate change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0115395&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0115395&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Public Library of Science (PLoS) Anil K. Pokharia; Rajesh Agnihotri; Shalini Sharma; Sunil Bajpai; Jitendra Nath; R. N. Kumaran; Bipin Chandra Negi;Archaeological sites hold important clues to complex climate-human relationships of the past. Human settlements in the peripheral zone of Indus culture (Gujarat, western India) are of considerable importance in the assessment of past monsoon-human-subsistence-culture relationships and their survival thresholds against climatic stress exerted by abrupt changes. During the mature phase of Harappan culture between ~4,600-3,900yrsBP, the ~4,100±100yrsBP time slice is widely recognized as one of the major, abrupt arid-events imprinted innumerous well-dated palaeo records. However, the veracity of this dry event has not been established from any archaeological site representing the Indus (Harappan) culture, and issues concerning timing, changes in subsistence pattern, and the likely causes of eventual abandonment (collapse) continue to be debated. Here we show a significant change in crop-pattern (from barley-wheat based agriculture to 'drought-resistant' millet-based crops) at ~4,200 yrs BP, based on abundant macrobotanical remains and C isotopes of soil organic matter (δ13CSOM) in an archaeological site at Khirsara, in the Gujarat state of western India. The crop-change appears to be intentional and was likely used as an adaptation measure in response to deteriorated monsoonal conditions. The ceramic and architectural remains of the site indicate that habitation survived and continued after the ~4,200yrsBP dry climatic phase, but with declined economic prosperity. Switching to millet-based crops initially helped inhabitants to avoid immediate collapse due to climatic stresses, but continued aridity and altered cropping pattern led to a decline in prosperity levels of inhabitants and eventual abandonment of the site at the end of the mature Harappan phase.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0185684&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 52 citations 52 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0185684&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United KingdomPublisher:Public Library of Science (PLoS) Authors: Meineke, T.; Manisseri, C.; Voigt, C.A.;The production of ethanol from pretreated plant biomass during fermentation is a strategy to mitigate climate change by substituting fossil fuels. However, biomass conversion is mainly limited by the recalcitrant nature of the plant cell wall. To overcome recalcitrance, the optimization of the plant cell wall for subsequent processing is a promising approach. Based on their phylogenetic proximity to existing and emerging energy crops, model plants have been proposed to study bioenergy-related cell wall biochemistry. One example is Brachypodium distachyon, which has been considered as a general model plant for cell wall analysis in grasses. To test whether relative phylogenetic proximity would be sufficient to qualify as a model plant not only for cell wall composition but also for the complete process leading to bioethanol production, we compared the processing of leaf and stem biomass from the C3 grasses B. distachyon and Triticum aestivum (wheat) with the C4 grasses Zea mays (maize) and Miscanthus x giganteus, a perennial energy crop. Lambda scanning with a confocal laser-scanning microscope allowed a rapid qualitative analysis of biomass saccharification. A maximum of 108-117 mg ethanol·g(-1) dry biomass was yielded from thermo-chemically and enzymatically pretreated stem biomass of the tested plant species. Principal component analysis revealed that a relatively strong correlation between similarities in lignocellulosic ethanol production and phylogenetic relation was only given for stem and leaf biomass of the two tested C4 grasses. Our results suggest that suitability of B. distachyon as a model plant for biomass conversion of energy crops has to be specifically tested based on applied processing parameters and biomass tissue type.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0103580&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 3visibility views 3 download downloads 6 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0103580&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 United KingdomPublisher:Public Library of Science (PLoS) Authors: Liu, M.; Wang, B.; Osborne, C.P.; Jiang, G.;Grassland degradation caused by overgrazing poses a threat to both animal husbandry and environmental sustainability in most semi-arid areas especially north China. Although the Chinese Government has made huge efforts to restore degraded grasslands, a considerable attempt has unfortunately failed due to an inadequate consideration of economic benefits to local communities.A controlled field experiment was conducted to test our hypothesis that utilizing natural grasslands as both habitat and feed resources for chickens and replacing the traditional husbandry system with chicken farming would increase environmental sustainability and raise income. Aboveground plant biomass elevated from 25 g m(-2) for grazing sheep to 84 g m(-2) for chicken farming. In contrast to the fenced (unstocked) grassland, chicken farming did not significantly decrease aboveground plant biomass, but did increase the root biomass by 60% (p<0.01). Compared with traditional sheep grazing, chicken farming significantly improved soil surface water content (0-10 cm), from 5% to 15%. Chicken farming did not affect the soil bulk density, while the traditional sheep grazing increased the soil bulk density in the 0-10 cm soil layer by 35% of the control (p<0.05). Most importantly, the economic income of local herdsmen has been raised about six times compared with the traditional practice of raising sheep. Ecologically, such an innovative solution allowed large degraded grasslands to naturally regenerate. Grasslands also provided a high quality organic poultry product which could be marketed in big cities.Chicken farming is an innovative alternative strategy for increasing environmental sustainability and economic income, rather than a challenge to the traditional nomadic pastoral system. Our approach might be technically applicable to other large degraded grasslands of the world, especially in China.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0053977&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Average influence Average impulse Average Powered by BIP!
visibility 7visibility views 7 download downloads 28 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0053977&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu